summaryrefslogtreecommitdiffstats
path: root/media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c')
-rw-r--r--media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c1387
1 files changed, 1387 insertions, 0 deletions
diff --git a/media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c b/media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c
new file mode 100644
index 0000000000..ca56d14aa1
--- /dev/null
+++ b/media/libvpx/libvpx/vp9/encoder/vp9_bitstream.c
@@ -0,0 +1,1387 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <stdio.h>
+#include <limits.h>
+
+#include "vpx/vpx_encoder.h"
+#include "vpx_dsp/bitwriter_buffer.h"
+#include "vpx_dsp/vpx_dsp_common.h"
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem_ops.h"
+#include "vpx_ports/system_state.h"
+#if CONFIG_BITSTREAM_DEBUG
+#include "vpx_util/vpx_debug_util.h"
+#endif // CONFIG_BITSTREAM_DEBUG
+
+#include "vp9/common/vp9_entropy.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_entropymv.h"
+#include "vp9/common/vp9_mvref_common.h"
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_seg_common.h"
+#include "vp9/common/vp9_tile_common.h"
+
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_bitstream.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_segmentation.h"
+#include "vp9/encoder/vp9_subexp.h"
+#include "vp9/encoder/vp9_tokenize.h"
+
+static const struct vp9_token intra_mode_encodings[INTRA_MODES] = {
+ { 0, 1 }, { 6, 3 }, { 28, 5 }, { 30, 5 }, { 58, 6 },
+ { 59, 6 }, { 126, 7 }, { 127, 7 }, { 62, 6 }, { 2, 2 }
+};
+static const struct vp9_token
+ switchable_interp_encodings[SWITCHABLE_FILTERS] = { { 0, 1 },
+ { 2, 2 },
+ { 3, 2 } };
+static const struct vp9_token partition_encodings[PARTITION_TYPES] = {
+ { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 }
+};
+static const struct vp9_token inter_mode_encodings[INTER_MODES] = {
+ { 2, 2 }, { 6, 3 }, { 0, 1 }, { 7, 3 }
+};
+
+static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode,
+ const vpx_prob *probs) {
+ vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
+}
+
+static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode,
+ const vpx_prob *probs) {
+ assert(is_inter_mode(mode));
+ vp9_write_token(w, vp9_inter_mode_tree, probs,
+ &inter_mode_encodings[INTER_OFFSET(mode)]);
+}
+
+static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, int data,
+ int max) {
+ vpx_wb_write_literal(wb, data, get_unsigned_bits(max));
+}
+
+static void prob_diff_update(const vpx_tree_index *tree,
+ vpx_prob probs[/*n - 1*/],
+ const unsigned int counts[/*n - 1*/], int n,
+ vpx_writer *w) {
+ int i;
+ unsigned int branch_ct[32][2];
+
+ // Assuming max number of probabilities <= 32
+ assert(n <= 32);
+
+ vp9_tree_probs_from_distribution(tree, branch_ct, counts);
+ for (i = 0; i < n - 1; ++i)
+ vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
+}
+
+static void write_selected_tx_size(const VP9_COMMON *cm,
+ const MACROBLOCKD *const xd, vpx_writer *w) {
+ TX_SIZE tx_size = xd->mi[0]->tx_size;
+ BLOCK_SIZE bsize = xd->mi[0]->sb_type;
+ const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
+ const vpx_prob *const tx_probs =
+ get_tx_probs(max_tx_size, get_tx_size_context(xd), &cm->fc->tx_probs);
+ vpx_write(w, tx_size != TX_4X4, tx_probs[0]);
+ if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
