summaryrefslogtreecommitdiffstats
path: root/media/libvpx/libvpx/vp8/encoder/firstpass.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libvpx/libvpx/vp8/encoder/firstpass.c')
-rw-r--r--media/libvpx/libvpx/vp8/encoder/firstpass.c3090
1 files changed, 3090 insertions, 0 deletions
diff --git a/media/libvpx/libvpx/vp8/encoder/firstpass.c b/media/libvpx/libvpx/vp8/encoder/firstpass.c
new file mode 100644
index 0000000000..4443f5e7cd
--- /dev/null
+++ b/media/libvpx/libvpx/vp8/encoder/firstpass.c
@@ -0,0 +1,3090 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <math.h>
+#include <limits.h>
+#include <stdio.h>
+
+#include "./vpx_dsp_rtcd.h"
+#include "./vpx_scale_rtcd.h"
+#include "block.h"
+#include "onyx_int.h"
+#include "vpx_dsp/variance.h"
+#include "encodeintra.h"
+#include "vp8/common/common.h"
+#include "vp8/common/setupintrarecon.h"
+#include "vp8/common/systemdependent.h"
+#include "mcomp.h"
+#include "firstpass.h"
+#include "vpx_scale/vpx_scale.h"
+#include "encodemb.h"
+#include "vp8/common/extend.h"
+#include "vpx_ports/system_state.h"
+#include "vpx_mem/vpx_mem.h"
+#include "vp8/common/swapyv12buffer.h"
+#include "rdopt.h"
+#include "vp8/common/quant_common.h"
+#include "encodemv.h"
+#include "encodeframe.h"
+
+#define OUTPUT_FPF 0
+
+extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi);
+
+#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
+extern int vp8_kf_boost_qadjustment[QINDEX_RANGE];
+
+extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE];
+
+#define IIFACTOR 1.5
+#define IIKFACTOR1 1.40
+#define IIKFACTOR2 1.5
+#define RMAX 14.0
+#define GF_RMAX 48.0
+
+#define KF_MB_INTRA_MIN 300
+#define GF_MB_INTRA_MIN 200
+
+#define DOUBLE_DIVIDE_CHECK(X) ((X) < 0 ? (X)-.000001 : (X) + .000001)
+
+#define POW1 (double)cpi->oxcf.two_pass_vbrbias / 100.0
+#define POW2 (double)cpi->oxcf.two_pass_vbrbias / 100.0
+
+#define NEW_BOOST 1
+
+static int vscale_lookup[7] = { 0, 1, 1, 2, 2, 3, 3 };
+static int hscale_lookup[7] = { 0, 0, 1, 1, 2, 2, 3 };
+
+static const int cq_level[QINDEX_RANGE] = {
+ 0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11,
+ 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24,
+ 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38,
+ 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53,
+ 54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69,
+ 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86,
+ 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
+};
+
+static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame);
+
+/* Resets the first pass file to the given position using a relative seek
+ * from the current position
+ */
+static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) {
+ cpi->twopass.stats_in = Position;
+}
+
+static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) {
+ if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF;
+
+ *next_frame = *cpi->twopass.stats_in;
+ return 1;
+}
+
+/* Read frame stats at an offset from the current position */
+static int read_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *frame_stats,
+ int offset) {
+ FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in;
+
+ /* Check legality of offset */
+ if (offset >= 0) {
+ if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) return EOF;
+ } else if (offset < 0) {
+ if (&fps_ptr[offset] < cpi->twopass.stats_in_start) return EOF;
+ }
+
+ *frame_stats = fps_ptr[offset];
+ return 1;
+}
+
+static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) {
+ if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF;
+
+ *fps = *cpi->twopass.stats_in;
+ cpi->twopass.stats_in =
+ (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
+ return 1;
+}
+
+static void output_stats(struct vpx_codec_pkt_list *pktlist,
+ FIRSTPASS_STATS *stats) {
+ struct vpx_codec_cx_pkt pkt;
+ pkt.kind = VPX_CODEC_STATS_PKT;
+ pkt.data.twopass_stats.buf = stats;
+ pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
+ vpx_codec_pkt_list_add(pktlist, &pkt);
+
+/* TEMP debug code */
+#if OUTPUT_FPF
+
+ {
+ FILE *fpfile;
+ fpfile = fopen("firstpass.stt", "a");
+
+ fprintf(fpfile,
+ "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f"
+ " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
+ " %12.0f %12.0f %12.4f\n",
+ stats->frame, stats->intra_error, stats->coded_error,
+ stats->ssim_weighted_pred_err, stats->pcnt_inter,
+ stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral,
+ stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
+ stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
+ stats->count, stats->duration);
+ fclose(fpfile);
+ }
+#endif
+}
+
+static void zero_stats(FIRSTPASS_STATS *section) {
+ section->frame = 0.0;
+ section->intra_error = 0.0;
+ section->coded_error = 0.0;
+ section->ssim_weighted_pred_err = 0.0;
+ section->pcnt_inter = 0.0;
+ section->pcnt_motion = 0.0;
+ section->pcnt_second_ref = 0.0;
+ section->pcnt_neutral = 0.0;
+ section->MVr = 0.0;
+ section->mvr_abs = 0.0;
+ section->MVc = 0.0;
+ section->mvc_abs = 0.0;
+ section->MVrv = 0.0;
+ section->MVcv = 0.0;
+ section->mv_in_out_count = 0.0;
+ section->new_mv_count = 0.0;
+ section->count = 0.0;
+ section->duration = 1.0;
+}
+
+static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
+ section->frame += frame->frame;
+ section->intra_error += frame->intra_error;
+ section->coded_error += frame->coded_error;
+ section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
+ section->pcnt_inter += frame->pcnt_inter;
+ section->pcnt_motion += frame->pcnt_motion;
+ section->pcnt_second_ref += frame->pcnt_second_ref;
+ section->pcnt_neutral += frame->pcnt_neutral;
+ section->MVr += frame->MVr;
+ section->mvr_abs += frame->mvr_abs;
+ section->MVc += frame->MVc;
+ section->mvc_abs += frame->mvc_abs;
+ section->MVrv += frame->MVrv;
+ section->MVcv += frame->MVcv;
+ section->mv_in_out_count += frame->mv_in_out_count;
+ section->new_mv_count += frame->new_mv_count;
+ section->count += frame->count;
+ section->duration += frame->duration;
+}
+
+static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
+ section->frame -= frame->frame;
+ section->intra_error -= frame->intra_error;
+ section->coded_error -= frame->coded_error;
+ section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err;
+ section->pcnt_inter -= frame->pcnt_inter;
+ section->pcnt_motion -= frame->pcnt_motion;
+ section->pcnt_second_ref -= frame->pcnt_second_ref;
+ section->pcnt_neutral -= frame->pcnt_neutral;
+ section->MVr -= frame->MVr;
+ section->mvr_abs -= frame->mvr_abs;
+ section->MVc -= frame->MVc;
+ section->mvc_abs -= frame->mvc_abs;
+ section->MVrv -= frame->MVrv;
+ section->MVcv -= frame->MVcv;
+ section->mv_in_out_count -= frame->mv_in_out_count;
+ section->new_mv_count -= frame->new_mv_count;
+ section->count -= frame->count;
+ section->duration -= frame->duration;
+}
+
+static void avg_stats(FIRSTPASS_STATS *section) {
+ if (section->count < 1.0) return;
+
+ section->intra_error /= section->count;
+ section->coded_error /= section->count;
+ section->ssim_weighted_pred_err /= section->count;
+ section->pcnt_inter /= section->count;
+ section->pcnt_second_ref /= section->count;
+ section->pcnt_neutral /= section->count;
+ section->pcnt_motion /= section->count;
+ section->MVr /= section->count;
+ section->mvr_abs /= section->count;
+ section->MVc /= section->count;
+ section->mvc_abs /= section->count;
+ section->MVrv /= section->count;
+ section->MVcv /= section->count;
+ section->mv_in_out_count /= section->count;
+ section->duration /= section->count;
+}
+
+/* Calculate a modified Error used in distributing bits between easier
+ * and harder frames
+ */
+static double calculate_modified_err(VP8_COMP *cpi,
+ FIRSTPASS_STATS *this_frame) {
+ double av_err = (cpi->twopass.total_stats.ssim_weighted_pred_err /
+ cpi->twopass.total_stats.count);
+ double this_err = this_frame->ssim_weighted_pred_err;
+ double modified_err;
+
+ if (this_err > av_err) {
+ modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
+ } else {
+ modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
+ }
+
+ return modified_err;
+}
+
+static const double weight_table[256] = {
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500,
+ 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250,
+ 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000,
+ 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750,
+ 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500,
+ 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
+ 1.000000, 1.000000, 1.000000, 1.000000
+};
+
+static double simple_weight(YV12_BUFFER_CONFIG *source) {
+ int i, j;
+
+ unsigned char *src = source->y_buffer;
+ double sum_weights = 0.0;
+
+ /* Loop throught the Y plane raw examining levels and creating a weight
+ * for the image
+ */
+ i = source->y_height;
+ do {
+ j = source->y_width;
+ do {
+ sum_weights += weight_table[*src];
+ src++;
+ } while (--j);
+ src -= source->y_width;
+ src += source->y_stride;
+ } while (--i);
+
+ sum_weights /= (source->y_height * source->y_width);
+
+ return sum_weights;
+}
+
+/* This function returns the current per frame maximum bitrate target */
+static int frame_max_bits(VP8_COMP *cpi) {
+ /* Max allocation for a single frame based on the max section guidelines
+ * passed in and how many bits are left
+ */
+ int max_bits;
+
+ /* For CBR we need to also consider buffer fullness.
+ * If we are running below the optimal level then we need to gradually
+ * tighten up on max_bits.
+ */
+ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
+ double buffer_fullness_ratio =
+ (double)cpi->buffer_level /
+ DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
+
+ /* For CBR base this on the target average bits per frame plus the
+ * maximum sedction rate passed in by the user
+ */
+ max_bits = (int)(cpi->av_per_frame_bandwidth *
+ ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
+
+ /* If our buffer is below the optimum level */
+ if (buffer_fullness_ratio < 1.0) {
+ /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */
+ int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2))
+ ? cpi->av_per_frame_bandwidth >> 2
+ : max_bits >> 2;
+
+ max_bits = (int)(max_bits * buffer_fullness_ratio);
+
+ /* Lowest value we will set ... which should allow the buffer to
+ * refill.
