summaryrefslogtreecommitdiffstats
path: root/media/libvpx/libvpx/vp8/encoder/bitstream.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libvpx/libvpx/vp8/encoder/bitstream.c')
-rw-r--r--media/libvpx/libvpx/vp8/encoder/bitstream.c1381
1 files changed, 1381 insertions, 0 deletions
diff --git a/media/libvpx/libvpx/vp8/encoder/bitstream.c b/media/libvpx/libvpx/vp8/encoder/bitstream.c
new file mode 100644
index 0000000000..03691fc9d1
--- /dev/null
+++ b/media/libvpx/libvpx/vp8/encoder/bitstream.c
@@ -0,0 +1,1381 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "vp8/common/header.h"
+#include "encodemv.h"
+#include "vp8/common/entropymode.h"
+#include "vp8/common/findnearmv.h"
+#include "mcomp.h"
+#include "vp8/common/systemdependent.h"
+#include <assert.h>
+#include <stdio.h>
+#include <limits.h>
+#include "vpx/vpx_encoder.h"
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/compiler_attributes.h"
+#include "vpx_ports/system_state.h"
+#include "bitstream.h"
+
+#include "defaultcoefcounts.h"
+#include "vp8/common/common.h"
+
+const int vp8cx_base_skip_false_prob[128] = {
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 251, 248, 244, 240,
+ 236, 232, 229, 225, 221, 217, 213, 208, 204, 199, 194, 190, 187, 183, 179,
+ 175, 172, 168, 164, 160, 157, 153, 149, 145, 142, 138, 134, 130, 127, 124,
+ 120, 117, 114, 110, 107, 104, 101, 98, 95, 92, 89, 86, 83, 80, 77,
+ 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32,
+ 30, 28, 26, 24, 22, 20, 18, 16,
+};
+
+#if defined(SECTIONBITS_OUTPUT)
+unsigned __int64 Sectionbits[500];
+#endif
+
+#ifdef MODE_STATS
+int count_mb_seg[4] = { 0, 0, 0, 0 };
+#endif
+
+static void update_mode(vp8_writer *const w, int n, vp8_token tok[/* n */],
+ vp8_tree tree, vp8_prob Pnew[/* n-1 */],
+ vp8_prob Pcur[/* n-1 */],
+ unsigned int bct[/* n-1 */][2],
+ const unsigned int num_events[/* n */]) {
+ unsigned int new_b = 0, old_b = 0;
+ int i = 0;
+
+ vp8_tree_probs_from_distribution(n--, tok, tree, Pnew, bct, num_events, 256,
+ 1);
+
+ do {
+ new_b += vp8_cost_branch(bct[i], Pnew[i]);
+ old_b += vp8_cost_branch(bct[i], Pcur[i]);
+ } while (++i < n);
+
+ if (new_b + (n << 8) < old_b) {
+ int j = 0;
+
+ vp8_write_bit(w, 1);
+
+ do {
+ const vp8_prob p = Pnew[j];
+
+ vp8_write_literal(w, Pcur[j] = p ? p : 1, 8);
+ } while (++j < n);
+ } else
+ vp8_write_bit(w, 0);
+}
+
+static void update_mbintra_mode_probs(VP8_COMP *cpi) {
+ VP8_COMMON *const x = &cpi->common;
+
+ vp8_writer *const w = cpi->bc;
+
+ {
+ vp8_prob Pnew[VP8_YMODES - 1];
+ unsigned int bct[VP8_YMODES - 1][2];
+
+ update_mode(w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree, Pnew,
+ x->fc.ymode_prob, bct, (unsigned int *)cpi->mb.ymode_count);
+ }
+ {
+ vp8_prob Pnew[VP8_UV_MODES - 1];
+ unsigned int bct[VP8_UV_MODES - 1][2];
+
+ update_mode(w, VP8_UV_MODES, vp8_uv_mode_encodings, vp8_uv_mode_tree, Pnew,
+ x->fc.uv_mode_prob, bct, (unsigned int *)cpi->mb.uv_mode_count);
+ }
+}
+
+static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
+ vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m);
+}
+
+static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
+ vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m);
+}
+
+static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p) {
+ vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m);
+}
+
+static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p) {
+ vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m);
+}
+
+static void write_split(vp8_writer *bc, int x) {
+ vp8_write_token(bc, vp8_mbsplit_tree, vp8_mbsplit_probs,
+ vp8_mbsplit_encodings + x);
+}
+
+void VPX_NO_UNSIGNED_SHIFT_CHECK vp8_pack_tokens(vp8_writer *w,
+ const TOKENEXTRA *p,
+ int xcount) {
+ const TOKENEXTRA *stop = p + xcount;
+ unsigned int split;
+ int shift;
+ int count = w->count;
+ unsigned int range = w->range;
+ unsigned int lowvalue = w->lowvalue;
+
+ while (p < stop) {
+ const int t = p->Token;
+ vp8_token *a = vp8_coef_encodings + t;
+ const vp8_extra_bit_struct *b = vp8_extra_bits + t;
+ int i = 0;
+ const unsigned char *pp = p->context_tree;
+ int v = a->value;
+ int n = a->Len;
+
+ if (p->skip_eob_node) {
+ n--;
+ i = 2;
+ }
+
+ do {
+ const int bb = (v >> --n) & 1;
+ split = 1 + (((range - 1) * pp[i >> 1]) >> 8);
+ i = vp8_coef_tree[i + bb];
+
+ if (bb) {
+ lowvalue += split;
+ range = range - split;
+ } else {
+ range = split;
+ }
+
+ shift = vp8_norm[range];
+ range <<= shift;
+ count += shift;
+
+ if (count >= 0) {
+ int offset = shift - count;
+
+ if ((lowvalue << (offset - 1)) & 0x80000000) {
+ int x = w->pos - 1;
+
+ while (x >= 0 && w->buffer[x] == 0xff) {
+ w->buffer[x] = (unsigned char)0;
+ x--;
+ }
+
+ w->buffer[x] += 1;
+ }
+
+ validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error);
+
+ w->buffer[w->pos++] = (lowvalue >> (24 - offset)) & 0xff;
+ shift = count;
+ lowvalue = (int)(((uint64_t)lowvalue << offset) & 0xffffff);
+ count -= 8;
+ }
+
+ lowvalue <<= shift;
+ } while (n);
+
+ if (b->base_val) {
+ const int e = p->Extra, L = b->Len;
+
+ if (L) {
+ const unsigned char *proba = b->prob;
+ const int v2 = e >> 1;
+ int n2 = L; /* number of bits in v2, assumed nonzero */
+ i = 0;
+
+ do {
+ const int bb = (v2 >> --n2) & 1;
+ split = 1 + (((range - 1) * proba[i >> 1]) >> 8);
+ i = b->tree[i + bb];
+
+ if (bb) {
+ lowvalue += split;
+ range = range - split;
+ } else {
+ range = split;
+ }
+
+ shift = vp8_norm[range];
+ range <<= shift;
+ count += shift;
+
+ if (count >= 0) {
+ int offset = shift - count;
+
+ if ((lowvalue << (offset - 1)) & 0x80000000) {
+ int x = w->pos - 1;
+
+ while (x >= 0 && w->buffer[x] == 0xff) {
+ w->buffer[x] = (unsigned char)0;
+ x--;
+ }
+
+ w->buffer[x] += 1;
+ }
+
+ validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error);
+
+ w->buffer[w->pos++] = (lowvalue >> (24 - offset)) & 0xff;
+ shift = count;
+ lowvalue = (int)(((uint64_t)lowvalue << offset) & 0xffffff);
+ count -= 8;
+ }
+
+ lowvalue <<= shift;
+ } while (n2);
+ }
+
+ {
+ split = (range + 1) >> 1;
+
+ if (e & 1) {
+ lowvalue += split;
+ range = range - split;
+ } else {
+ range = split;
+ }
+
+ range <<= 1;
+
+ if ((lowvalue & 0x80000000)) {
+ int x = w->pos - 1;
+
+ while (x >= 0 && w->buffer[x] == 0xff) {
+ w->buffer[x] = (unsigned char)0;
+ x--;
+ }
+
+ w->buffer[x] += 1;
+ }
+
+ lowvalue <<= 1;
+
+ if (!++count) {
+ count = -8;
+
+ validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error);
+
+ w->buffer[w->pos++] = (lowvalue >> 24);
+ lowvalue &= 0xffffff;
+ }
+ }
+ }
+
+ ++p;
+ }
+
+ w->count = count;
+ w->lowvalue = lowvalue;
+ w->range = range;
+}
+
+static void write_partition_size(unsigned char *cx_data, int size) {
+ signed char csize;
+
+ csize = size & 0xff;
+ *cx_data = csize;
+ csize = (size >> 8) & 0xff;
+ *(cx_data + 1) = csize;
+ csize = (size >> 16) & 0xff;
+ *(cx_data + 2) = csize;
+}
+
+static void pack_tokens_into_partitions(VP8_COMP *cpi, unsigned char *cx_data,
+ unsigned char *cx_data_end,
+ int num_part) {
+ int i;
+ unsigned char *ptr = cx_data;
+ unsigned char *ptr_end = cx_data_end;
+ vp8_writer *w;
+
+ for (i = 0; i < num_part; ++i) {
+ int mb_row;
+
+ w = cpi->bc + i + 1;
+
+ vp8_start_encode(w, ptr, ptr_end);
+
+ for (mb_row = i; mb_row < cpi->common.mb_rows; mb_row += num_part) {
+ const TOKENEXTRA *p = cpi->tplist[mb_row].start;
+ const TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
+ int tokens = (int)(stop - p);
+
+ vp8_pack_tokens(w, p, tokens);
+ }
+
+ vp8_stop_encode(w);
+ ptr += w->pos;
+ }
+}
+
+#if CONFIG_MULTITHREAD
+static void pack_mb_row_tokens(VP8_COMP *cpi, vp8_writer *w) {
+ int mb_row;
+
+ for (mb_row = 0; mb_row < cpi->common.mb_rows; ++mb_row) {
+ const TOKENEXTRA *p = cpi->tplist[mb_row].start;
+ const TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
+ int tokens = (int)(stop - p);
+
+ vp8_pack_tokens(w, p, tokens);
+ }
+}
+#endif // CONFIG_MULTITHREAD
+
+static void write_mv_ref(vp8_writer *w, MB_PREDICTION_MODE m,
+ const vp8_prob *p) {
+ assert(NEARESTMV <= m && m <= SPLITMV);
+ vp8_write_token(w, vp8_mv_ref_tree, p,
+ vp8_mv_ref_encoding_array + (m - NEARESTMV));
+}
+
+static void write_sub_mv_ref(vp8_writer *w, B_PREDICTION_MODE m,
+ const vp8_prob *p) {
+ assert(LEFT4X4 <= m && m <= NEW4X4);
+ vp8_write_token(w, vp8_sub_mv_ref_tree, p,
+ vp8_sub_mv_ref_encoding_array + (m - LEFT4X4));
+}
+
+static void write_mv(vp8_writer *w, const MV *mv, const int_mv *ref,
+ const MV_CONTEXT *mvc) {
+ MV e;
+ e.row = mv->row - ref->as_mv.row;
+ e.col = mv->col - ref->as_mv.col;
+
+ vp8_encode_motion_vector(w, &e, mvc);
+}
+
+static void write_mb_features(vp8_writer *w, const MB_MODE_INFO *mi,
+ const MACROBLOCKD *x) {
+ /* Encode the MB segment id. */
+ if (x->segmentation_enabled && x->update_mb_segmentation_map) {
+ switch (mi->segment_id) {
+ case 0:
+ vp8_write(w, 0, x->mb_segment_tree_probs[0]);
+ vp8_write(w, 0, x->mb_segment_tree_probs[1]);
+ break;
+ case 1:
+ vp8_write(w, 0, x->mb_segment_tree_probs[0]);
+ vp8_write(w, 1, x->mb_segment_tree_probs[1]);
+ break;
+ case 2:
+ vp8_write(w, 1, x->mb_segment_tree_probs[0]);
+ vp8_write(w, 0, x->mb_segment_tree_probs[2]);
+ break;
+ case 3:
+ vp8_write(w, 1, x->mb_segment_tree_probs[0]);
+ vp8_write(w, 1, x->mb_segment_tree_probs[2]);
+ break;
+
+ /* TRAP.. This should not happen */
+ default:
+ vp8_write(w, 0, x->mb_segment_tree_probs[0]);
+ vp8_write(w, 0, x->mb_segment_tree_probs[1]);
+ break;
+ }
+ }
+}