+ vpx_write(w, tx_size != TX_8X8, tx_probs[1]);
+ if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
+ vpx_write(w, tx_size != TX_16X16, tx_probs[2]);
+ }
+}
+
+static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *const xd,
+ int segment_id, const MODE_INFO *mi, vpx_writer *w) {
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
+ return 1;
+ } else {
+ const int skip = mi->skip;
+ vpx_write(w, skip, vp9_get_skip_prob(cm, xd));
+ return skip;
+ }
+}
+
+static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w,
+ FRAME_COUNTS *counts) {
+ int k;
+
+ for (k = 0; k < SKIP_CONTEXTS; ++k)
+ vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]);
+}
+
+static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w,
+ FRAME_COUNTS *counts) {
+ int j;
+ for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
+ prob_diff_update(vp9_switchable_interp_tree,
+ cm->fc->switchable_interp_prob[j],
+ counts->switchable_interp[j], SWITCHABLE_FILTERS, w);
+}
+
+static void pack_mb_tokens(vpx_writer *w, TOKENEXTRA **tp,
+ const TOKENEXTRA *const stop,
+ vpx_bit_depth_t bit_depth) {
+ const TOKENEXTRA *p;
+ const vp9_extra_bit *const extra_bits =
+#if CONFIG_VP9_HIGHBITDEPTH
+ (bit_depth == VPX_BITS_12) ? vp9_extra_bits_high12
+ : (bit_depth == VPX_BITS_10) ? vp9_extra_bits_high10
+ : vp9_extra_bits;
+#else
+ vp9_extra_bits;
+ (void)bit_depth;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+
+ for (p = *tp; p < stop && p->token != EOSB_TOKEN; ++p) {
+ if (p->token == EOB_TOKEN) {
+ vpx_write(w, 0, p->context_tree[0]);
+ continue;
+ }
+ vpx_write(w, 1, p->context_tree[0]);
+ while (p->token == ZERO_TOKEN) {
+ vpx_write(w, 0, p->context_tree[1]);
+ ++p;
+ if (p == stop || p->token == EOSB_TOKEN) {
+ *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN);
+ return;
+ }
+ }
+
+ {
+ const int t = p->token;
+ const vpx_prob *const context_tree = p->context_tree;
+ assert(t != ZERO_TOKEN);
+ assert(t != EOB_TOKEN);
+ assert(t != EOSB_TOKEN);
+ vpx_write(w, 1, context_tree[1]);
+ if (t == ONE_TOKEN) {
+ vpx_write(w, 0, context_tree[2]);
+ vpx_write_bit(w, p->extra & 1);
+ } else { // t >= TWO_TOKEN && t < EOB_TOKEN
+ const struct vp9_token *const a = &vp9_coef_encodings[t];
+ int v = a->value;
+ int n = a->len;
+ const int e = p->extra;
+ vpx_write(w, 1, context_tree[2]);
+ vp9_write_tree(w, vp9_coef_con_tree,
+ vp9_pareto8_full[context_tree[PIVOT_NODE] - 1], v,
+ n - UNCONSTRAINED_NODES, 0);
+ if (t >= CATEGORY1_TOKEN) {
+ const vp9_extra_bit *const b = &extra_bits[t];
+ const unsigned char *pb = b->prob;
+ v = e >> 1;
+ n = b->len; // number of bits in v, assumed nonzero
+ do {
+ const int bb = (v >> --n) & 1;
+ vpx_write(w, bb, *pb++);
+ } while (n);
+ }
+ vpx_write_bit(w, e & 1);
+ }
+ }
+ }
+ *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN);
+}
+
+static void write_segment_id(vpx_writer *w, const struct segmentation *seg,
+ int segment_id) {
+ if (seg->enabled && seg->update_map)
+ vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
+}
+
+// This function encodes the reference frame
+static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *const xd,
+ vpx_writer *w) {
+ const MODE_INFO *const mi = xd->mi[0];
+ const int is_compound = has_second_ref(mi);
+ const int segment_id = mi->segment_id;
+
+ // If segment level coding of this signal is disabled...