+ */
+ if (max_bits < min_max_bits) max_bits = min_max_bits;
+ }
+ }
+ /* VBR */
+ else {
+ /* For VBR base this on the bits and frames left plus the
+ * two_pass_vbrmax_section rate passed in by the user
+ */
+ max_bits = (int)(((double)cpi->twopass.bits_left /
+ (cpi->twopass.total_stats.count -
+ (double)cpi->common.current_video_frame)) *
+ ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
+ }
+
+ /* Trap case where we are out of bits */
+ if (max_bits < 0) max_bits = 0;
+
+ return max_bits;
+}
+
+void vp8_init_first_pass(VP8_COMP *cpi) {
+ zero_stats(&cpi->twopass.total_stats);
+}
+
+void vp8_end_first_pass(VP8_COMP *cpi) {
+ output_stats(cpi->output_pkt_list, &cpi->twopass.total_stats);
+}
+
+static void zz_motion_search(MACROBLOCK *x, YV12_BUFFER_CONFIG *raw_buffer,
+ int *raw_motion_err,
+ YV12_BUFFER_CONFIG *recon_buffer,
+ int *best_motion_err, int recon_yoffset) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ BLOCK *b = &x->block[0];
+ BLOCKD *d = &x->e_mbd.block[0];
+
+ unsigned char *src_ptr = (*(b->base_src) + b->src);
+ int src_stride = b->src_stride;
+ unsigned char *raw_ptr;
+ int raw_stride = raw_buffer->y_stride;
+ unsigned char *ref_ptr;
+ int ref_stride = x->e_mbd.pre.y_stride;
+
+ /* Set up pointers for this macro block raw buffer */
+ raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset + d->offset);
+ vpx_mse16x16(src_ptr, src_stride, raw_ptr, raw_stride,
+ (unsigned int *)(raw_motion_err));
+
+ /* Set up pointers for this macro block recon buffer */
+ xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
+ ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset);
+ vpx_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride,
+ (unsigned int *)(best_motion_err));
+}
+
+static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x,
+ int_mv *ref_mv, MV *best_mv,
+ YV12_BUFFER_CONFIG *recon_buffer,
+ int *best_motion_err, int recon_yoffset) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ BLOCK *b = &x->block[0];
+ BLOCKD *d = &x->e_mbd.block[0];
+ int num00;
+
+ int_mv tmp_mv;
+ int_mv ref_mv_full;
+
+ int tmp_err;
+ int step_param = 3; /* Don't search over full range for first pass */
+ int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
+ int n;
+ vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
+ int new_mv_mode_penalty = 256;
+
+ /* override the default variance function to use MSE */
+ v_fn_ptr.vf = vpx_mse16x16;
+
+ /* Set up pointers for this macro block recon buffer */
+ xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
+
+ /* Initial step/diamond search centred on best mv */
+ tmp_mv.as_int = 0;
+ ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3;
+ ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3;
+ tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param,
+ x->sadperbit16, &num00, &v_fn_ptr,
+ x->mvcost, ref_mv);
+ if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
+
+ if (tmp_err < *best_motion_err) {
+ *best_motion_err = tmp_err;
+ best_mv->row = tmp_mv.as_mv.row;
+ best_mv->col = tmp_mv.as_mv.col;
+ }
+
+ /* Further step/diamond searches as necessary */
+ n = num00;
+ num00 = 0;
+
+ while (n < further_steps) {
+ n++;
+
+ if (num00) {
+ num00--;
+ } else {
+ tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv,
+ step_param + n, x->sadperbit16, &num00,
+ &v_fn_ptr, x->mvcost, ref_mv);
+ if (tmp_err < INT_MAX - new_mv_mode_penalty) {
+ tmp_err += new_mv_mode_penalty;
+ }
+
+ if (tmp_err < *best_motion_err) {
+ *best_motion_err = tmp_err;
+ best_mv->row = tmp_mv.as_mv.row;
+ best_mv->col = tmp_mv.as_mv.col;
+ }
+ }
+ }
+}
+
+void vp8_first_pass(VP8_COMP *cpi) {
+ int mb_row, mb_col;
+ MACROBLOCK *const x = &cpi->mb;
+ VP8_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &x->e_mbd;
+
+ int recon_yoffset, recon_uvoffset;
+ YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
+ YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
+ YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
+ int recon_y_stride = lst_yv12->y_stride;
+ int recon_uv_stride = lst_yv12->uv_stride;
+ int64_t intra_error = 0;
+ int64_t coded_error = 0;
+
+ int sum_mvr = 0, sum_mvc = 0;
+ int sum_mvr_abs = 0, sum_mvc_abs = 0;
+ int sum_mvrs = 0, sum_mvcs = 0;
+ int mvcount = 0;
+ int intercount = 0;
+ int second_ref_count = 0;
+ int intrapenalty = 256;
+ int neutral_count = 0;
+ int new_mv_count = 0;
+ int sum_in_vectors = 0;
+ uint32_t lastmv_as_int = 0;
+
+ int_mv zero_ref_mv;
+
+ zero_ref_mv.as_int = 0;
+
+ vpx_clear_system_state();
+
+ x->src = *cpi->Source;
+ xd->pre = *lst_yv12;
+ xd->dst = *new_yv12;
+
+ x->partition_info = x->pi;
+
+ xd->mode_info_context = cm->mi;
+
+ if (!cm->use_bilinear_mc_filter) {
+ xd->subpixel_predict = vp8_sixtap_predict4x4;
+ xd->subpixel_predict8x4 = vp8_sixtap_predict8x4;
+ xd->subpixel_predict8x8 = vp8_sixtap_predict8x8;
+ xd->subpixel_predict16x16 = vp8_sixtap_predict16x16;
+ } else {
+ xd->subpixel_predict = vp8_bilinear_predict4x4;
+ xd->subpixel_predict8x4 = vp8_bilinear_predict8x4;
+ xd->subpixel_predict8x8 = vp8_bilinear_predict8x8;
+ xd->subpixel_predict16x16 = vp8_bilinear_predict16x16;
+ }
+
+ vp8_build_block_offsets(x);
+
+ /* set up frame new frame for intra coded blocks */
+ vp8_setup_intra_recon(new_yv12);
+ vp8cx_frame_init_quantizer(cpi);
+
+ /* Initialise the MV cost table to the defaults */
+ {
+ int flag[2] = { 1, 1 };
+ vp8_initialize_rd_consts(cpi, x,
+ vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));
+ memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
+ vp8_build_component_cost_table(cpi->mb.mvcost,
+ (const MV_CONTEXT *)cm->fc.mvc, flag);
+ }
+
+ /* for each macroblock row in image */
+ for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
+ int_mv best_ref_mv;
+
+ best_ref_mv.as_int = 0;
+
+ /* reset above block coeffs */
+ xd->up_available = (mb_row != 0);
+ recon_yoffset = (mb_row * recon_y_stride * 16);
+ recon_uvoffset = (mb_row * recon_uv_stride * 8);
+
+ /* Set up limit values for motion vectors to prevent them extending
+ * outside the UMV borders
+ */
+ x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
+ x->mv_row_max =
+ ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
+
+ /* for each macroblock col in image */
+ for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
+ int this_error;
+ int gf_motion_error = INT_MAX;
+ int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
+
+ xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
+ xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
+ xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
+ xd->left_available = (mb_col != 0);
+
+ /* Copy current mb to a buffer */
+ vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
+
+ /* do intra 16x16 prediction */
+ this_error = vp8_encode_intra(x, use_dc_pred);
+
+ /* "intrapenalty" below deals with situations where the intra
+ * and inter error scores are very low (eg a plain black frame)
+ * We do not have special cases in first pass for 0,0 and
+ * nearest etc so all inter modes carry an overhead cost
+ * estimate fot the mv. When the error score is very low this
+ * causes us to pick all or lots of INTRA modes and throw lots
+ * of key frames. This penalty adds a cost matching that of a
+ * 0,0 mv to the intra case.
+ */
+ this_error += intrapenalty;
+
+ /* Cumulative intra error total */
+ intra_error += (int64_t)this_error;
+
+ /* Set up limit values for motion vectors to prevent them
+ * extending outside the UMV borders
+ */
+ x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
+ x->mv_col_max =
+ ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
+
+ /* Other than for the first frame do a motion search */
+ if (cm->current_video_frame > 0) {
+ BLOCKD *d = &x->e_mbd.block[0];
+ MV tmp_mv = { 0, 0 };
+ int tmp_err;
+ int motion_error = INT_MAX;
+ int raw_motion_error = INT_MAX;
+
+ /* Simple 0,0 motion with no mv overhead */
+ zz_motion_search(x, cpi->last_frame_unscaled_source, &raw_motion_error,
+ lst_yv12, &motion_error, recon_yoffset);
+ d->bmi.mv.as_mv.row = 0;
+ d->bmi.mv.as_mv.col = 0;
+
+ if (raw_motion_error < cpi->oxcf.encode_breakout) {
+ goto skip_motion_search;
+ }
+
+ /* Test last reference frame using the previous best mv as the
+ * starting point (best reference) for the search
+ */
+ first_pass_motion_search(cpi, x, &best_ref_mv, &d->bmi.mv.as_mv,
+ lst_yv12, &motion_error, recon_yoffset);
+
+ /* If the current best reference mv is not centred on 0,0
+ * then do a 0,0 based search as well
+ */
+ if (best_ref_mv.as_int) {
+ tmp_err = INT_MAX;
+ first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, lst_yv12,
+ &tmp_err, recon_yoffset);
+
+ if (tmp_err < motion_error) {
+ motion_error = tmp_err;
+ d->bmi.mv.as_mv.row = tmp_mv.row;
+ d->bmi.mv.as_mv.col = tmp_mv.col;
+ }
+ }
+
+ /* Experimental search in a second reference frame ((0,0)
+ * based only)
+ */
+ if (cm->current_video_frame > 1) {
+ first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12,
+ &gf_motion_error, recon_yoffset);
+
+ if ((gf_motion_error < motion_error) &&
+ (gf_motion_error < this_error)) {
+ second_ref_count++;
+ }
+
+ /* Reset to last frame as reference buffer */
+ xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
+ xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
+ xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
+ }
+
+ skip_motion_search:
+ /* Intra assumed best */
+ best_ref_mv.as_int = 0;
+
+ if (motion_error <= this_error) {
+ /* Keep a count of cases where the inter and intra were
+ * very close and very low. This helps with scene cut
+ * detection for example in cropped clips with black bars
+ * at the sides or top and bottom.
+ */
+ if ((((this_error - intrapenalty) * 9) <= (motion_error * 10)) &&
+ (this_error < (2 * intrapenalty))) {
+ neutral_count++;
+ }
+
+ d->bmi.mv.as_mv.row *= 8;
+ d->bmi.mv.as_mv.col *= 8;
+ this_error = motion_error;
+ vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv);
+ vp8_encode_inter16x16y(x);
+ sum_mvr += d->bmi.mv.as_mv.row;
+ sum_mvr_abs += abs(d->bmi.mv.as_mv.row);
+ sum_mvc += d->bmi.mv.as_mv.col;
+ sum_mvc_abs += abs(d->bmi.mv.as_mv.col);
+ sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row;
+ sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col;
+ intercount++;
+
+ best_ref_mv.as_int = d->bmi.mv.as_int;
+
+ /* Was the vector non-zero */
+ if (d->bmi.mv.as_int) {
+ mvcount++;
+
+ /* Was it different from the last non zero vector */
+ if (d->bmi.mv.as_int != lastmv_as_int) new_mv_count++;
+ lastmv_as_int = d->bmi.mv.as_int;
+
+ /* Does the Row vector point inwards or outwards */
+ if (mb_row < cm->mb_rows / 2) {
+ if (d->bmi.mv.as_mv.row > 0) {
+ sum_in_vectors--;
+ } else if (d->bmi.mv.as_mv.row < 0) {
+ sum_in_vectors++;
+ }
+ } else if (mb_row > cm->mb_rows / 2) {
+ if (d->bmi.mv.as_mv.row > 0) {
+ sum_in_vectors++;
+ } else if (d->bmi.mv.as_mv.row < 0) {
+ sum_in_vectors--;
+ }
+ }
+
+ /* Does the Row vector point inwards or outwards */
+ if (mb_col < cm->mb_cols / 2) {
+ if (d->bmi.mv.as_mv.col > 0) {
+ sum_in_vectors--;
+ } else if (d->bmi.mv.as_mv.col < 0) {
+ sum_in_vectors++;
+ }
+ } else if (mb_col > cm->mb_cols / 2) {
+ if (d->bmi.mv.as_mv.col > 0) {
+ sum_in_vectors++;
+ } else if (d->bmi.mv.as_mv.col < 0) {
+ sum_in_vectors--;
+ }
+ }
+ }
+ }
+ }
+
+ coded_error += (int64_t)this_error;
+
+ /* adjust to the next column of macroblocks */
+ x->src.y_buffer += 16;
+ x->src.u_buffer += 8;
+ x->src.v_buffer += 8;
+
+ recon_yoffset += 16;
+ recon_uvoffset += 8;
+ }
+
+ /* adjust to the next row of mbs */
+ x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
+ x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
+ x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
+
+ /* extend the recon for intra prediction */
+ vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8,
+ xd->dst.v_buffer + 8);
+ vpx_clear_system_state();
+ }
+
+ vpx_clear_system_state();
+ {
+ double weight = 0.0;
+
+ FIRSTPASS_STATS fps;
+
+ fps.frame = cm->current_video_frame;
+ fps.intra_error = (double)(intra_error >> 8);
+ fps.coded_error = (double)(coded_error >> 8);
+ weight = simple_weight(cpi->Source);
+
+ if (weight < 0.1) weight = 0.1;
+
+ fps.ssim_weighted_pred_err = fps.coded_error * weight;
+
+ fps.pcnt_inter = 0.0;
+ fps.pcnt_motion = 0.0;
+ fps.MVr = 0.0;
+ fps.mvr_abs = 0.0;
+ fps.MVc = 0.0;
+ fps.mvc_abs = 0.0;
+ fps.MVrv = 0.0;
+ fps.MVcv = 0.0;
+ fps.mv_in_out_count = 0.0;
+ fps.new_mv_count = 0.0;
+ fps.count = 1.0;
+
+ fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
+ fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
+ fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;
+
+ if (mvcount > 0) {
+ fps.MVr = (double)sum_mvr / (double)mvcount;
+ fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
+ fps.MVc = (double)sum_mvc / (double)mvcount;
+ fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
+ fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) /
+ (double)mvcount;
+ fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) /
+ (double)mvcount;
+ fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
+ fps.new_mv_count = new_mv_count;
+
+ fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
+ }
+
+ /* TODO: handle the case when duration is set to 0, or something less
+ * than the full time between subsequent cpi->source_time_stamps
+ */
+ fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start);
+
+ /* don't want to do output stats with a stack variable! */
+ memcpy(&cpi->twopass.this_frame_stats, &fps, sizeof(FIRSTPASS_STATS));
+ output_stats(cpi->output_pkt_list, &cpi->twopass.this_frame_stats);
+ accumulate_stats(&cpi->twopass.total_stats, &fps);
+ }
+
+ /* Copy the previous Last Frame into the GF buffer if specific
+ * conditions for doing so are met
+ */
+ if ((cm->current_video_frame > 0) &&
+ (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) &&
+ ((cpi->twopass.this_frame_stats.intra_error /
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) >
+ 2.0)) {
+ vp8_yv12_copy_frame(lst_yv12, gld_yv12);
+ }
+
+ /* swap frame pointers so last frame refers to the frame we just
+ * compressed
+ */
+ vp8_swap_yv12_buffer(lst_yv12, new_yv12);
+ vp8_yv12_extend_frame_borders(lst_yv12);
+
+ /* Special case for the first frame. Copy into the GF buffer as a
+ * second reference.