+void vp8_convert_rfct_to_prob(VP8_COMP *const cpi) {
+ const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
+ const int rf_intra = rfct[INTRA_FRAME];
+ const int rf_inter =
+ rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
+
+ /* Calculate the probabilities used to code the ref frame based on usage */
+ if (!(cpi->prob_intra_coded = rf_intra * 255 / (rf_intra + rf_inter))) {
+ cpi->prob_intra_coded = 1;
+ }
+
+ cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
+
+ if (!cpi->prob_last_coded) cpi->prob_last_coded = 1;
+
+ cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
+ ? (rfct[GOLDEN_FRAME] * 255) /
+ (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
+ : 128;
+
+ if (!cpi->prob_gf_coded) cpi->prob_gf_coded = 1;
+}
+
+static void pack_inter_mode_mvs(VP8_COMP *const cpi) {
+ VP8_COMMON *const pc = &cpi->common;
+ vp8_writer *const w = cpi->bc;
+ const MV_CONTEXT *mvc = pc->fc.mvc;
+
+ MODE_INFO *m = pc->mi;
+ const int mis = pc->mode_info_stride;
+ int mb_row = -1;
+
+ int prob_skip_false = 0;
+
+ cpi->mb.partition_info = cpi->mb.pi;
+
+ vp8_convert_rfct_to_prob(cpi);
+
+ if (pc->mb_no_coeff_skip) {
+ int total_mbs = pc->mb_rows * pc->mb_cols;
+
+ prob_skip_false = (total_mbs - cpi->mb.skip_true_count) * 256 / total_mbs;
+
+ if (prob_skip_false <= 1) prob_skip_false = 1;
+
+ if (prob_skip_false > 255) prob_skip_false = 255;
+
+ cpi->prob_skip_false = prob_skip_false;
+ vp8_write_literal(w, prob_skip_false, 8);
+ }
+
+ vp8_write_literal(w, cpi->prob_intra_coded, 8);
+ vp8_write_literal(w, cpi->prob_last_coded, 8);
+ vp8_write_literal(w, cpi->prob_gf_coded, 8);
+
+ update_mbintra_mode_probs(cpi);
+
+ vp8_write_mvprobs(cpi);
+
+ while (++mb_row < pc->mb_rows) {
+ int mb_col = -1;
+
+ while (++mb_col < pc->mb_cols) {
+ const MB_MODE_INFO *const mi = &m->mbmi;
+ const MV_REFERENCE_FRAME rf = mi->ref_frame;
+ const MB_PREDICTION_MODE mode = mi->mode;
+
+ MACROBLOCKD *xd = &cpi->mb.e_mbd;
+
+ /* Distance of Mb to the various image edges.
+ * These specified to 8th pel as they are always compared to MV
+ * values that are in 1/8th pel units
+ */
+ xd->mb_to_left_edge = -((mb_col * 16) << 3);
+ xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
+ xd->mb_to_top_edge = -((mb_row * 16) << 3);
+ xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
+
+ if (cpi->mb.e_mbd.update_mb_segmentation_map) {
+ write_mb_features(w, mi, &cpi->mb.e_mbd);
+ }
+
+ if (pc->mb_no_coeff_skip) {
+ vp8_encode_bool(w, m->mbmi.mb_skip_coeff, prob_skip_false);
+ }
+
+ if (rf == INTRA_FRAME) {
+ vp8_write(w, 0, cpi->prob_intra_coded);
+ write_ymode(w, mode, pc->fc.ymode_prob);
+
+ if (mode == B_PRED) {
+ int j = 0;
+
+ do {
+ write_bmode(w, m->bmi[j].as_mode, pc->fc.bmode_prob);
+ } while (++j < 16);
+ }
+
+ write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob);
+ } else { /* inter coded */
+ int_mv best_mv;
+ vp8_prob mv_ref_p[VP8_MVREFS - 1];
+
+ vp8_write(w, 1, cpi->prob_intra_coded);
+
+ if (rf == LAST_FRAME)
+ vp8_write(w, 0, cpi->prob_last_coded);
+ else {
+ vp8_write(w, 1, cpi->prob_last_coded);
+ vp8_write(w, (rf == GOLDEN_FRAME) ? 0 : 1, cpi->prob_gf_coded);
+ }
+
+ {
+ int_mv n1, n2;
+ int ct[4];
+
+ vp8_find_near_mvs(xd, m, &n1, &n2, &best_mv, ct, rf,
+ cpi->common.ref_frame_sign_bias);
+ vp8_clamp_mv2(&best_mv, xd);
+
+ vp8_mv_ref_probs(mv_ref_p, ct);
+ }
+
+ write_mv_ref(w, mode, mv_ref_p);
+
+ switch (mode) /* new, split require MVs */
+ {
+ case NEWMV: write_mv(w, &mi->mv.as_mv, &best_mv, mvc); break;
+
+ case SPLITMV: {
+ int j = 0;
+
+#ifdef MODE_STATS
+ ++count_mb_seg[mi->partitioning];
+#endif
+
+ write_split(w, mi->partitioning);
+
+ do {
+ B_PREDICTION_MODE blockmode;
+ int_mv blockmv;
+ const int *const L = vp8_mbsplits[mi->partitioning];
+ int k = -1; /* first block in subset j */
+ int mv_contz;
+ int_mv leftmv, abovemv;
+
+ blockmode = cpi->mb.partition_info->bmi[j].mode;
+ blockmv = cpi->mb.partition_info->bmi[j].mv;
+ while (j != L[++k]) {
+ assert(k < 16);
+ }
+ leftmv.as_int = left_block_mv(m, k);
+ abovemv.as_int = above_block_mv(m, k, mis);
+ mv_contz = vp8_mv_cont(&leftmv, &abovemv);
+
+ write_sub_mv_ref(w, blockmode, vp8_sub_mv_ref_prob2[mv_contz]);
+
+ if (blockmode == NEW4X4) {
+ write_mv(w, &blockmv.as_mv, &best_mv, (const MV_CONTEXT *)mvc);
+ }
+ } while (++j < cpi->mb.partition_info->count);
+ break;
+ }
+ default: break;
+ }
+ }
+
+ ++m;
+ cpi->mb.partition_info++;
+ }
+
+ ++m; /* skip L prediction border */
+ cpi->mb.partition_info++;
+ }
+}
+
+static void write_kfmodes(VP8_COMP *cpi) {
+ vp8_writer *const bc = cpi->bc;
+ const VP8_COMMON *const c = &cpi->common;
+ /* const */
+ MODE_INFO *m = c->mi;
+
+ int mb_row = -1;
+ int prob_skip_false = 0;
+
+ if (c->mb_no_coeff_skip) {