+ // or the segment allows multiple reference frame options
+ if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
+ assert(!is_compound);
+ assert(mi->ref_frame[0] ==
+ get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
+ } else {
+ // does the feature use compound prediction or not
+ // (if not specified at the frame/segment level)
+ if (cm->reference_mode == REFERENCE_MODE_SELECT) {
+ vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
+ } else {
+ assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE));
+ }
+
+ if (is_compound) {
+ const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
+ vpx_write(w, mi->ref_frame[!idx] == cm->comp_var_ref[1],
+ vp9_get_pred_prob_comp_ref_p(cm, xd));
+ } else {
+ const int bit0 = mi->ref_frame[0] != LAST_FRAME;
+ vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
+ if (bit0) {
+ const int bit1 = mi->ref_frame[0] != GOLDEN_FRAME;
+ vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
+ }
+ }
+ }
+}
+
+static void pack_inter_mode_mvs(VP9_COMP *cpi, const MACROBLOCKD *const xd,
+ const MB_MODE_INFO_EXT *const mbmi_ext,
+ vpx_writer *w,
+ unsigned int *const max_mv_magnitude,
+ int interp_filter_selected[][SWITCHABLE]) {
+ VP9_COMMON *const cm = &cpi->common;
+ const nmv_context *nmvc = &cm->fc->nmvc;
+ const struct segmentation *const seg = &cm->seg;
+ const MODE_INFO *const mi = xd->mi[0];
+ const PREDICTION_MODE mode = mi->mode;
+ const int segment_id = mi->segment_id;
+ const BLOCK_SIZE bsize = mi->sb_type;
+ const int allow_hp = cm->allow_high_precision_mv;
+ const int is_inter = is_inter_block(mi);
+ const int is_compound = has_second_ref(mi);
+ int skip, ref;
+
+ if (seg->update_map) {
+ if (seg->temporal_update) {
+ const int pred_flag = mi->seg_id_predicted;
+ vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
+ vpx_write(w, pred_flag, pred_prob);
+ if (!pred_flag) write_segment_id(w, seg, segment_id);
+ } else {
+ write_segment_id(w, seg, segment_id);
+ }
+ }
+
+ skip = write_skip(cm, xd, segment_id, mi, w);
+
+ if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
+ vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
+
+ if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
+ !(is_inter && skip)) {
+ write_selected_tx_size(cm, xd, w);
+ }
+
+ if (!is_inter) {
+ if (bsize >= BLOCK_8X8) {
+ write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
+ } else {
+ int idx, idy;
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
+ const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
+ write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
+ }
+ }
+ }
+ write_intra_mode(w, mi->uv_mode, cm->fc->uv_mode_prob[mode]);
+ } else {
+ const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
+ const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
+ write_ref_frames(cm, xd, w);
+
+ // If segment skip is not enabled code the mode.
+ if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
+ if (bsize >= BLOCK_8X8) {
+ write_inter_mode(w, mode, inter_probs);
+ }
+ }
+
+ if (cm->interp_filter == SWITCHABLE) {
+ const int ctx = get_pred_context_switchable_interp(xd);
+ vp9_write_token(w, vp9_switchable_interp_tree,
+ cm->fc->switchable_interp_prob[ctx],
+ &switchable_interp_encodings[mi->interp_filter]);
+ ++interp_filter_selected[0][mi->interp_filter];
+ } else {
+ assert(mi->interp_filter == cm->interp_filter);
+ }
+
+ if (bsize < BLOCK_8X8) {
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ int idx, idy;
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
+ const int j = idy * 2 + idx;
+ const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
+ write_inter_mode(w, b_mode, inter_probs);
+ if (b_mode == NEWMV) {
+ for (ref = 0; ref < 1 + is_compound; ++ref)
+ vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