+ */
+ if (cm->current_video_frame == 0) {
+ vp8_yv12_copy_frame(lst_yv12, gld_yv12);
+ }
+
+ cm->current_video_frame++;
+}
+extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
+
+/* Estimate a cost per mb attributable to overheads such as the coding of
+ * modes and motion vectors.
+ * Currently simplistic in its assumptions for testing.
+ */
+
+static double bitcost(double prob) {
+ if (prob > 0.000122) {
+ return -log(prob) / log(2.0);
+ } else {
+ return 13.0;
+ }
+}
+static int64_t estimate_modemvcost(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats) {
+ int mv_cost;
+ int64_t mode_cost;
+
+ double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
+ double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
+ double av_intra = (1.0 - av_pct_inter);
+
+ double zz_cost;
+ double motion_cost;
+ double intra_cost;
+
+ zz_cost = bitcost(av_pct_inter - av_pct_motion);
+ motion_cost = bitcost(av_pct_motion);
+ intra_cost = bitcost(av_intra);
+
+ /* Estimate of extra bits per mv overhead for mbs
+ * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb
+ */
+ mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
+
+ /* Crude estimate of overhead cost from modes
+ * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb
+ */
+ mode_cost =
+ (int64_t)((((av_pct_inter - av_pct_motion) * zz_cost) +
+ (av_pct_motion * motion_cost) + (av_intra * intra_cost)) *
+ cpi->common.MBs) *
+ 512;
+
+ return mv_cost + mode_cost;
+}
+
+static double calc_correction_factor(double err_per_mb, double err_devisor,
+ double pt_low, double pt_high, int Q) {
+ double power_term;
+ double error_term = err_per_mb / err_devisor;
+ double correction_factor;
+
+ /* Adjustment based on Q to power term. */
+ power_term = pt_low + (Q * 0.01);
+ power_term = (power_term > pt_high) ? pt_high : power_term;
+
+ /* Adjustments to error term */
+ /* TBD */
+
+ /* Calculate correction factor */
+ correction_factor = pow(error_term, power_term);
+
+ /* Clip range */
+ correction_factor = (correction_factor < 0.05) ? 0.05
+ : (correction_factor > 5.0) ? 5.0
+ : correction_factor;
+
+ return correction_factor;
+}
+
+static int estimate_max_q(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats,
+ int section_target_bandwitdh, int overhead_bits) {
+ int Q;
+ int num_mbs = cpi->common.MBs;
+ int target_norm_bits_per_mb;
+
+ double section_err = (fpstats->coded_error / fpstats->count);
+ double err_per_mb = section_err / num_mbs;
+ double err_correction_factor;
+ double speed_correction = 1.0;
+ int overhead_bits_per_mb;
+
+ if (section_target_bandwitdh <= 0) {
+ return cpi->twopass.maxq_max_limit; /* Highest value allowed */
+ }
+
+ target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
+ ? (512 * section_target_bandwitdh) / num_mbs
+ : 512 * (section_target_bandwitdh / num_mbs);
+
+ /* Calculate a corrective factor based on a rolling ratio of bits spent
+ * vs target bits
+ */
+ if ((cpi->rolling_target_bits > 0) &&
+ (cpi->active_worst_quality < cpi->worst_quality)) {
+ double rolling_ratio;
+
+ rolling_ratio =
+ (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits;
+
+ if (rolling_ratio < 0.95) {
+ cpi->twopass.est_max_qcorrection_factor -= 0.005;
+ } else if (rolling_ratio > 1.05) {
+ cpi->twopass.est_max_qcorrection_factor += 0.005;
+ }
+
+ cpi->twopass.est_max_qcorrection_factor =
+ (cpi->twopass.est_max_qcorrection_factor < 0.1) ? 0.1
+ : (cpi->twopass.est_max_qcorrection_factor > 10.0)
+ ? 10.0
+ : cpi->twopass.est_max_qcorrection_factor;
+ }
+
+ /* Corrections for higher compression speed settings
+ * (reduced compression expected)
+ */
+ if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
+ if (cpi->oxcf.cpu_used <= 5) {
+ speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
+ } else {
+ speed_correction = 1.25;
+ }
+ }
+
+ /* Estimate of overhead bits per mb */
+ /* Correction to overhead bits for min allowed Q. */
+ overhead_bits_per_mb = overhead_bits / num_mbs;
+ overhead_bits_per_mb = (int)(overhead_bits_per_mb *
+ pow(0.98, (double)cpi->twopass.maxq_min_limit));
+
+ /* Try and pick a max Q that will be high enough to encode the
+ * content at the given rate.
+ */
+ for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; ++Q) {
+ int bits_per_mb_at_this_q;
+
+ /* Error per MB based correction factor */
+ err_correction_factor =
+ calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q);
+
+ bits_per_mb_at_this_q =
+ vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb;
+
+ bits_per_mb_at_this_q =
+ (int)(.5 + err_correction_factor * speed_correction *
+ cpi->twopass.est_max_qcorrection_factor *
+ cpi->twopass.section_max_qfactor *
+ (double)bits_per_mb_at_this_q);
+
+ /* Mode and motion overhead */
+ /* As Q rises in real encode loop rd code will force overhead down
+ * We make a crude adjustment for this here as *.98 per Q step.
+ */
+ overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
+
+ if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
+ }
+
+ /* Restriction on active max q for constrained quality mode. */
+ if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
+ (Q < cpi->cq_target_quality)) {
+ Q = cpi->cq_target_quality;
+ }
+
+ /* Adjust maxq_min_limit and maxq_max_limit limits based on
+ * average q observed in clip for non kf/gf.arf frames
+ * Give average a chance to settle though.
+ */
+ if ((cpi->ni_frames > ((int)cpi->twopass.total_stats.count >> 8)) &&
+ (cpi->ni_frames > 150)) {
+ cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality)
+ ? (cpi->ni_av_qi + 32)
+ : cpi->worst_quality;
+ cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality)
+ ? (cpi->ni_av_qi - 32)
+ : cpi->best_quality;
+ }
+
+ return Q;
+}
+
+/* For cq mode estimate a cq level that matches the observed
+ * complexity and data rate.
+ */
+static int estimate_cq(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats,
+ int section_target_bandwitdh, int overhead_bits) {
+ int Q;
+ int num_mbs = cpi->common.MBs;
+ int target_norm_bits_per_mb;
+
+ double section_err = (fpstats->coded_error / fpstats->count);
+ double err_per_mb = section_err / num_mbs;
+ double err_correction_factor;
+ double speed_correction = 1.0;
+ double clip_iiratio;
+ double clip_iifactor;
+ int overhead_bits_per_mb;
+
+ target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
+ ? (512 * section_target_bandwitdh) / num_mbs
+ : 512 * (section_target_bandwitdh / num_mbs);
+
+ /* Estimate of overhead bits per mb */
+ overhead_bits_per_mb = overhead_bits / num_mbs;
+
+ /* Corrections for higher compression speed settings
+ * (reduced compression expected)
+ */
+ if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
+ if (cpi->oxcf.cpu_used <= 5) {
+ speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
+ } else {
+ speed_correction = 1.25;
+ }
+ }
+
+ /* II ratio correction factor for clip as a whole */
+ clip_iiratio = cpi->twopass.total_stats.intra_error /
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error);
+ clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
+ if (clip_iifactor < 0.80) clip_iifactor = 0.80;
+
+ /* Try and pick a Q that can encode the content at the given rate. */
+ for (Q = 0; Q < MAXQ; ++Q) {
+ int bits_per_mb_at_this_q;
+
+ /* Error per MB based correction factor */
+ err_correction_factor =
+ calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q);
+
+ bits_per_mb_at_this_q =
+ vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb;
+
+ bits_per_mb_at_this_q =
+ (int)(.5 + err_correction_factor * speed_correction * clip_iifactor *
+ (double)bits_per_mb_at_this_q);
+
+ /* Mode and motion overhead */
+ /* As Q rises in real encode loop rd code will force overhead down
+ * We make a crude adjustment for this here as *.98 per Q step.
+ */
+ overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
+
+ if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
+ }
+
+ /* Clip value to range "best allowed to (worst allowed - 1)" */
+ Q = cq_level[Q];
+ if (Q >= cpi->worst_quality) Q = cpi->worst_quality - 1;
+ if (Q < cpi->best_quality) Q = cpi->best_quality;
+
+ return Q;
+}
+
+static int estimate_q(VP8_COMP *cpi, double section_err,
+ int section_target_bandwitdh) {
+ int Q;
+ int num_mbs = cpi->common.MBs;
+ int target_norm_bits_per_mb;
+
+ double err_per_mb = section_err / num_mbs;
+ double err_correction_factor;
+ double speed_correction = 1.0;
+
+ target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
+ ? (512 * section_target_bandwitdh) / num_mbs
+ : 512 * (section_target_bandwitdh / num_mbs);
+
+ /* Corrections for higher compression speed settings
+ * (reduced compression expected)
+ */
+ if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
+ if (cpi->oxcf.cpu_used <= 5) {
+ speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
+ } else {
+ speed_correction = 1.25;
+ }
+ }
+
+ /* Try and pick a Q that can encode the content at the given rate. */
+ for (Q = 0; Q < MAXQ; ++Q) {
+ int bits_per_mb_at_this_q;
+
+ /* Error per MB based correction factor */
+ err_correction_factor =
+ calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q);
+
+ bits_per_mb_at_this_q =
+ (int)(.5 + (err_correction_factor * speed_correction *
+ cpi->twopass.est_max_qcorrection_factor *
+ (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0));
+
+ if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
+ }
+
+ return Q;
+}
+
+/* Estimate a worst case Q for a KF group */
+static int estimate_kf_group_q(VP8_COMP *cpi, double section_err,
+ int section_target_bandwitdh,
+ double group_iiratio) {
+ int Q;
+ int num_mbs = cpi->common.MBs;
+ int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs;
+ int bits_per_mb_at_this_q;
+
+ double err_per_mb = section_err / num_mbs;
+ double err_correction_factor;
+ double speed_correction = 1.0;
+ double current_spend_ratio = 1.0;
+
+ double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90;
+ double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80;
+
+ double iiratio_correction_factor = 1.0;
+
+ double combined_correction_factor;
+
+ /* Trap special case where the target is <= 0 */
+ if (target_norm_bits_per_mb <= 0) return MAXQ * 2;
+
+ /* Calculate a corrective factor based on a rolling ratio of bits spent
+ * vs target bits
+ * This is clamped to the range 0.1 to 10.0
+ */
+ if (cpi->long_rolling_target_bits <= 0) {
+ current_spend_ratio = 10.0;
+ } else {
+ current_spend_ratio = (double)cpi->long_rolling_actual_bits /
+ (double)cpi->long_rolling_target_bits;
+ current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0
+ : (current_spend_ratio < 0.1) ? 0.1
+ : current_spend_ratio;
+ }
+
+ /* Calculate a correction factor based on the quality of prediction in
+ * the sequence as indicated by intra_inter error score ratio (IIRatio)
+ * The idea here is to favour subsampling in the hardest sections vs
+ * the easyest.