+ int total_mbs = c->mb_rows * c->mb_cols;
+
+ prob_skip_false = (total_mbs - cpi->mb.skip_true_count) * 256 / total_mbs;
+
+ if (prob_skip_false <= 1) prob_skip_false = 1;
+
+ if (prob_skip_false >= 255) prob_skip_false = 255;
+
+ cpi->prob_skip_false = prob_skip_false;
+ vp8_write_literal(bc, prob_skip_false, 8);
+ }
+
+ while (++mb_row < c->mb_rows) {
+ int mb_col = -1;
+
+ while (++mb_col < c->mb_cols) {
+ const int ym = m->mbmi.mode;
+
+ if (cpi->mb.e_mbd.update_mb_segmentation_map) {
+ write_mb_features(bc, &m->mbmi, &cpi->mb.e_mbd);
+ }
+
+ if (c->mb_no_coeff_skip) {
+ vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, prob_skip_false);
+ }
+
+ kfwrite_ymode(bc, ym, vp8_kf_ymode_prob);
+
+ if (ym == B_PRED) {
+ const int mis = c->mode_info_stride;
+ int i = 0;
+
+ do {
+ const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
+ const B_PREDICTION_MODE L = left_block_mode(m, i);
+ const int bm = m->bmi[i].as_mode;
+
+ write_bmode(bc, bm, vp8_kf_bmode_prob[A][L]);
+ } while (++i < 16);
+ }
+
+ write_uv_mode(bc, (m++)->mbmi.uv_mode, vp8_kf_uv_mode_prob);
+ }
+
+ m++; /* skip L prediction border */
+ }
+}
+
+#if 0
+/* This function is used for debugging probability trees. */
+static void print_prob_tree(vp8_prob
+ coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES])
+{
+ /* print coef probability tree */
+ int i,j,k,l;
+ FILE* f = fopen("enc_tree_probs.txt", "a");
+ fprintf(f, "{\n");
+ for (i = 0; i < BLOCK_TYPES; ++i)
+ {
+ fprintf(f, " {\n");
+ for (j = 0; j < COEF_BANDS; ++j)
+ {
+ fprintf(f, " {\n");
+ for (k = 0; k < PREV_COEF_CONTEXTS; ++k)
+ {
+ fprintf(f, " {");
+ for (l = 0; l < ENTROPY_NODES; ++l)
+ {
+ fprintf(f, "%3u, ",
+ (unsigned int)(coef_probs [i][j][k][l]));
+ }
+ fprintf(f, " }\n");
+ }
+ fprintf(f, " }\n");
+ }
+ fprintf(f, " }\n");
+ }
+ fprintf(f, "}\n");
+ fclose(f);
+}
+#endif
+
+static void sum_probs_over_prev_coef_context(
+ const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS],
+ unsigned int *out) {
+ int i, j;
+ for (i = 0; i < MAX_ENTROPY_TOKENS; ++i) {
+ for (j = 0; j < PREV_COEF_CONTEXTS; ++j) {
+ const unsigned int tmp = out[i];
+ out[i] += probs[j][i];
+ /* check for wrap */
+ if (out[i] < tmp) out[i] = UINT_MAX;
+ }
+ }
+}
+
+static int prob_update_savings(const unsigned int *ct, const vp8_prob oldp,
+ const vp8_prob newp, const vp8_prob upd) {
+ const int old_b = vp8_cost_branch(ct, oldp);
+ const int new_b = vp8_cost_branch(ct, newp);
+ const int update_b = 8 + ((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8);
+
+ return old_b - new_b - update_b;
+}
+
+static int independent_coef_context_savings(VP8_COMP *cpi) {
+ MACROBLOCK *const x = &cpi->mb;
+ int savings = 0;
+ int i = 0;
+ do {
+ int j = 0;
+ do {
+ int k = 0;
+ unsigned int prev_coef_count_sum[MAX_ENTROPY_TOKENS] = { 0 };
+ int prev_coef_savings[MAX_ENTROPY_TOKENS] = { 0 };
+ const unsigned int(*probs)[MAX_ENTROPY_TOKENS];
+ /* Calculate new probabilities given the constraint that
+ * they must be equal over the prev coef contexts
+ */
+
+ probs = (const unsigned int(*)[MAX_ENTROPY_TOKENS])x->coef_counts[i][j];
+
+ /* Reset to default probabilities at key frames */
+ if (cpi->common.frame_type == KEY_FRAME) {
+ probs = default_coef_counts[i][j];
+ }
+
+ sum_probs_over_prev_coef_context(probs, prev_coef_count_sum);
+
+ do {
+ /* at every context */
+
+ /* calc probs and branch cts for this frame only */
+ int t = 0; /* token/prob index */
+
+ vp8_tree_probs_from_distribution(
+ MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
+ cpi->frame_coef_probs[i][j][k], cpi->frame_branch_ct[i][j][k],
+ prev_coef_count_sum, 256, 1);
+
+ do {
+ const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t];
+ const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
+ const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t];
+ const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
+ const int s = prob_update_savings(ct, oldp, newp, upd);
+
+ if (cpi->common.frame_type != KEY_FRAME ||
+ (cpi->common.frame_type == KEY_FRAME && newp != oldp)) {
+ prev_coef_savings[t] += s;
+ }
+ } while (++t < ENTROPY_NODES);
+ } while (++k < PREV_COEF_CONTEXTS);
+ k = 0;
+ do {
+ /* We only update probabilities if we can save bits, except
+ * for key frames where we have to update all probabilities
+ * to get the equal probabilities across the prev coef
+ * contexts.
+ */
+ if (prev_coef_savings[k] > 0 || cpi->common.frame_type == KEY_FRAME) {
+ savings += prev_coef_savings[k];
+ }
+ } while (++k < ENTROPY_NODES);
+ } while (++j < COEF_BANDS);
+ } while (++i < BLOCK_TYPES);
+ return savings;
+}
+
+static int default_coef_context_savings(VP8_COMP *cpi) {
+ MACROBLOCK *const x = &cpi->mb;