+ &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv,
+ nmvc, allow_hp, max_mv_magnitude);
+ }
+ }
+ }
+ } else {
+ if (mode == NEWMV) {
+ for (ref = 0; ref < 1 + is_compound; ++ref)
+ vp9_encode_mv(cpi, w, &mi->mv[ref].as_mv,
+ &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, nmvc,
+ allow_hp, max_mv_magnitude);
+ }
+ }
+ }
+}
+
+static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
+ vpx_writer *w) {
+ const struct segmentation *const seg = &cm->seg;
+ const MODE_INFO *const mi = xd->mi[0];
+ const MODE_INFO *const above_mi = xd->above_mi;
+ const MODE_INFO *const left_mi = xd->left_mi;
+ const BLOCK_SIZE bsize = mi->sb_type;
+
+ if (seg->update_map) write_segment_id(w, seg, mi->segment_id);
+
+ write_skip(cm, xd, mi->segment_id, mi, w);
+
+ if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
+ write_selected_tx_size(cm, xd, w);
+
+ if (bsize >= BLOCK_8X8) {
+ write_intra_mode(w, mi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
+ } else {
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
+ int idx, idy;
+
+ for (idy = 0; idy < 2; idy += num_4x4_h) {
+ for (idx = 0; idx < 2; idx += num_4x4_w) {
+ const int block = idy * 2 + idx;
+ write_intra_mode(w, mi->bmi[block].as_mode,
+ get_y_mode_probs(mi, above_mi, left_mi, block));
+ }
+ }
+ }
+
+ write_intra_mode(w, mi->uv_mode, vp9_kf_uv_mode_prob[mi->mode]);
+}
+
+static void write_modes_b(VP9_COMP *cpi, MACROBLOCKD *const xd,
+ const TileInfo *const tile, vpx_writer *w,
+ TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
+ int mi_row, int mi_col,
+ unsigned int *const max_mv_magnitude,
+ int interp_filter_selected[][SWITCHABLE]) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const MB_MODE_INFO_EXT *const mbmi_ext =
+ cpi->td.mb.mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
+ MODE_INFO *m;
+
+ xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
+ m = xd->mi[0];
+
+ set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->sb_type],
+ mi_col, num_8x8_blocks_wide_lookup[m->sb_type], cm->mi_rows,
+ cm->mi_cols);
+ if (frame_is_intra_only(cm)) {
+ write_mb_modes_kf(cm, xd, w);
+ } else {
+ pack_inter_mode_mvs(cpi, xd, mbmi_ext, w, max_mv_magnitude,
+ interp_filter_selected);
+ }
+
+ assert(*tok < tok_end);
+ pack_mb_tokens(w, tok, tok_end, cm->bit_depth);
+}
+
+static void write_partition(const VP9_COMMON *const cm,
+ const MACROBLOCKD *const xd, int hbs, int mi_row,
+ int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize,
+ vpx_writer *w) {
+ const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
+ const vpx_prob *const probs = xd->partition_probs[ctx];
+ const int has_rows = (mi_row + hbs) < cm->mi_rows;
+ const int has_cols = (mi_col + hbs) < cm->mi_cols;
+
+ if (has_rows && has_cols) {
+ vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
+ } else if (!has_rows && has_cols) {
+ assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
+ vpx_write(w, p == PARTITION_SPLIT, probs[1]);
+ } else if (has_rows && !has_cols) {
+ assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
+ vpx_write(w, p == PARTITION_SPLIT, probs[2]);
+ } else {
+ assert(p == PARTITION_SPLIT);
+ }
+}
+
+static void write_modes_sb(VP9_COMP *cpi, MACROBLOCKD *const xd,
+ const TileInfo *const tile, vpx_writer *w,
+ TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
+ int mi_row, int mi_col, BLOCK_SIZE bsize,
+ unsigned int *const max_mv_magnitude,
+ int interp_filter_selected[][SWITCHABLE]) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const int bsl = b_width_log2_lookup[bsize];
+ const int bs = (1 << bsl) / 4;
+ PARTITION_TYPE partition;
+ BLOCK_SIZE subsize;
+ const MODE_INFO *m = NULL;
+
+ if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
+