+ */
+ iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1);
+
+ if (iiratio_correction_factor < 0.5) iiratio_correction_factor = 0.5;
+
+ /* Corrections for higher compression speed settings
+ * (reduced compression expected)
+ */
+ if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
+ if (cpi->oxcf.cpu_used <= 5) {
+ speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
+ } else {
+ speed_correction = 1.25;
+ }
+ }
+
+ /* Combine the various factors calculated above */
+ combined_correction_factor =
+ speed_correction * iiratio_correction_factor * current_spend_ratio;
+
+ /* Try and pick a Q that should be high enough to encode the content at
+ * the given rate.
+ */
+ for (Q = 0; Q < MAXQ; ++Q) {
+ /* Error per MB based correction factor */
+ err_correction_factor =
+ calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q);
+
+ bits_per_mb_at_this_q =
+ (int)(.5 + (err_correction_factor * combined_correction_factor *
+ (double)vp8_bits_per_mb[INTER_FRAME][Q]));
+
+ if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
+ }
+
+ /* If we could not hit the target even at Max Q then estimate what Q
+ * would have been required
+ */
+ while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) &&
+ (Q < (MAXQ * 2))) {
+ bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q);
+ Q++;
+ }
+
+ return Q;
+}
+
+void vp8_init_second_pass(VP8_COMP *cpi) {
+ FIRSTPASS_STATS this_frame;
+ FIRSTPASS_STATS *start_pos;
+
+ double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth *
+ cpi->oxcf.two_pass_vbrmin_section / 100);
+
+ zero_stats(&cpi->twopass.total_stats);
+ zero_stats(&cpi->twopass.total_left_stats);
+
+ if (!cpi->twopass.stats_in_end) return;
+
+ cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
+ cpi->twopass.total_left_stats = cpi->twopass.total_stats;
+
+ /* each frame can have a different duration, as the frame rate in the
+ * source isn't guaranteed to be constant. The frame rate prior to
+ * the first frame encoded in the second pass is a guess. However the
+ * sum duration is not. Its calculated based on the actual durations of
+ * all frames from the first pass.
+ */
+ vp8_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count /
+ cpi->twopass.total_stats.duration);
+
+ cpi->output_framerate = cpi->framerate;
+ cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration *
+ cpi->oxcf.target_bandwidth / 10000000.0);
+ cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration *
+ two_pass_min_rate / 10000000.0);
+
+ /* Calculate a minimum intra value to be used in determining the IIratio
+ * scores used in the second pass. We have this minimum to make sure
+ * that clips that are static but "low complexity" in the intra domain
+ * are still boosted appropriately for KF/GF/ARF
+ */
+ cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
+ cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
+
+ /* Scan the first pass file and calculate an average Intra / Inter error
+ * score ratio for the sequence
+ */
+ {
+ double sum_iiratio = 0.0;
+ double IIRatio;
+
+ start_pos = cpi->twopass.stats_in; /* Note starting "file" position */
+
+ while (input_stats(cpi, &this_frame) != EOF) {
+ IIRatio =
+ this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
+ IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
+ sum_iiratio += IIRatio;
+ }
+
+ cpi->twopass.avg_iiratio =
+ sum_iiratio /
+ DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count);
+
+ /* Reset file position */
+ reset_fpf_position(cpi, start_pos);
+ }
+
+ /* Scan the first pass file and calculate a modified total error based
+ * upon the bias/power function used to allocate bits
+ */
+ {
+ start_pos = cpi->twopass.stats_in; /* Note starting "file" position */
+
+ cpi->twopass.modified_error_total = 0.0;
+ cpi->twopass.modified_error_used = 0.0;
+
+ while (input_stats(cpi, &this_frame) != EOF) {
+ cpi->twopass.modified_error_total +=
+ calculate_modified_err(cpi, &this_frame);
+ }
+ cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;
+
+ reset_fpf_position(cpi, start_pos); /* Reset file position */
+ }
+}
+
+void vp8_end_second_pass(VP8_COMP *cpi) { (void)cpi; }
+
+/* This function gives and estimate of how badly we believe the prediction
+ * quality is decaying from frame to frame.
+ */
+static double get_prediction_decay_rate(FIRSTPASS_STATS *next_frame) {
+ double prediction_decay_rate;
+ double motion_decay;
+ double motion_pct = next_frame->pcnt_motion;
+
+ /* Initial basis is the % mbs inter coded */
+ prediction_decay_rate = next_frame->pcnt_inter;
+
+ /* High % motion -> somewhat higher decay rate */
+ motion_decay = (1.0 - (motion_pct / 20.0));
+ if (motion_decay < prediction_decay_rate) {
+ prediction_decay_rate = motion_decay;
+ }
+
+ /* Adjustment to decay rate based on speed of motion */
+ {
+ double this_mv_rabs;
+ double this_mv_cabs;
+ double distance_factor;
+
+ this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct);
+ this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct);
+
+ distance_factor =
+ sqrt((this_mv_rabs * this_mv_rabs) + (this_mv_cabs * this_mv_cabs)) /
+ 250.0;
+ distance_factor = ((distance_factor > 1.0) ? 0.0 : (1.0 - distance_factor));
+ if (distance_factor < prediction_decay_rate) {
+ prediction_decay_rate = distance_factor;
+ }
+ }
+
+ return prediction_decay_rate;
+}
+
+/* Function to test for a condition where a complex transition is followed
+ * by a static section. For example in slide shows where there is a fade
+ * between slides. This is to help with more optimal kf and gf positioning.
+ */
+static int detect_transition_to_still(VP8_COMP *cpi, int frame_interval,
+ int still_interval,
+ double loop_decay_rate,
+ double decay_accumulator) {
+ int trans_to_still = 0;
+
+ /* Break clause to detect very still sections after motion
+ * For example a static image after a fade or other transition
+ * instead of a clean scene cut.
+ */
+ if ((frame_interval > MIN_GF_INTERVAL) && (loop_decay_rate >= 0.999) &&
+ (decay_accumulator < 0.9)) {
+ int j;
+ FIRSTPASS_STATS *position = cpi->twopass.stats_in;
+ FIRSTPASS_STATS tmp_next_frame;
+ double decay_rate;
+
+ /* Look ahead a few frames to see if static condition persists... */
+ for (j = 0; j < still_interval; ++j) {
+ if (EOF == input_stats(cpi, &tmp_next_frame)) break;
+
+ decay_rate = get_prediction_decay_rate(&tmp_next_frame);
+ if (decay_rate < 0.999) break;
+ }
+ /* Reset file position */
+ reset_fpf_position(cpi, position);
+
+ /* Only if it does do we signal a transition to still */
+ if (j == still_interval) trans_to_still = 1;
+ }
+
+ return trans_to_still;
+}
+
+/* This function detects a flash through the high relative pcnt_second_ref
+ * score in the frame following a flash frame. The offset passed in should
+ * reflect this
+ */
+static int detect_flash(VP8_COMP *cpi, int offset) {
+ FIRSTPASS_STATS next_frame;
+
+ int flash_detected = 0;
+
+ /* Read the frame data. */
+ /* The return is 0 (no flash detected) if not a valid frame */
+ if (read_frame_stats(cpi, &next_frame, offset) != EOF) {
+ /* What we are looking for here is a situation where there is a
+ * brief break in prediction (such as a flash) but subsequent frames
+ * are reasonably well predicted by an earlier (pre flash) frame.
+ * The recovery after a flash is indicated by a high pcnt_second_ref
+ * comapred to pcnt_inter.
+ */
+ if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) &&
+ (next_frame.pcnt_second_ref >= 0.5)) {
+ flash_detected = 1;
+
+ /*if (1)
+ {
+ FILE *f = fopen("flash.stt", "a");
+ fprintf(f, "%8.0f %6.2f %6.2f\n",
+ next_frame.frame,
+ next_frame.pcnt_inter,
+ next_frame.pcnt_second_ref);
+ fclose(f);
+ }*/
+ }
+ }
+
+ return flash_detected;
+}
+
+/* Update the motion related elements to the GF arf boost calculation */
+static void accumulate_frame_motion_stats(FIRSTPASS_STATS *this_frame,
+ double *this_frame_mv_in_out,
+ double *mv_in_out_accumulator,
+ double *abs_mv_in_out_accumulator,
+ double *mv_ratio_accumulator) {
+ double this_frame_mvr_ratio;
+ double this_frame_mvc_ratio;
+ double motion_pct;
+
+ /* Accumulate motion stats. */
+ motion_pct = this_frame->pcnt_motion;
+
+ /* Accumulate Motion In/Out of frame stats */
+ *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
+ *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
+ *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct);
+
+ /* Accumulate a measure of how uniform (or conversely how random)
+ * the motion field is. (A ratio of absmv / mv)
+ */
+ if (motion_pct > 0.05) {
+ this_frame_mvr_ratio =
+ fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
+
+ this_frame_mvc_ratio =
+ fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
+
+ *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs)
+ ? (this_frame_mvr_ratio * motion_pct)
+ : this_frame->mvr_abs * motion_pct;
+
+ *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs)
+ ? (this_frame_mvc_ratio * motion_pct)
+ : this_frame->mvc_abs * motion_pct;
+ }
+}
+
+/* Calculate a baseline boost number for the current frame. */
+static double calc_frame_boost(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame,
+ double this_frame_mv_in_out) {
+ double frame_boost;
+
+ /* Underlying boost factor is based on inter intra error ratio */
+ if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) {
+ frame_boost = (IIFACTOR * this_frame->intra_error /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
+ } else {
+ frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
+ }
+
+ /* Increase boost for frames where new data coming into frame
+ * (eg zoom out). Slightly reduce boost if there is a net balance
+ * of motion out of the frame (zoom in).
+ * The range for this_frame_mv_in_out is -1.0 to +1.0
+ */
+ if (this_frame_mv_in_out > 0.0) {
+ frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
+ /* In extreme case boost is halved */
+ } else {
+ frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
+ }
+
+ /* Clip to maximum */
+ if (frame_boost > GF_RMAX) frame_boost = GF_RMAX;
+
+ return frame_boost;
+}
+
+#if NEW_BOOST
+static int calc_arf_boost(VP8_COMP *cpi, int offset, int f_frames, int b_frames,
+ int *f_boost, int *b_boost) {
+ FIRSTPASS_STATS this_frame;
+
+ int i;
+ double boost_score = 0.0;
+ double mv_ratio_accumulator = 0.0;
+ double decay_accumulator = 1.0;
+ double this_frame_mv_in_out = 0.0;
+ double mv_in_out_accumulator = 0.0;
+ double abs_mv_in_out_accumulator = 0.0;
+ double r;
+ int flash_detected = 0;
+
+ /* Search forward from the proposed arf/next gf position */
+ for (i = 0; i < f_frames; ++i) {
+ if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break;
+
+ /* Update the motion related elements to the boost calculation */
+ accumulate_frame_motion_stats(
+ &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+ /* Calculate the baseline boost number for this frame */
+ r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out);
+
+ /* We want to discount the flash frame itself and the recovery
+ * frame that follows as both will have poor scores.
+ */
+ flash_detected =
+ detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1));
+
+ /* Cumulative effect of prediction quality decay */
+ if (!flash_detected) {
+ decay_accumulator =
+ decay_accumulator * get_prediction_decay_rate(&this_frame);
+ decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
+ }
+ boost_score += (decay_accumulator * r);
+
+ /* Break out conditions. */
+ if ((!flash_detected) &&
+ ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) ||
+ (mv_in_out_accumulator < -2.0))) {
+ break;
+ }
+ }
+
+ *f_boost = (int)(boost_score * 100.0) >> 4;
+
+ /* Reset for backward looking loop */
+ boost_score = 0.0;
+ mv_ratio_accumulator = 0.0;
+ decay_accumulator = 1.0;
+ this_frame_mv_in_out = 0.0;
+ mv_in_out_accumulator = 0.0;
+ abs_mv_in_out_accumulator = 0.0;
+
+ /* Search forward from the proposed arf/next gf position */
+ for (i = -1; i >= -b_frames; i--) {
+ if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break;
+
+ /* Update the motion related elements to the boost calculation */
+ accumulate_frame_motion_stats(
+ &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+ /* Calculate the baseline boost number for this frame */
+ r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out);
+
+ /* We want to discount the flash frame itself and the recovery
+ * frame that follows as both will have poor scores.