+ int savings = 0;
+ int i = 0;
+ do {
+ int j = 0;
+ do {
+ int k = 0;
+ do {
+ /* at every context */
+
+ /* calc probs and branch cts for this frame only */
+ int t = 0; /* token/prob index */
+
+ vp8_tree_probs_from_distribution(
+ MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
+ cpi->frame_coef_probs[i][j][k], cpi->frame_branch_ct[i][j][k],
+ x->coef_counts[i][j][k], 256, 1);
+
+ do {
+ const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t];
+ const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
+ const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t];
+ const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
+ const int s = prob_update_savings(ct, oldp, newp, upd);
+
+ if (s > 0) {
+ savings += s;
+ }
+ } while (++t < ENTROPY_NODES);
+ } while (++k < PREV_COEF_CONTEXTS);
+ } while (++j < COEF_BANDS);
+ } while (++i < BLOCK_TYPES);
+ return savings;
+}
+
+void vp8_calc_ref_frame_costs(int *ref_frame_cost, int prob_intra,
+ int prob_last, int prob_garf) {
+ assert(prob_intra >= 0);
+ assert(prob_intra <= 255);
+ assert(prob_last >= 0);
+ assert(prob_last <= 255);
+ assert(prob_garf >= 0);
+ assert(prob_garf <= 255);
+ ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(prob_intra);
+ ref_frame_cost[LAST_FRAME] =
+ vp8_cost_one(prob_intra) + vp8_cost_zero(prob_last);
+ ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(prob_intra) +
+ vp8_cost_one(prob_last) +
+ vp8_cost_zero(prob_garf);
+ ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(prob_intra) +
+ vp8_cost_one(prob_last) +
+ vp8_cost_one(prob_garf);
+}
+
+int vp8_estimate_entropy_savings(VP8_COMP *cpi) {
+ int savings = 0;
+
+ const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
+ const int rf_intra = rfct[INTRA_FRAME];
+ const int rf_inter =
+ rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
+ int new_intra, new_last, new_garf, oldtotal, newtotal;
+ int ref_frame_cost[MAX_REF_FRAMES];
+
+ vpx_clear_system_state();
+
+ if (cpi->common.frame_type != KEY_FRAME) {
+ if (!(new_intra = rf_intra * 255 / (rf_intra + rf_inter))) new_intra = 1;
+
+ new_last = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
+
+ new_garf = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
+ ? (rfct[GOLDEN_FRAME] * 255) /
+ (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
+ : 128;
+
+ vp8_calc_ref_frame_costs(ref_frame_cost, new_intra, new_last, new_garf);
+
+ newtotal = rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
+ rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
+ rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
+ rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
+
+ /* old costs */
+ vp8_calc_ref_frame_costs(ref_frame_cost, cpi->prob_intra_coded,
+ cpi->prob_last_coded, cpi->prob_gf_coded);
+
+ oldtotal = rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
+ rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
+ rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
+ rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
+
+ savings += (oldtotal - newtotal) / 256;
+ }
+
+ if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) {
+ savings += independent_coef_context_savings(cpi);
+ } else {
+ savings += default_coef_context_savings(cpi);
+ }
+
+ return savings;
+}
+
+#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
+int vp8_update_coef_context(VP8_COMP *cpi) {
+ int savings = 0;
+
+ if (cpi->common.frame_type == KEY_FRAME) {
+ /* Reset to default counts/probabilities at key frames */
+ vp8_copy(cpi->mb.coef_counts, default_coef_counts);
+ }
+
+ if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
+ savings += independent_coef_context_savings(cpi);
+ else
+ savings += default_coef_context_savings(cpi);
+
+ return savings;
+}
+#endif
+
+void vp8_update_coef_probs(VP8_COMP *cpi) {
+ int i = 0;
+#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
+ vp8_writer *const w = cpi->bc;
+#endif
+
+ vpx_clear_system_state();
+
+ do {
+ int j = 0;
+
+ do {
+ int k = 0;
+ int prev_coef_savings[ENTROPY_NODES] = { 0 };
+ if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) {
+ for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
+ int t; /* token/prob index */
+ for (t = 0; t < ENTROPY_NODES; ++t) {
+ const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t];
+ const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
+ const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t];
+ const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
+
+ prev_coef_savings[t] += prob_update_savings(ct, oldp, newp, upd);
+ }
+ }
+ k = 0;
+ }
+ do {
+ /* note: use result from vp8_estimate_entropy_savings, so no
+ * need to call vp8_tree_probs_from_distribution here.