+ m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
+
+ partition = partition_lookup[bsl][m->sb_type];
+ write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
+ subsize = get_subsize(bsize, partition);
+ if (subsize < BLOCK_8X8) {
+ write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
+ max_mv_magnitude, interp_filter_selected);
+ } else {
+ switch (partition) {
+ case PARTITION_NONE:
+ write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
+ max_mv_magnitude, interp_filter_selected);
+ break;
+ case PARTITION_HORZ:
+ write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
+ max_mv_magnitude, interp_filter_selected);
+ if (mi_row + bs < cm->mi_rows)
+ write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col,
+ max_mv_magnitude, interp_filter_selected);
+ break;
+ case PARTITION_VERT:
+ write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
+ max_mv_magnitude, interp_filter_selected);
+ if (mi_col + bs < cm->mi_cols)
+ write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs,
+ max_mv_magnitude, interp_filter_selected);
+ break;
+ default:
+ assert(partition == PARTITION_SPLIT);
+ write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, subsize,
+ max_mv_magnitude, interp_filter_selected);
+ write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs,
+ subsize, max_mv_magnitude, interp_filter_selected);
+ write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col,
+ subsize, max_mv_magnitude, interp_filter_selected);
+ write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
+ subsize, max_mv_magnitude, interp_filter_selected);
+ break;
+ }
+ }
+
+ // update partition context
+ if (bsize >= BLOCK_8X8 &&
+ (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
+ update_partition_context(xd, mi_row, mi_col, subsize, bsize);
+}
+
+static void write_modes(VP9_COMP *cpi, MACROBLOCKD *const xd,
+ const TileInfo *const tile, vpx_writer *w, int tile_row,
+ int tile_col, unsigned int *const max_mv_magnitude,
+ int interp_filter_selected[][SWITCHABLE]) {
+ const VP9_COMMON *const cm = &cpi->common;
+ int mi_row, mi_col, tile_sb_row;
+ TOKENEXTRA *tok = NULL;
+ TOKENEXTRA *tok_end = NULL;
+
+ set_partition_probs(cm, xd);
+
+ for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
+ mi_row += MI_BLOCK_SIZE) {
+ tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile->mi_row_start) >>
+ MI_BLOCK_SIZE_LOG2;
+ tok = cpi->tplist[tile_row][tile_col][tile_sb_row].start;
+ tok_end = tok + cpi->tplist[tile_row][tile_col][tile_sb_row].count;
+
+ vp9_zero(xd->left_seg_context);
+ for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
+ mi_col += MI_BLOCK_SIZE)
+ write_modes_sb(cpi, xd, tile, w, &tok, tok_end, mi_row, mi_col,
+ BLOCK_64X64, max_mv_magnitude, interp_filter_selected);
+
+ assert(tok == cpi->tplist[tile_row][tile_col][tile_sb_row].stop);
+ }
+}
+
+static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
+ vp9_coeff_stats *coef_branch_ct,
+ vp9_coeff_probs_model *coef_probs) {
+ vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
+ unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
+ cpi->common.counts.eob_branch[tx_size];
+ int i, j, k, l, m;
+
+ for (i = 0; i < PLANE_TYPES; ++i) {
+ for (j = 0; j < REF_TYPES; ++j) {
+ for (k = 0; k < COEF_BANDS; ++k) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+ vp9_tree_probs_from_distribution(vp9_coef_tree,
+ coef_branch_ct[i][j][k][l],
+ coef_counts[i][j][k][l]);
+ coef_branch_ct[i][j][k][l][0][1] =
+ eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0];
+ for (m = 0; m < UNCONSTRAINED_NODES; ++m)
+ coef_probs[i][j][k][l][m] =
+ get_binary_prob(coef_branch_ct[i][j][k][l][m][0],
+ coef_branch_ct[i][j][k][l][m][1]);
+ }
+ }
+ }
+ }
+}
+
+static void update_coef_probs_common(vpx_writer *const bc, VP9_COMP *cpi,