+ */
+ flash_detected =
+ detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1));
+
+ /* Cumulative effect of prediction quality decay */
+ if (!flash_detected) {
+ decay_accumulator =
+ decay_accumulator * get_prediction_decay_rate(&this_frame);
+ decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
+ }
+
+ boost_score += (decay_accumulator * r);
+
+ /* Break out conditions. */
+ if ((!flash_detected) &&
+ ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) ||
+ (mv_in_out_accumulator < -2.0))) {
+ break;
+ }
+ }
+ *b_boost = (int)(boost_score * 100.0) >> 4;
+
+ return (*f_boost + *b_boost);
+}
+#endif
+
+/* Analyse and define a gf/arf group . */
+static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ FIRSTPASS_STATS next_frame;
+ FIRSTPASS_STATS *start_pos;
+ int i;
+ double r;
+ double boost_score = 0.0;
+ double old_boost_score = 0.0;
+ double gf_group_err = 0.0;
+ double gf_first_frame_err = 0.0;
+ double mod_frame_err = 0.0;
+
+ double mv_ratio_accumulator = 0.0;
+ double decay_accumulator = 1.0;
+
+ double loop_decay_rate = 1.00; /* Starting decay rate */
+
+ double this_frame_mv_in_out = 0.0;
+ double mv_in_out_accumulator = 0.0;
+ double abs_mv_in_out_accumulator = 0.0;
+
+ int max_bits = frame_max_bits(cpi); /* Max for a single frame */
+
+ unsigned int allow_alt_ref =
+ cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
+
+ int alt_boost = 0;
+ int f_boost = 0;
+ int b_boost = 0;
+ int flash_detected;
+
+ cpi->twopass.gf_group_bits = 0;
+ cpi->twopass.gf_decay_rate = 0;
+
+ vpx_clear_system_state();
+
+ start_pos = cpi->twopass.stats_in;
+
+ memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */
+
+ /* Load stats for the current frame. */
+ mod_frame_err = calculate_modified_err(cpi, this_frame);
+
+ /* Note the error of the frame at the start of the group (this will be
+ * the GF frame error if we code a normal gf
+ */
+ gf_first_frame_err = mod_frame_err;
+
+ /* Special treatment if the current frame is a key frame (which is also
+ * a gf). If it is then its error score (and hence bit allocation) need
+ * to be subtracted out from the calculation for the GF group
+ */
+ if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err;
+
+ /* Scan forward to try and work out how many frames the next gf group
+ * should contain and what level of boost is appropriate for the GF
+ * or ARF that will be coded with the group
+ */
+ i = 0;
+
+ while (((i < cpi->twopass.static_scene_max_gf_interval) ||
+ ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
+ (i < cpi->twopass.frames_to_key)) {
+ i++;
+
+ /* Accumulate error score of frames in this gf group */
+ mod_frame_err = calculate_modified_err(cpi, this_frame);
+
+ gf_group_err += mod_frame_err;
+
+ if (EOF == input_stats(cpi, &next_frame)) break;
+
+ /* Test for the case where there is a brief flash but the prediction
+ * quality back to an earlier frame is then restored.
+ */
+ flash_detected = detect_flash(cpi, 0);
+
+ /* Update the motion related elements to the boost calculation */
+ accumulate_frame_motion_stats(
+ &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+ /* Calculate a baseline boost number for this frame */
+ r = calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out);
+
+ /* Cumulative effect of prediction quality decay */
+ if (!flash_detected) {
+ loop_decay_rate = get_prediction_decay_rate(&next_frame);
+ decay_accumulator = decay_accumulator * loop_decay_rate;
+ decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
+ }
+ boost_score += (decay_accumulator * r);
+
+ /* Break clause to detect very still sections after motion
+ * For example a staic image after a fade or other transition.
+ */
+ if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
+ decay_accumulator)) {
+ allow_alt_ref = 0;
+ boost_score = old_boost_score;
+ break;
+ }
+
+ /* Break out conditions. */
+ if (
+ /* Break at cpi->max_gf_interval unless almost totally static */
+ (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) ||
+ (
+ /* Don't break out with a very short interval */
+ (i > MIN_GF_INTERVAL) &&
+ /* Don't break out very close to a key frame */
+ ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
+ ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) &&
+ (!flash_detected) &&
+ ((mv_ratio_accumulator > 100.0) ||
+ (abs_mv_in_out_accumulator > 3.0) ||
+ (mv_in_out_accumulator < -2.0) ||
+ ((boost_score - old_boost_score) < 2.0)))) {
+ boost_score = old_boost_score;
+ break;
+ }
+
+ memcpy(this_frame, &next_frame, sizeof(*this_frame));
+
+ old_boost_score = boost_score;
+ }
+
+ cpi->twopass.gf_decay_rate =
+ (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0;
+
+ /* When using CBR apply additional buffer related upper limits */
+ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
+ double max_boost;
+
+ /* For cbr apply buffer related limits */
+ if (cpi->drop_frames_allowed) {
+ int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark *
+ (cpi->oxcf.optimal_buffer_level / 100);
+
+ if (cpi->buffer_level > df_buffer_level) {
+ max_boost =
+ ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) /
+ DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
+ } else {
+ max_boost = 0.0;
+ }
+ } else if (cpi->buffer_level > 0) {
+ max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) /
+ DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
+ } else {
+ max_boost = 0.0;
+ }
+
+ if (boost_score > max_boost) boost_score = max_boost;
+ }
+
+ /* Don't allow conventional gf too near the next kf */
+ if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) {
+ while (i < cpi->twopass.frames_to_key) {
+ i++;
+
+ if (EOF == input_stats(cpi, this_frame)) break;
+
+ if (i < cpi->twopass.frames_to_key) {
+ mod_frame_err = calculate_modified_err(cpi, this_frame);
+ gf_group_err += mod_frame_err;
+ }
+ }
+ }
+
+ cpi->gfu_boost = (int)(boost_score * 100.0) >> 4;
+
+#if NEW_BOOST
+ /* Alterrnative boost calculation for alt ref */
+ alt_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost);
+#endif
+
+ /* Should we use the alternate reference frame */
+ if (allow_alt_ref && (i >= MIN_GF_INTERVAL) &&
+ /* don't use ARF very near next kf */
+ (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
+#if NEW_BOOST
+ ((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) &&
+ ((mv_in_out_accumulator / (double)i > -0.2) ||
+ (mv_in_out_accumulator > -2.0)) &&
+ (b_boost > 100) && (f_boost > 100))
+#else
+ (next_frame.pcnt_inter > 0.75) &&
+ ((mv_in_out_accumulator / (double)i > -0.2) ||
+ (mv_in_out_accumulator > -2.0)) &&
+ (cpi->gfu_boost > 100) &&
+ (cpi->twopass.gf_decay_rate <=
+ (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))))
+#endif
+ {
+ int Boost;
+ int allocation_chunks;
+ int Q =
+ (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
+ int tmp_q;
+ int arf_frame_bits = 0;
+ int group_bits;
+
+#if NEW_BOOST
+ cpi->gfu_boost = alt_boost;
+#endif
+
+ /* Estimate the bits to be allocated to the group as a whole */
+ if ((cpi->twopass.kf_group_bits > 0) &&
+ (cpi->twopass.kf_group_error_left > 0)) {
+ group_bits =
+ (int)((double)cpi->twopass.kf_group_bits *
+ (gf_group_err / (double)cpi->twopass.kf_group_error_left));
+ } else {
+ group_bits = 0;
+ }
+
+/* Boost for arf frame */
+#if NEW_BOOST
+ Boost = (alt_boost * GFQ_ADJUSTMENT) / 100;
+#else
+ Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
+#endif
+ Boost += (i * 50);
+
+ /* Set max and minimum boost and hence minimum allocation */
+ if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) {
+ Boost = ((cpi->baseline_gf_interval + 1) * 200);
+ } else if (Boost < 125) {
+ Boost = 125;
+ }
+
+ allocation_chunks = (i * 100) + Boost;
+
+ /* Normalize Altboost and allocations chunck down to prevent overflow */
+ while (Boost > 1000) {
+ Boost /= 2;
+ allocation_chunks /= 2;
+ }
+
+ /* Calculate the number of bits to be spent on the arf based on the
+ * boost number
+ */
+ arf_frame_bits =
+ (int)((double)Boost * (group_bits / (double)allocation_chunks));
+
+ /* Estimate if there are enough bits available to make worthwhile use
+ * of an arf.
+ */
+ tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits);
+
+ /* Only use an arf if it is likely we will be able to code
+ * it at a lower Q than the surrounding frames.
+ */
+ if (tmp_q < cpi->worst_quality) {
+ int half_gf_int;
+ int frames_after_arf;
+ int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
+ int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
+
+ cpi->source_alt_ref_pending = 1;
+
+ /*
+ * For alt ref frames the error score for the end frame of the
+ * group (the alt ref frame) should not contribute to the group
+ * total and hence the number of bit allocated to the group.
+ * Rather it forms part of the next group (it is the GF at the
+ * start of the next group)
+ * gf_group_err -= mod_frame_err;
+ *
+ * For alt ref frames alt ref frame is technically part of the
+ * GF frame for the next group but we always base the error
+ * calculation and bit allocation on the current group of frames.
+ *
+ * Set the interval till the next gf or arf.
+ * For ARFs this is the number of frames to be coded before the
+ * future frame that is coded as an ARF.
+ * The future frame itself is part of the next group
+ */
+ cpi->baseline_gf_interval = i;
+
+ /*
+ * Define the arnr filter width for this group of frames:
+ * We only filter frames that lie within a distance of half
+ * the GF interval from the ARF frame. We also have to trap
+ * cases where the filter extends beyond the end of clip.
+ * Note: this_frame->frame has been updated in the loop
+ * so it now points at the ARF frame.
+ */
+ half_gf_int = cpi->baseline_gf_interval >> 1;
+ frames_after_arf =
+ (int)(cpi->twopass.total_stats.count - this_frame->frame - 1);
+
+ switch (cpi->oxcf.arnr_type) {
+ case 1: /* Backward filter */
+ frames_fwd = 0;
+ if (frames_bwd > half_gf_int) frames_bwd = half_gf_int;
+ break;
+
+ case 2: /* Forward filter */
+ if (frames_fwd > half_gf_int) frames_fwd = half_gf_int;
+ if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
+ frames_bwd = 0;
+ break;
+
+ case 3: /* Centered filter */
+ default:
+ frames_fwd >>= 1;
+ if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
+ if (frames_fwd > half_gf_int) frames_fwd = half_gf_int;
+
+ frames_bwd = frames_fwd;
+
+ /* For even length filter there is one more frame backward
+ * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
+ */
+ if (frames_bwd < half_gf_int) {
+ frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1;
+ }
+ break;
+ }
+
+ cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
+ } else {
+ cpi->source_alt_ref_pending = 0;
+ cpi->baseline_gf_interval = i;
+ }
+ } else {
+ cpi->source_alt_ref_pending = 0;
+ cpi->baseline_gf_interval = i;
+ }
+
+ /*
+ * Now decide how many bits should be allocated to the GF group as a
+ * proportion of those remaining in the kf group.
+ * The final key frame group in the clip is treated as a special case
+ * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
+ * This is also important for short clips where there may only be one
+ * key frame.