+ */
+
+ /* at every context */
+
+ /* calc probs and branch cts for this frame only */
+ int t = 0; /* token/prob index */
+
+ do {
+ const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
+
+ vp8_prob *Pold = cpi->common.fc.coef_probs[i][j][k] + t;
+ const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
+
+ int s = prev_coef_savings[t];
+ int u = 0;
+
+ if (!(cpi->oxcf.error_resilient_mode &
+ VPX_ERROR_RESILIENT_PARTITIONS)) {
+ s = prob_update_savings(cpi->frame_branch_ct[i][j][k][t], *Pold,
+ newp, upd);
+ }
+
+ if (s > 0) u = 1;
+
+ /* Force updates on key frames if the new is different,
+ * so that we can be sure we end up with equal probabilities
+ * over the prev coef contexts.
+ */
+ if ((cpi->oxcf.error_resilient_mode &
+ VPX_ERROR_RESILIENT_PARTITIONS) &&
+ cpi->common.frame_type == KEY_FRAME && newp != *Pold) {
+ u = 1;
+ }
+
+#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
+ cpi->update_probs[i][j][k][t] = u;
+#else
+ vp8_write(w, u, upd);
+#endif
+
+ if (u) {
+ /* send/use new probability */
+
+ *Pold = newp;
+#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
+ vp8_write_literal(w, newp, 8);
+#endif
+ }
+
+ } while (++t < ENTROPY_NODES);
+
+ } while (++k < PREV_COEF_CONTEXTS);
+ } while (++j < COEF_BANDS);
+ } while (++i < BLOCK_TYPES);
+}
+
+#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
+static void pack_coef_probs(VP8_COMP *cpi) {
+ int i = 0;
+ vp8_writer *const w = cpi->bc;
+
+ do {
+ int j = 0;
+
+ do {
+ int k = 0;
+
+ do {
+ int t = 0; /* token/prob index */
+
+ do {
+ const vp8_prob newp = cpi->common.fc.coef_probs[i][j][k][t];
+ const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
+
+ const char u = cpi->update_probs[i][j][k][t];
+
+ vp8_write(w, u, upd);
+
+ if (u) {
+ /* send/use new probability */
+ vp8_write_literal(w, newp, 8);
+ }
+ } while (++t < ENTROPY_NODES);
+ } while (++k < PREV_COEF_CONTEXTS);
+ } while (++j < COEF_BANDS);
+ } while (++i < BLOCK_TYPES);
+}
+#endif
+
+#ifdef PACKET_TESTING
+FILE *vpxlogc = 0;
+#endif
+
+static void put_delta_q(vp8_writer *bc, int delta_q) {
+ if (delta_q != 0) {
+ vp8_write_bit(bc, 1);
+ vp8_write_literal(bc, abs(delta_q), 4);
+
+ if (delta_q < 0)
+ vp8_write_bit(bc, 1);
+ else
+ vp8_write_bit(bc, 0);
+ } else
+ vp8_write_bit(bc, 0);
+}
+
+void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest,
+ unsigned char *dest_end, size_t *size) {
+ int i, j;
+ VP8_HEADER oh;
+ VP8_COMMON *const pc = &cpi->common;
+ vp8_writer *const bc = cpi->bc;
+ MACROBLOCKD *const xd = &cpi->mb.e_mbd;
+ int extra_bytes_packed = 0;
+
+ unsigned char *cx_data = dest;
+ unsigned char *cx_data_end = dest_end;
+ const int *mb_feature_data_bits;
+
+ oh.show_frame = (int)pc->show_frame;
+ oh.type = (int)pc->frame_type;
+ oh.version = pc->version;
+ oh.first_partition_length_in_bytes = 0;
+
+ mb_feature_data_bits = vp8_mb_feature_data_bits;
+
+ bc[0].error = &pc->error;
+
+ validate_buffer(cx_data, 3, cx_data_end, &cpi->common.error);
+ cx_data += 3;
+
+#if defined(SECTIONBITS_OUTPUT)
+ Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256;
+#endif
+
+ /* every keyframe send startcode, width, height, scale factor, clamp
+ * and color type
+ */
+ if (oh.type == KEY_FRAME) {
+ int v;
+
+ validate_buffer(cx_data, 7, cx_data_end, &cpi->common.error);
+
+ /* Start / synch code */
+ cx_data[0] = 0x9D;
+ cx_data[1] = 0x01;
+ cx_data[2] = 0x2a;
+
+ /* Pack scale and frame size into 16 bits. Store it 8 bits at a time.