+ */
+ if (cpi->twopass.frames_to_key >=
+ (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame)) {
+ cpi->twopass.kf_group_bits =
+ (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
+ }
+
+ /* Calculate the bits to be allocated to the group as a whole */
+ if ((cpi->twopass.kf_group_bits > 0) &&
+ (cpi->twopass.kf_group_error_left > 0)) {
+ cpi->twopass.gf_group_bits =
+ (int64_t)(cpi->twopass.kf_group_bits *
+ (gf_group_err / cpi->twopass.kf_group_error_left));
+ } else {
+ cpi->twopass.gf_group_bits = 0;
+ }
+
+ cpi->twopass.gf_group_bits =
+ (cpi->twopass.gf_group_bits < 0) ? 0
+ : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
+ ? cpi->twopass.kf_group_bits
+ : cpi->twopass.gf_group_bits;
+
+ /* Clip cpi->twopass.gf_group_bits based on user supplied data rate
+ * variability limit (cpi->oxcf.two_pass_vbrmax_section)
+ */
+ if (cpi->twopass.gf_group_bits >
+ (int64_t)max_bits * cpi->baseline_gf_interval) {
+ cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval;
+ }
+
+ /* Reset the file position */
+ reset_fpf_position(cpi, start_pos);
+
+ /* Update the record of error used so far (only done once per gf group) */
+ cpi->twopass.modified_error_used += gf_group_err;
+
+ /* Assign bits to the arf or gf. */
+ for (i = 0; i <= (cpi->source_alt_ref_pending &&
+ cpi->common.frame_type != KEY_FRAME);
+ i++) {
+ int Boost;
+ int allocation_chunks;
+ int Q =
+ (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
+ int gf_bits;
+
+ /* For ARF frames */
+ if (cpi->source_alt_ref_pending && i == 0) {
+#if NEW_BOOST
+ Boost = (alt_boost * GFQ_ADJUSTMENT) / 100;
+#else
+ Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
+#endif
+ Boost += (cpi->baseline_gf_interval * 50);
+
+ /* Set max and minimum boost and hence minimum allocation */
+ if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) {
+ Boost = ((cpi->baseline_gf_interval + 1) * 200);
+ } else if (Boost < 125) {
+ Boost = 125;
+ }
+
+ allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + Boost;
+ }
+ /* Else for standard golden frames */
+ else {
+ /* boost based on inter / intra ratio of subsequent frames */
+ Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100;
+
+ /* Set max and minimum boost and hence minimum allocation */
+ if (Boost > (cpi->baseline_gf_interval * 150)) {
+ Boost = (cpi->baseline_gf_interval * 150);
+ } else if (Boost < 125) {
+ Boost = 125;
+ }
+
+ allocation_chunks = (cpi->baseline_gf_interval * 100) + (Boost - 100);
+ }
+
+ /* Normalize Altboost and allocations chunck down to prevent overflow */
+ while (Boost > 1000) {
+ Boost /= 2;
+ allocation_chunks /= 2;
+ }
+
+ /* Calculate the number of bits to be spent on the gf or arf based on
+ * the boost number
+ */
+ gf_bits = (int)((double)Boost *
+ (cpi->twopass.gf_group_bits / (double)allocation_chunks));
+
+ /* If the frame that is to be boosted is simpler than the average for
+ * the gf/arf group then use an alternative calculation
+ * based on the error score of the frame itself
+ */
+ if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) {
+ double alt_gf_grp_bits;
+ int alt_gf_bits;
+
+ alt_gf_grp_bits =
+ (double)cpi->twopass.kf_group_bits *
+ (mod_frame_err * (double)cpi->baseline_gf_interval) /
+ DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left);
+
+ alt_gf_bits =
+ (int)((double)Boost * (alt_gf_grp_bits / (double)allocation_chunks));
+
+ if (gf_bits > alt_gf_bits) {
+ gf_bits = alt_gf_bits;
+ }
+ }
+ /* Else if it is harder than other frames in the group make sure it at
+ * least receives an allocation in keeping with its relative error
+ * score, otherwise it may be worse off than an "un-boosted" frame
+ */
+ else {
+ // Avoid division by 0 by clamping cpi->twopass.kf_group_error_left to 1
+ int alt_gf_bits =
+ (int)((double)cpi->twopass.kf_group_bits * mod_frame_err /
+ (double)VPXMAX(cpi->twopass.kf_group_error_left, 1));
+
+ if (alt_gf_bits > gf_bits) {
+ gf_bits = alt_gf_bits;
+ }
+ }
+
+ /* Apply an additional limit for CBR */
+ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
+ if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) {
+ cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1);
+ }
+ }
+
+ /* Don't allow a negative value for gf_bits */
+ if (gf_bits < 0) gf_bits = 0;
+
+ /* Add in minimum for a frame */
+ gf_bits += cpi->min_frame_bandwidth;
+
+ if (i == 0) {
+ cpi->twopass.gf_bits = gf_bits;
+ }
+ if (i == 1 || (!cpi->source_alt_ref_pending &&
+ (cpi->common.frame_type != KEY_FRAME))) {
+ /* Per frame bit target for this frame */
+ cpi->per_frame_bandwidth = gf_bits;
+ }
+ }
+
+ {
+ /* Adjust KF group bits and error remainin */
+ cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err;
+ cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
+
+ if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0;
+
+ /* Note the error score left in the remaining frames of the group.
+ * For normal GFs we want to remove the error score for the first
+ * frame of the group (except in Key frame case where this has
+ * already happened)
+ */
+ if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) {
+ cpi->twopass.gf_group_error_left =
+ (int)(gf_group_err - gf_first_frame_err);
+ } else {
+ cpi->twopass.gf_group_error_left = (int)gf_group_err;
+ }
+
+ cpi->twopass.gf_group_bits -=
+ cpi->twopass.gf_bits - cpi->min_frame_bandwidth;
+
+ if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0;
+
+ /* This condition could fail if there are two kfs very close together
+ * despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the
+ * calculation of cpi->twopass.alt_extra_bits.
+ */
+ if (cpi->baseline_gf_interval >= 3) {
+#if NEW_BOOST
+ int boost = (cpi->source_alt_ref_pending) ? b_boost : cpi->gfu_boost;
+#else
+ int boost = cpi->gfu_boost;
+#endif
+ if (boost >= 150) {
+ int pct_extra;
+
+ pct_extra = (boost - 100) / 50;
+ pct_extra = (pct_extra > 20) ? 20 : pct_extra;
+
+ cpi->twopass.alt_extra_bits =
+ (int)(cpi->twopass.gf_group_bits * pct_extra) / 100;
+ cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits;
+ cpi->twopass.alt_extra_bits /= ((cpi->baseline_gf_interval - 1) >> 1);
+ } else {
+ cpi->twopass.alt_extra_bits = 0;
+ }
+ } else {
+ cpi->twopass.alt_extra_bits = 0;
+ }
+ }
+
+ /* Adjustments based on a measure of complexity of the section */
+ if (cpi->common.frame_type != KEY_FRAME) {
+ FIRSTPASS_STATS sectionstats;
+ double Ratio;
+
+ zero_stats(&sectionstats);
+ reset_fpf_position(cpi, start_pos);
+
+ for (i = 0; i < cpi->baseline_gf_interval; ++i) {
+ input_stats(cpi, &next_frame);
+ accumulate_stats(&sectionstats, &next_frame);
+ }
+
+ avg_stats(&sectionstats);
+
+ cpi->twopass.section_intra_rating =
+ (unsigned int)(sectionstats.intra_error /
+ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
+
+ Ratio = sectionstats.intra_error /
+ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
+ cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
+
+ if (cpi->twopass.section_max_qfactor < 0.80) {
+ cpi->twopass.section_max_qfactor = 0.80;
+ }
+
+ reset_fpf_position(cpi, start_pos);
+ }
+}
+
+/* Allocate bits to a normal frame that is neither a gf an arf or a key frame.
+ */
+static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ int target_frame_size;
+
+ double modified_err;
+ double err_fraction;
+
+ int max_bits = frame_max_bits(cpi); /* Max for a single frame */
+
+ /* Calculate modified prediction error used in bit allocation */
+ modified_err = calculate_modified_err(cpi, this_frame);
+
+ /* What portion of the remaining GF group error is used by this frame */
+ if (cpi->twopass.gf_group_error_left > 0) {
+ err_fraction = modified_err / cpi->twopass.gf_group_error_left;
+ } else {
+ err_fraction = 0.0;
+ }
+
+ /* How many of those bits available for allocation should we give it? */
+ target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction);
+
+ /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits)
+ * at the top end.
+ */
+ if (target_frame_size < 0) {
+ target_frame_size = 0;
+ } else {
+ if (target_frame_size > max_bits) target_frame_size = max_bits;
+
+ if (target_frame_size > cpi->twopass.gf_group_bits) {
+ target_frame_size = (int)cpi->twopass.gf_group_bits;
+ }
+ }
+
+ /* Adjust error and bits remaining */
+ cpi->twopass.gf_group_error_left -= (int)modified_err;
+ cpi->twopass.gf_group_bits -= target_frame_size;
+
+ if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0;
+
+ /* Add in the minimum number of bits that is set aside for every frame. */
+ target_frame_size += cpi->min_frame_bandwidth;
+
+ /* Every other frame gets a few extra bits */
+ if ((cpi->frames_since_golden & 0x01) &&
+ (cpi->frames_till_gf_update_due > 0)) {
+ target_frame_size += cpi->twopass.alt_extra_bits;
+ }
+
+ /* Per frame bit target for this frame */
+ cpi->per_frame_bandwidth = target_frame_size;
+}
+
+void vp8_second_pass(VP8_COMP *cpi) {
+ int tmp_q;
+ int frames_left =
+ (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame);
+
+ FIRSTPASS_STATS this_frame;
+ FIRSTPASS_STATS this_frame_copy;
+
+ double this_frame_intra_error;
+ double this_frame_coded_error;
+
+ int overhead_bits;
+
+ vp8_zero(this_frame);
+
+ if (!cpi->twopass.stats_in) {
+ return;
+ }
+
+ vpx_clear_system_state();
+
+ if (EOF == input_stats(cpi, &this_frame)) return;
+
+ this_frame_intra_error = this_frame.intra_error;
+ this_frame_coded_error = this_frame.coded_error;
+
+ /* keyframe and section processing ! */
+ if (cpi->twopass.frames_to_key == 0) {
+ /* Define next KF group and assign bits to it */
+ memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
+ find_next_key_frame(cpi, &this_frame_copy);
+
+ /* Special case: Error error_resilient_mode mode does not make much
+ * sense for two pass but with its current meaning this code is
+ * designed to stop outlandish behaviour if someone does set it when
+ * using two pass. It effectively disables GF groups. This is
+ * temporary code until we decide what should really happen in this
+ * case.
+ */
+ if (cpi->oxcf.error_resilient_mode) {
+ cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits;
+ cpi->twopass.gf_group_error_left = (int)cpi->twopass.kf_group_error_left;
+ cpi->baseline_gf_interval = cpi->twopass.frames_to_key;
+ cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
+ cpi->source_alt_ref_pending = 0;
+ }
+ }
+
+ /* Is this a GF / ARF (Note that a KF is always also a GF) */
+ if (cpi->frames_till_gf_update_due == 0) {
+ /* Define next gf group and assign bits to it */
+ memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
+ define_gf_group(cpi, &this_frame_copy);
+
+ /* If we are going to code an altref frame at the end of the group
+ * and the current frame is not a key frame.... If the previous
+ * group used an arf this frame has already benefited from that arf
+ * boost and it should not be given extra bits If the previous
+ * group was NOT coded using arf we may want to apply some boost to
+ * this GF as well
+ */
+ if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) {
+ /* Assign a standard frames worth of bits from those allocated
+ * to the GF group
+ */
+ int bak = cpi->per_frame_bandwidth;
+ memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
+ assign_std_frame_bits(cpi, &this_frame_copy);
+ cpi->per_frame_bandwidth = bak;
+ }
+ }
+
+ /* Otherwise this is an ordinary frame */
+ else {
+ /* Special case: Error error_resilient_mode mode does not make much
+ * sense for two pass but with its current meaning but this code is
+ * designed to stop outlandish behaviour if someone does set it
+ * when using two pass. It effectively disables GF groups. This is
+ * temporary code till we decide what should really happen in this
+ * case.
+ */
+ if (cpi->oxcf.error_resilient_mode) {
+ cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key;
+
+ if (cpi->common.frame_type != KEY_FRAME) {
+ /* Assign bits from those allocated to the GF group */
+ memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
+ assign_std_frame_bits(cpi, &this_frame_copy);
+ }
+ } else {
+ /* Assign bits from those allocated to the GF group */
+ memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
+ assign_std_frame_bits(cpi, &this_frame_copy);
+ }
+ }
+
+ /* Keep a globally available copy of this and the next frame's iiratio. */
+ cpi->twopass.this_iiratio =
+ (unsigned int)(this_frame_intra_error /
+ DOUBLE_DIVIDE_CHECK(this_frame_coded_error));
+ {
+ FIRSTPASS_STATS next_frame;
+ if (lookup_next_frame_stats(cpi, &next_frame) != EOF) {
+ cpi->twopass.next_iiratio =
+ (unsigned int)(next_frame.intra_error /
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
+ }
+ }
+
+ /* Set nominal per second bandwidth for this frame */
+ cpi->target_bandwidth =
+ (int)(cpi->per_frame_bandwidth * cpi->output_framerate);
+ if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0;
+
+ /* Account for mv, mode and other overheads. */
+ overhead_bits = (int)estimate_modemvcost(cpi, &cpi->twopass.total_left_stats);
+
+ /* Special case code for first frame. */
+ if (cpi->common.current_video_frame == 0) {
+ cpi->twopass.est_max_qcorrection_factor = 1.0;
+
+ /* Set a cq_level in constrained quality mode. */
+ if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
+ int est_cq;
+
+ est_cq = estimate_cq(cpi, &cpi->twopass.total_left_stats,
+ (int)(cpi->twopass.bits_left / frames_left),
+ overhead_bits);
+
+ cpi->cq_target_quality = cpi->oxcf.cq_level;
+ if (est_cq > cpi->cq_target_quality) cpi->cq_target_quality = est_cq;
+ }
+
+ /* guess at maxq needed in 2nd pass */
+ cpi->twopass.maxq_max_limit = cpi->worst_quality;
+ cpi->twopass.maxq_min_limit = cpi->best_quality;
+
+ tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats,
+ (int)(cpi->twopass.bits_left / frames_left),
+ overhead_bits);
+
+ /* Limit the maxq value returned subsequently.
+ * This increases the risk of overspend or underspend if the initial
+ * estimate for the clip is bad, but helps prevent excessive
+ * variation in Q, especially near the end of a clip
+ * where for example a small overspend may cause Q to crash
+ */
+ cpi->twopass.maxq_max_limit =
+ ((tmp_q + 32) < cpi->worst_quality) ? (tmp_q + 32) : cpi->worst_quality;
+ cpi->twopass.maxq_min_limit =
+ ((tmp_q - 32) > cpi->best_quality) ? (tmp_q - 32) : cpi->best_quality;
+
+ cpi->active_worst_quality = tmp_q;
+ cpi->ni_av_qi = tmp_q;
+ }
+
+ /* The last few frames of a clip almost always have to few or too many
+ * bits and for the sake of over exact rate control we don't want to make
+ * radical adjustments to the allowed quantizer range just to use up a
+ * few surplus bits or get beneath the target rate.
+ */
+ else if ((cpi->common.current_video_frame <
+ (((unsigned int)cpi->twopass.total_stats.count * 255) >> 8)) &&
+ ((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
+ (unsigned int)cpi->twopass.total_stats.count)) {
+ if (frames_left < 1) frames_left = 1;
+
+ tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats,
+ (int)(cpi->twopass.bits_left / frames_left),
+ overhead_bits);
+
+ /* Move active_worst_quality but in a damped way */
+ if (tmp_q > cpi->active_worst_quality) {
+ cpi->active_worst_quality++;
+ } else if (tmp_q < cpi->active_worst_quality) {
+ cpi->active_worst_quality--;
+ }
+
+ cpi->active_worst_quality =
+ ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4;
+ }
+
+ cpi->twopass.frames_to_key--;
+
+ /* Update the total stats remaining sturcture */
+ subtract_stats(&cpi->twopass.total_left_stats, &this_frame);
+}
+
+static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame,
+ FIRSTPASS_STATS *this_frame,
+ FIRSTPASS_STATS *next_frame) {
+ int is_viable_kf = 0;
+
+ /* Does the frame satisfy the primary criteria of a key frame
+ * If so, then examine how well it predicts subsequent frames
+ */
+ if ((this_frame->pcnt_second_ref < 0.10) &&
+ (next_frame->pcnt_second_ref < 0.10) &&
+ ((this_frame->pcnt_inter < 0.05) ||
+ (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) &&
+ ((this_frame->intra_error /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
+ ((fabs(last_frame->coded_error - this_frame->coded_error) /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
+ .40) ||
+ (fabs(last_frame->intra_error - this_frame->intra_error) /
+ DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
+ .40) ||
+ ((next_frame->intra_error /
+ DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) {
+ int i;
+ FIRSTPASS_STATS *start_pos;
+
+ FIRSTPASS_STATS local_next_frame;
+
+ double boost_score = 0.0;
+ double old_boost_score = 0.0;
+ double decay_accumulator = 1.0;
+ double next_iiratio;
+
+ memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
+
+ /* Note the starting file position so we can reset to it */
+ start_pos = cpi->twopass.stats_in;
+
+ /* Examine how well the key frame predicts subsequent frames */
+ for (i = 0; i < 16; ++i) {
+ next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error /
+ DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
+
+ if (next_iiratio > RMAX) next_iiratio = RMAX;
+
+ /* Cumulative effect of decay in prediction quality */
+ if (local_next_frame.pcnt_inter > 0.85) {
+ decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
+ } else {
+ decay_accumulator =
+ decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
+ }
+
+ /* Keep a running total */
+ boost_score += (decay_accumulator * next_iiratio);
+
+ /* Test various breakout clauses */
+ if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
+ (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) <
+ 0.20) &&
+ (next_iiratio < 3.0)) ||
+ ((boost_score - old_boost_score) < 0.5) ||
+ (local_next_frame.intra_error < 200)) {
+ break;
+ }
+
+ old_boost_score = boost_score;
+
+ /* Get the next frame details */
+ if (EOF == input_stats(cpi, &local_next_frame)) break;
+ }
+
+ /* If there is tolerable prediction for at least the next 3 frames
+ * then break out else discard this pottential key frame and move on
+ */
+ if (boost_score > 5.0 && (i > 3)) {
+ is_viable_kf = 1;
+ } else {
+ /* Reset the file position */
+ reset_fpf_position(cpi, start_pos);
+
+ is_viable_kf = 0;
+ }
+ }
+
+ return is_viable_kf;
+}
+static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ int i, j;
+ FIRSTPASS_STATS last_frame;
+ FIRSTPASS_STATS first_frame;
+ FIRSTPASS_STATS next_frame;
+ FIRSTPASS_STATS *start_position;
+
+ double decay_accumulator = 1.0;
+ double boost_score = 0;
+ double old_boost_score = 0.0;
+ double loop_decay_rate;
+
+ double kf_mod_err = 0.0;
+ double kf_group_err = 0.0;
+ double kf_group_intra_err = 0.0;
+ double kf_group_coded_err = 0.0;
+ double recent_loop_decay[8] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
+
+ memset(&next_frame, 0, sizeof(next_frame));
+
+ vpx_clear_system_state();
+ start_position = cpi->twopass.stats_in;
+
+ cpi->common.frame_type = KEY_FRAME;
+
+ /* is this a forced key frame by interval */
+ cpi->this_key_frame_forced = cpi->next_key_frame_forced;
+
+ /* Clear the alt ref active flag as this can never be active on a key
+ * frame
+ */
+ cpi->source_alt_ref_active = 0;
+
+ /* Kf is always a gf so clear frames till next gf counter */
+ cpi->frames_till_gf_update_due = 0;
+
+ cpi->twopass.frames_to_key = 1;
+
+ /* Take a copy of the initial frame details */
+ memcpy(&first_frame, this_frame, sizeof(*this_frame));
+
+ cpi->twopass.kf_group_bits = 0;
+ cpi->twopass.kf_group_error_left = 0;
+
+ kf_mod_err = calculate_modified_err(cpi, this_frame);
+
+ /* find the next keyframe */
+ i = 0;
+ while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) {
+ /* Accumulate kf group error */
+ kf_group_err += calculate_modified_err(cpi, this_frame);
+
+ /* These figures keep intra and coded error counts for all frames
+ * including key frames in the group. The effect of the key frame
+ * itself can be subtracted out using the first_frame data
+ * collected above
+ */
+ kf_group_intra_err += this_frame->intra_error;
+ kf_group_coded_err += this_frame->coded_error;
+
+ /* Load the next frame's stats. */
+ memcpy(&last_frame, this_frame, sizeof(*this_frame));
+ input_stats(cpi, this_frame);
+
+ /* Provided that we are not at the end of the file... */
+ if (cpi->oxcf.auto_key &&
+ lookup_next_frame_stats(cpi, &next_frame) != EOF) {
+ /* Normal scene cut check */
+ if ((i >= MIN_GF_INTERVAL) &&
+ test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) {
+ break;
+ }
+
+ /* How fast is prediction quality decaying */
+ loop_decay_rate = get_prediction_decay_rate(&next_frame);
+
+ /* We want to know something about the recent past... rather than
+ * as used elsewhere where we are concened with decay in prediction
+ * quality since the last GF or KF.
+ */
+ recent_loop_decay[i % 8] = loop_decay_rate;
+ decay_accumulator = 1.0;
+ for (j = 0; j < 8; ++j) {
+ decay_accumulator = decay_accumulator * recent_loop_decay[j];
+ }
+
+ /* Special check for transition or high motion followed by a
+ * static scene.
+ */
+ if (detect_transition_to_still(cpi, i,
+ ((int)(cpi->key_frame_frequency) - (int)i),
+ loop_decay_rate, decay_accumulator)) {
+ break;
+ }
+
+ /* Step on to the next frame */
+ cpi->twopass.frames_to_key++;
+
+ /* If we don't have a real key frame within the next two
+ * forcekeyframeevery intervals then break out of the loop.
+ */
+ if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) {
+ break;
+ }
+ } else {
+ cpi->twopass.frames_to_key++;
+ }
+
+ i++;
+ }
+
+ /* If there is a max kf interval set by the user we must obey it.
+ * We already breakout of the loop above at 2x max.
+ * This code centers the extra kf if the actual natural
+ * interval is between 1x and 2x
+ */
+ if (cpi->oxcf.auto_key &&
+ cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) {
+ FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
+ FIRSTPASS_STATS tmp_frame;
+
+ cpi->twopass.frames_to_key /= 2;
+
+ /* Copy first frame details */
+ memcpy(&tmp_frame, &first_frame, sizeof(first_frame));
+
+ /* Reset to the start of the group */
+ reset_fpf_position(cpi, start_position);
+
+ kf_group_err = 0;
+ kf_group_intra_err = 0;
+ kf_group_coded_err = 0;
+
+ /* Rescan to get the correct error data for the forced kf group */
+ for (i = 0; i < cpi->twopass.frames_to_key; ++i) {
+ /* Accumulate kf group errors */
+ kf_group_err += calculate_modified_err(cpi, &tmp_frame);
+ kf_group_intra_err += tmp_frame.intra_error;
+ kf_group_coded_err += tmp_frame.coded_error;
+
+ /* Load a the next frame's stats */
+ input_stats(cpi, &tmp_frame);
+ }
+
+ /* Reset to the start of the group */
+ reset_fpf_position(cpi, current_pos);
+
+ cpi->next_key_frame_forced = 1;
+ } else {
+ cpi->next_key_frame_forced = 0;
+ }
+
+ /* Special case for the last frame of the file */
+ if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) {
+ /* Accumulate kf group error */
+ kf_group_err += calculate_modified_err(cpi, this_frame);
+
+ /* These figures keep intra and coded error counts for all frames
+ * including key frames in the group. The effect of the key frame
+ * itself can be subtracted out using the first_frame data
+ * collected above
+ */
+ kf_group_intra_err += this_frame->intra_error;
+ kf_group_coded_err += this_frame->coded_error;
+ }
+
+ /* Calculate the number of bits that should be assigned to the kf group. */
+ if ((cpi->twopass.bits_left > 0) &&
+ (cpi->twopass.modified_error_left > 0.0)) {
+ /* Max for a single normal frame (not key frame) */
+ int max_bits = frame_max_bits(cpi);
+
+ /* Maximum bits for the kf group */
+ int64_t max_grp_bits;
+
+ /* Default allocation based on bits left and relative
+ * complexity of the section
+ */
+ cpi->twopass.kf_group_bits =
+ (int64_t)(cpi->twopass.bits_left *
+ (kf_group_err / cpi->twopass.modified_error_left));
+
+ /* Clip based on maximum per frame rate defined by the user. */
+ max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
+ if (cpi->twopass.kf_group_bits > max_grp_bits) {
+ cpi->twopass.kf_group_bits = max_grp_bits;
+ }
+
+ /* Additional special case for CBR if buffer is getting full. */
+ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
+ int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level;
+ int64_t buffer_lvl = cpi->buffer_level;
+
+ /* If the buffer is near or above the optimal and this kf group is
+ * not being allocated much then increase the allocation a bit.