+ * https://tools.ietf.org/html/rfc6386
+ * 9.1. Uncompressed Data Chunk
+ * 16 bits : (2 bits Horizontal Scale << 14) | Width (14 bits)
+ * 16 bits : (2 bits Vertical Scale << 14) | Height (14 bits)
+ */
+ v = (pc->horiz_scale << 14) | pc->Width;
+ cx_data[3] = v & 0xff;
+ cx_data[4] = v >> 8;
+
+ v = (pc->vert_scale << 14) | pc->Height;
+ cx_data[5] = v & 0xff;
+ cx_data[6] = v >> 8;
+
+ extra_bytes_packed = 7;
+ cx_data += extra_bytes_packed;
+
+ vp8_start_encode(bc, cx_data, cx_data_end);
+
+ /* signal clr type */
+ vp8_write_bit(bc, 0);
+ vp8_write_bit(bc, pc->clamp_type);
+
+ } else {
+ vp8_start_encode(bc, cx_data, cx_data_end);
+ }
+
+ /* Signal whether or not Segmentation is enabled */
+ vp8_write_bit(bc, xd->segmentation_enabled);
+
+ /* Indicate which features are enabled */
+ if (xd->segmentation_enabled) {
+ /* Signal whether or not the segmentation map is being updated. */
+ vp8_write_bit(bc, xd->update_mb_segmentation_map);
+ vp8_write_bit(bc, xd->update_mb_segmentation_data);
+
+ if (xd->update_mb_segmentation_data) {
+ signed char Data;
+
+ vp8_write_bit(bc, xd->mb_segment_abs_delta);
+
+ /* For each segmentation feature (Quant and loop filter level) */
+ for (i = 0; i < MB_LVL_MAX; ++i) {
+ /* For each of the segments */
+ for (j = 0; j < MAX_MB_SEGMENTS; ++j) {
+ Data = xd->segment_feature_data[i][j];
+
+ /* Frame level data */
+ if (Data) {
+ vp8_write_bit(bc, 1);
+
+ if (Data < 0) {
+ Data = -Data;
+ vp8_write_literal(bc, Data, mb_feature_data_bits[i]);
+ vp8_write_bit(bc, 1);
+ } else {
+ vp8_write_literal(bc, Data, mb_feature_data_bits[i]);
+ vp8_write_bit(bc, 0);
+ }
+ } else
+ vp8_write_bit(bc, 0);
+ }
+ }
+ }
+
+ if (xd->update_mb_segmentation_map) {
+ /* Write the probs used to decode the segment id for each mb */
+ for (i = 0; i < MB_FEATURE_TREE_PROBS; ++i) {
+ int Data = xd->mb_segment_tree_probs[i];
+
+ if (Data != 255) {
+ vp8_write_bit(bc, 1);
+ vp8_write_literal(bc, Data, 8);
+ } else
+ vp8_write_bit(bc, 0);
+ }
+ }
+ }
+
+ vp8_write_bit(bc, pc->filter_type);
+ vp8_write_literal(bc, pc->filter_level, 6);
+ vp8_write_literal(bc, pc->sharpness_level, 3);
+
+ /* Write out loop filter deltas applied at the MB level based on mode
+ * or ref frame (if they are enabled).
+ */
+ vp8_write_bit(bc, xd->mode_ref_lf_delta_enabled);
+
+ if (xd->mode_ref_lf_delta_enabled) {
+ /* Do the deltas need to be updated */
+ int send_update =
+ xd->mode_ref_lf_delta_update || cpi->oxcf.error_resilient_mode;
+
+ vp8_write_bit(bc, send_update);
+ if (send_update) {
+ int Data;
+
+ /* Send update */
+ for (i = 0; i < MAX_REF_LF_DELTAS; ++i) {
+ Data = xd->ref_lf_deltas[i];
+
+ /* Frame level data */
+ if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i] ||
+ cpi->oxcf.error_resilient_mode) {
+ xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i];
+ vp8_write_bit(bc, 1);
+
+ if (Data > 0) {
+ vp8_write_literal(bc, (Data & 0x3F), 6);
+ vp8_write_bit(bc, 0); /* sign */
+ } else {
+ Data = -Data;
+ vp8_write_literal(bc, (Data & 0x3F), 6);
+ vp8_write_bit(bc, 1); /* sign */
+ }
+ } else
+ vp8_write_bit(bc, 0);
+ }
+
+ /* Send update */
+ for (i = 0; i < MAX_MODE_LF_DELTAS; ++i) {
+ Data = xd->mode_lf_deltas[i];
+
+ if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i] ||
+ cpi->oxcf.error_resilient_mode) {
+ xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i];
+ vp8_write_bit(bc, 1);
+
+ if (Data > 0) {
+ vp8_write_literal(bc, (Data & 0x3F), 6);
+ vp8_write_bit(bc, 0); /* sign */
+ } else {
+ Data = -Data;
+ vp8_write_literal(bc, (Data & 0x3F), 6);
+ vp8_write_bit(bc, 1); /* sign */
+ }
+ } else
+ vp8_write_bit(bc, 0);
+ }
+ }
+ }
+
+ /* signal here is multi token partition is enabled */
+ vp8_write_literal(bc, pc->multi_token_partition, 2);
+
+ /* Frame Qbaseline quantizer index */
+ vp8_write_literal(bc, pc->base_qindex, 7);
+
+ /* Transmit Dc, Second order and Uv quantizer delta information */
+ put_delta_q(bc, pc->y1dc_delta_q);
+ put_delta_q(bc, pc->y2dc_delta_q);
+ put_delta_q(bc, pc->y2ac_delta_q);
+ put_delta_q(bc, pc->uvdc_delta_q);
+ put_delta_q(bc, pc->uvac_delta_q);
+
+ /* When there is a key frame all reference buffers are updated using
+ * the new key frame
+ */
+ if (pc->frame_type != KEY_FRAME) {
+ /* Should the GF or ARF be updated using the transmitted frame
+ * or buffer
+ */
+ vp8_write_bit(bc, pc->refresh_golden_frame);
+ vp8_write_bit(bc, pc->refresh_alt_ref_frame);
+
+ /* If not being updated from current frame should either GF or ARF
+ * be updated from another buffer
+ */
+ if (!pc->refresh_golden_frame)
+ vp8_write_literal(bc, pc->copy_buffer_to_gf, 2);
+
+ if (!pc->refresh_alt_ref_frame)
+ vp8_write_literal(bc, pc->copy_buffer_to_arf, 2);
+
+ /* Indicate reference frame sign bias for Golden and ARF frames
+ * (always 0 for last frame buffer)
+ */
+ vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
+ vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
+ }
+
+#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
+ if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) {
+ if (pc->frame_type == KEY_FRAME) {
+ pc->refresh_entropy_probs = 1;
+ } else {
+ pc->refresh_entropy_probs = 0;
+ }
+ }
+#endif
+
+ vp8_write_bit(bc, pc->refresh_entropy_probs);
+
+ if (pc->frame_type != KEY_FRAME) vp8_write_bit(bc, pc->refresh_last_frame);
+
+ vpx_clear_system_state();
+
+#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
+ pack_coef_probs(cpi);
+#else
+ if (pc->refresh_entropy_probs == 0) {
+ /* save a copy for later refresh */
+ memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc));
+ }
+
+ vp8_update_coef_probs(cpi);
+#endif
+
+ /* Write out the mb_no_coeff_skip flag */
+ vp8_write_bit(bc, pc->mb_no_coeff_skip);
+
+ if (pc->frame_type == KEY_FRAME) {
+ write_kfmodes(cpi);
+ } else {
+ pack_inter_mode_mvs(cpi);
+ }
+
+ vp8_stop_encode(bc);
+
+ cx_data += bc->pos;
+
+ oh.first_partition_length_in_bytes = cpi->bc->pos;
+
+ /* update frame tag */
+ {
+ /* Pack partition size, show frame, version and frame type into to 24 bits.