+ */
+ if (buffer_lvl >= opt_buffer_lvl) {
+ int64_t high_water_mark =
+ (opt_buffer_lvl + cpi->oxcf.maximum_buffer_size) >> 1;
+
+ int64_t av_group_bits;
+
+ /* Av bits per frame * number of frames */
+ av_group_bits = (int64_t)cpi->av_per_frame_bandwidth *
+ (int64_t)cpi->twopass.frames_to_key;
+
+ /* We are at or above the maximum. */
+ if (cpi->buffer_level >= high_water_mark) {
+ int64_t min_group_bits;
+
+ min_group_bits =
+ av_group_bits + (int64_t)(buffer_lvl - high_water_mark);
+
+ if (cpi->twopass.kf_group_bits < min_group_bits) {
+ cpi->twopass.kf_group_bits = min_group_bits;
+ }
+ }
+ /* We are above optimal but below the maximum */
+ else if (cpi->twopass.kf_group_bits < av_group_bits) {
+ int64_t bits_below_av = av_group_bits - cpi->twopass.kf_group_bits;
+
+ cpi->twopass.kf_group_bits += (int64_t)(
+ (double)bits_below_av * (double)(buffer_lvl - opt_buffer_lvl) /
+ (double)(high_water_mark - opt_buffer_lvl));
+ }
+ }
+ }
+ } else {
+ cpi->twopass.kf_group_bits = 0;
+ }
+
+ /* Reset the first pass file position */
+ reset_fpf_position(cpi, start_position);
+
+ /* determine how big to make this keyframe based on how well the
+ * subsequent frames use inter blocks
+ */
+ decay_accumulator = 1.0;
+ boost_score = 0.0;
+
+ for (i = 0; i < cpi->twopass.frames_to_key; ++i) {
+ double r;
+
+ if (EOF == input_stats(cpi, &next_frame)) break;
+
+ if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) {
+ r = (IIKFACTOR2 * next_frame.intra_error /
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
+ } else {
+ r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
+ }
+
+ if (r > RMAX) r = RMAX;
+
+ /* How fast is prediction quality decaying */
+ loop_decay_rate = get_prediction_decay_rate(&next_frame);
+
+ decay_accumulator = decay_accumulator * loop_decay_rate;
+ decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
+
+ boost_score += (decay_accumulator * r);
+
+ if ((i > MIN_GF_INTERVAL) && ((boost_score - old_boost_score) < 1.0)) {
+ break;
+ }
+
+ old_boost_score = boost_score;
+ }
+
+ if (1) {
+ FIRSTPASS_STATS sectionstats;
+ double Ratio;
+
+ zero_stats(&sectionstats);
+ reset_fpf_position(cpi, start_position);
+
+ for (i = 0; i < cpi->twopass.frames_to_key; ++i) {
+ input_stats(cpi, &next_frame);
+ accumulate_stats(&sectionstats, &next_frame);
+ }
+
+ avg_stats(&sectionstats);
+
+ cpi->twopass.section_intra_rating =
+ (unsigned int)(sectionstats.intra_error /
+ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
+
+ Ratio = sectionstats.intra_error /
+ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
+ cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
+
+ if (cpi->twopass.section_max_qfactor < 0.80) {
+ cpi->twopass.section_max_qfactor = 0.80;
+ }
+ }
+
+ /* When using CBR apply additional buffer fullness related upper limits */
+ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
+ double max_boost;
+
+ if (cpi->drop_frames_allowed) {
+ int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark *
+ (cpi->oxcf.optimal_buffer_level / 100));
+
+ if (cpi->buffer_level > df_buffer_level) {
+ max_boost =
+ ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) /
+ DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
+ } else {
+ max_boost = 0.0;
+ }
+ } else if (cpi->buffer_level > 0) {
+ max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) /
+ DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
+ } else {
+ max_boost = 0.0;
+ }
+
+ if (boost_score > max_boost) boost_score = max_boost;
+ }
+
+ /* Reset the first pass file position */
+ reset_fpf_position(cpi, start_position);
+
+ /* Work out how many bits to allocate for the key frame itself */
+ if (1) {
+ int kf_boost = (int)boost_score;
+ int allocation_chunks;
+ int Counter = cpi->twopass.frames_to_key;
+ int alt_kf_bits;
+ YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
+/* Min boost based on kf interval */
+#if 0
+
+ while ((kf_boost < 48) && (Counter > 0))
+ {
+ Counter -= 2;
+ kf_boost ++;
+ }
+
+#endif
+
+ if (kf_boost < 48) {
+ kf_boost += ((Counter + 1) >> 1);
+
+ if (kf_boost > 48) kf_boost = 48;
+ }
+
+ /* bigger frame sizes need larger kf boosts, smaller frames smaller
+ * boosts...
+ */
+ if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) {
+ kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240);
+ } else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) {
+ kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height);
+ }
+
+ /* Min KF boost */
+ kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */
+ if (kf_boost < 250) kf_boost = 250;
+
+ /*
+ * We do three calculations for kf size.
+ * The first is based on the error score for the whole kf group.
+ * The second (optionaly) on the key frames own error if this is
+ * smaller than the average for the group.
+ * The final one insures that the frame receives at least the
+ * allocation it would have received based on its own error score vs
+ * the error score remaining
+ * Special case if the sequence appears almost totaly static
+ * as measured by the decay accumulator. In this case we want to
+ * spend almost all of the bits on the key frame.
+ * cpi->twopass.frames_to_key-1 because key frame itself is taken
+ * care of by kf_boost.
+ */
+ if (decay_accumulator >= 0.99) {
+ allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost;
+ } else {
+ allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost;
+ }
+
+ /* Normalize Altboost and allocations chunck down to prevent overflow */
+ while (kf_boost > 1000) {
+ kf_boost /= 2;
+ allocation_chunks /= 2;
+ }
+
+ cpi->twopass.kf_group_bits =
+ (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
+
+ /* Calculate the number of bits to be spent on the key frame */
+ cpi->twopass.kf_bits =
+ (int)((double)kf_boost *
+ ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
+
+ /* Apply an additional limit for CBR */
+ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
+ if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) {
+ cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2);
+ }
+ }
+
+ /* If the key frame is actually easier than the average for the
+ * kf group (which does sometimes happen... eg a blank intro frame)
+ * Then use an alternate calculation based on the kf error score
+ * which should give a smaller key frame.
+ */
+ if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) {
+ double alt_kf_grp_bits =
+ ((double)cpi->twopass.bits_left *
+ (kf_mod_err * (double)cpi->twopass.frames_to_key) /
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
+
+ alt_kf_bits = (int)((double)kf_boost *
+ (alt_kf_grp_bits / (double)allocation_chunks));
+
+ if (cpi->twopass.kf_bits > alt_kf_bits) {
+ cpi->twopass.kf_bits = alt_kf_bits;
+ }
+ }
+ /* Else if it is much harder than other frames in the group make sure
+ * it at least receives an allocation in keeping with its relative
+ * error score
+ */
+ else {
+ alt_kf_bits = (int)((double)cpi->twopass.bits_left *
+ (kf_mod_err / DOUBLE_DIVIDE_CHECK(
+ cpi->twopass.modified_error_left)));
+
+ if (alt_kf_bits > cpi->twopass.kf_bits) {
+ cpi->twopass.kf_bits = alt_kf_bits;
+ }
+ }
+
+ cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
+ /* Add in the minimum frame allowance */
+ cpi->twopass.kf_bits += cpi->min_frame_bandwidth;
+
+ /* Peer frame bit target for this frame */
+ cpi->per_frame_bandwidth = cpi->twopass.kf_bits;
+
+ /* Convert to a per second bitrate */
+ cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * cpi->output_framerate);
+ }
+
+ /* Note the total error score of the kf group minus the key frame itself */
+ cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);
+
+ /* Adjust the count of total modified error left. The count of bits left
+ * is adjusted elsewhere based on real coded frame sizes
+ */
+ cpi->twopass.modified_error_left -= kf_group_err;
+
+ if (cpi->oxcf.allow_spatial_resampling) {
+ int resample_trigger = 0;
+ int last_kf_resampled = 0;
+ int kf_q;
+ int scale_val = 0;
+ int hr, hs, vr, vs;
+ int new_width = cpi->oxcf.Width;
+ int new_height = cpi->oxcf.Height;
+
+ int projected_buffer_level;
+ int tmp_q;
+
+ double projected_bits_perframe;
+ double group_iiratio = (kf_group_intra_err - first_frame.intra_error) /
+ (kf_group_coded_err - first_frame.coded_error);
+ double err_per_frame = kf_group_err / cpi->twopass.frames_to_key;
+ double bits_per_frame;
+ double av_bits_per_frame;
+ double effective_size_ratio;
+
+ if ((cpi->common.Width != cpi->oxcf.Width) ||
+ (cpi->common.Height != cpi->oxcf.Height)) {
+ last_kf_resampled = 1;
+ }
+
+ /* Set back to unscaled by defaults */
+ cpi->common.horiz_scale = VP8E_NORMAL;
+ cpi->common.vert_scale = VP8E_NORMAL;
+
+ /* Calculate Average bits per frame. */
+ av_bits_per_frame = cpi->oxcf.target_bandwidth /
+ DOUBLE_DIVIDE_CHECK((double)cpi->framerate);
+
+ /* CBR... Use the clip average as the target for deciding resample */
+ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
+ bits_per_frame = av_bits_per_frame;
+ }
+
+ /* In VBR we want to avoid downsampling in easy section unless we
+ * are under extreme pressure So use the larger of target bitrate
+ * for this section or average bitrate for sequence
+ */
+ else {
+ /* This accounts for how hard the section is... */
+ bits_per_frame =
+ (double)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key);
+
+ /* Don't turn to resampling in easy sections just because they
+ * have been assigned a small number of bits
+ */
+ if (bits_per_frame < av_bits_per_frame) {
+ bits_per_frame = av_bits_per_frame;
+ }
+ }
+
+ /* bits_per_frame should comply with our minimum */
+ if (bits_per_frame < (cpi->oxcf.target_bandwidth *
+ cpi->oxcf.two_pass_vbrmin_section / 100)) {
+ bits_per_frame = (cpi->oxcf.target_bandwidth *
+ cpi->oxcf.two_pass_vbrmin_section / 100);
+ }
+
+ /* Work out if spatial resampling is necessary */
+ kf_q = estimate_kf_group_q(cpi, err_per_frame, (int)bits_per_frame,
+ group_iiratio);
+
+ /* If we project a required Q higher than the maximum allowed Q then
+ * make a guess at the actual size of frames in this section
+ */
+ projected_bits_perframe = bits_per_frame;
+ tmp_q = kf_q;
+
+ while (tmp_q > cpi->worst_quality) {
+ projected_bits_perframe *= 1.04;
+ tmp_q--;
+ }
+
+ /* Guess at buffer level at the end of the section */
+ projected_buffer_level =
+ (int)(cpi->buffer_level -
+ (int)((projected_bits_perframe - av_bits_per_frame) *
+ cpi->twopass.frames_to_key));
+
+ /* The trigger for spatial resampling depends on the various
+ * parameters such as whether we are streaming (CBR) or VBR.
+ */
+ if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
+ /* Trigger resample if we are projected to fall below down
+ * sample level or resampled last time and are projected to
+ * remain below the up sample level
+ */
+ if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark *
+ cpi->oxcf.optimal_buffer_level / 100)) ||
+ (last_kf_resampled &&
+ (projected_buffer_level < (cpi->oxcf.resample_up_water_mark *
+ cpi->oxcf.optimal_buffer_level / 100)))) {
+ resample_trigger = 1;
+ } else {
+ resample_trigger = 0;
+ }
+ } else {
+ int64_t clip_bits = (int64_t)(
+ cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth /
+ DOUBLE_DIVIDE_CHECK((double)cpi->framerate));
+ int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level;
+
+ /* If triggered last time the threshold for triggering again is
+ * reduced:
+ *
+ * Projected Q higher than allowed and Overspend > 5% of total
+ * bits
+ */
+ if ((last_kf_resampled && (kf_q > cpi->worst_quality)) ||
+ ((kf_q > cpi->worst_quality) && (over_spend > clip_bits / 20))) {
+ resample_trigger = 1;
+ } else {
+ resample_trigger = 0;
+ }
+ }
+
+ if (resample_trigger) {
+ while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) {
+ scale_val++;
+
+ cpi->common.vert_scale = vscale_lookup[scale_val];
+ cpi->common.horiz_scale = hscale_lookup[scale_val];
+
+ Scale2Ratio(cpi->common.horiz_scale, &hr, &hs);
+ Scale2Ratio(cpi->common.vert_scale, &vr, &vs);
+
+ new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
+ new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
+
+ /* Reducing the area to 1/4 does not reduce the complexity
+ * (err_per_frame) to 1/4... effective_sizeratio attempts
+ * to provide a crude correction for this
+ */
+ effective_size_ratio = (double)(new_width * new_height) /
+ (double)(cpi->oxcf.Width * cpi->oxcf.Height);
+ effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0;
+
+ /* Now try again and see what Q we get with the smaller
+ * image size
+ */
+ kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio,
+ (int)bits_per_frame, group_iiratio);
+ }
+ }
+
+ if ((cpi->common.Width != new_width) ||
+ (cpi->common.Height != new_height)) {
+ cpi->common.Width = new_width;
+ cpi->common.Height = new_height;
+ vp8_alloc_compressor_data(cpi);
+ }
+ }
+}