+ * Store it 8 bits at a time.
+ * https://tools.ietf.org/html/rfc6386
+ * 9.1. Uncompressed Data Chunk
+ * The uncompressed data chunk comprises a common (for key frames and
+ * interframes) 3-byte frame tag that contains four fields, as follows:
+ *
+ * 1. A 1-bit frame type (0 for key frames, 1 for interframes).
+ *
+ * 2. A 3-bit version number (0 - 3 are defined as four different
+ * profiles with different decoding complexity; other values may be
+ * defined for future variants of the VP8 data format).
+ *
+ * 3. A 1-bit show_frame flag (0 when current frame is not for display,
+ * 1 when current frame is for display).
+ *
+ * 4. A 19-bit field containing the size of the first data partition in
+ * bytes
+ */
+ int v = (oh.first_partition_length_in_bytes << 5) | (oh.show_frame << 4) |
+ (oh.version << 1) | oh.type;
+
+ dest[0] = v & 0xff;
+ dest[1] = (v >> 8) & 0xff;
+ dest[2] = v >> 16;
+ }
+
+ *size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc->pos;
+
+ cpi->partition_sz[0] = (unsigned int)*size;
+
+#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
+ {
+ const int num_part = (1 << pc->multi_token_partition);
+ unsigned char *dp = cpi->partition_d[0] + cpi->partition_sz[0];
+
+ if (num_part > 1) {
+ /* write token part sizes (all but last) if more than 1 */
+ validate_buffer(dp, 3 * (num_part - 1), cpi->partition_d_end[0],
+ &pc->error);
+
+ cpi->partition_sz[0] += 3 * (num_part - 1);
+
+ for (i = 1; i < num_part; ++i) {
+ write_partition_size(dp, cpi->partition_sz[i]);
+ dp += 3;
+ }
+ }
+
+ if (!cpi->output_partition) {
+ /* concatenate partition buffers */
+ for (i = 0; i < num_part; ++i) {
+ memmove(dp, cpi->partition_d[i + 1], cpi->partition_sz[i + 1]);
+ cpi->partition_d[i + 1] = dp;
+ dp += cpi->partition_sz[i + 1];
+ }
+ }
+
+ /* update total size */
+ *size = 0;
+ for (i = 0; i < num_part + 1; ++i) {
+ *size += cpi->partition_sz[i];
+ }
+ }
+#else
+ if (pc->multi_token_partition != ONE_PARTITION) {
+ int num_part = 1 << pc->multi_token_partition;
+
+ /* partition size table at the end of first partition */
+ cpi->partition_sz[0] += 3 * (num_part - 1);
+ *size += 3 * (num_part - 1);
+
+ validate_buffer(cx_data, 3 * (num_part - 1), cx_data_end, &pc->error);
+
+ for (i = 1; i < num_part + 1; ++i) {
+ cpi->bc[i].error = &pc->error;
+ }
+
+ pack_tokens_into_partitions(cpi, cx_data + 3 * (num_part - 1), cx_data_end,
+ num_part);
+
+ for (i = 1; i < num_part; ++i) {
+ cpi->partition_sz[i] = cpi->bc[i].pos;
+ write_partition_size(cx_data, cpi->partition_sz[i]);
+ cx_data += 3;
+ *size += cpi->partition_sz[i]; /* add to total */
+ }
+
+ /* add last partition to total size */
+ cpi->partition_sz[i] = cpi->bc[i].pos;
+ *size += cpi->partition_sz[i];
+ } else {
+ bc[1].error = &pc->error;
+
+ vp8_start_encode(&cpi->bc[1], cx_data, cx_data_end);
+
+#if CONFIG_MULTITHREAD
+ if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) {
+ pack_mb_row_tokens(cpi, &cpi->bc[1]);
+ } else {
+ vp8_pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count);
+ }
+#else
+ vp8_pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count);
+#endif // CONFIG_MULTITHREAD
+
+ vp8_stop_encode(&cpi->bc[1]);
+
+ *size += cpi->bc[1].pos;
+ cpi->partition_sz[1] = cpi->bc[1].pos;
+ }
+#endif
+}