+ TX_SIZE tx_size,
+ vp9_coeff_stats *frame_branch_ct,
+ vp9_coeff_probs_model *new_coef_probs) {
+ vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
+ const vpx_prob upd = DIFF_UPDATE_PROB;
+ const int entropy_nodes_update = UNCONSTRAINED_NODES;
+ int i, j, k, l, t;
+ int stepsize = cpi->sf.coeff_prob_appx_step;
+
+ switch (cpi->sf.use_fast_coef_updates) {
+ case TWO_LOOP: {
+ /* dry run to see if there is any update at all needed */
+ int64_t savings = 0;
+ int update[2] = { 0, 0 };
+ for (i = 0; i < PLANE_TYPES; ++i) {
+ for (j = 0; j < REF_TYPES; ++j) {
+ for (k = 0; k < COEF_BANDS; ++k) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+ for (t = 0; t < entropy_nodes_update; ++t) {
+ vpx_prob newp = new_coef_probs[i][j][k][l][t];
+ const vpx_prob oldp = old_coef_probs[i][j][k][l][t];
+ int64_t s;
+ int u = 0;
+ if (t == PIVOT_NODE)
+ s = vp9_prob_diff_update_savings_search_model(
+ frame_branch_ct[i][j][k][l][0], oldp, &newp, upd,
+ stepsize);
+ else
+ s = vp9_prob_diff_update_savings_search(
+ frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
+ if (s > 0 && newp != oldp) u = 1;
+ if (u)
+ savings += s - (int)(vp9_cost_zero(upd));
+ else
+ savings -= (int)(vp9_cost_zero(upd));
+ update[u]++;
+ }
+ }
+ }
+ }
+ }
+
+ // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
+ /* Is coef updated at all */
+ if (update[1] == 0 || savings < 0) {
+ vpx_write_bit(bc, 0);
+ return;
+ }
+ vpx_write_bit(bc, 1);
+ for (i = 0; i < PLANE_TYPES; ++i) {
+ for (j = 0; j < REF_TYPES; ++j) {
+ for (k = 0; k < COEF_BANDS; ++k) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+ // calc probs and branch cts for this frame only
+ for (t = 0; t < entropy_nodes_update; ++t) {
+ vpx_prob newp = new_coef_probs[i][j][k][l][t];
+ vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
+ int64_t s;
+ int u = 0;
+ if (t == PIVOT_NODE)
+ s = vp9_prob_diff_update_savings_search_model(
+ frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
+ stepsize);
+ else
+ s = vp9_prob_diff_update_savings_search(
+ frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
+ if (s > 0 && newp != *oldp) u = 1;
+ vpx_write(bc, u, upd);
+ if (u) {
+ /* send/use new probability */
+ vp9_write_prob_diff_update(bc, newp, *oldp);
+ *oldp = newp;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+
+ default: {
+ int updates = 0;
+ int noupdates_before_first = 0;
+ assert(cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED);
+ for (i = 0; i < PLANE_TYPES; ++i) {
+ for (j = 0; j < REF_TYPES; ++j) {
+ for (k = 0; k < COEF_BANDS; ++k) {
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+ // calc probs and branch cts for this frame only
+ for (t = 0; t < entropy_nodes_update; ++t) {
+ vpx_prob newp = new_coef_probs[i][j][k][l][t];
+ vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
+ int64_t s;
+ int u = 0;
+
+ if (t == PIVOT_NODE) {
+ s = vp9_prob_diff_update_savings_search_model(
+ frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
+ stepsize);
+ } else {
+ s = vp9_prob_diff_update_savings_search(
+ frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
+ }
+
+ if (s > 0 && newp != *oldp) u = 1;
+ updates += u;
+ if (u == 0 && updates == 0) {
+ noupdates_before_first++;
+ continue;
+ }
+ if (u == 1 && updates == 1) {
+ int v;
+ // first update
+ vpx_write_bit(bc, 1);
+ for (v = 0; v < noupdates_before_first; ++v)
+ vpx_write(bc, 0, upd);
+ }
+ vpx_write(bc, u, upd);
+ if (u) {
+ /* send/use new probability */
+ vp9_write_prob_diff_update(bc, newp, *oldp);
+ *oldp = newp;
+ }
+ }
+ }
+ }
+ }
+ }
+ if (updates == 0) {
+ vpx_write_bit(bc, 0); // no updates
+ }
+ return;
+ }
+ }
+}
+
+static void update_coef_probs(VP9_COMP *cpi, vpx_writer *w) {
+ const TX_MODE tx_mode = cpi->common.tx_mode;
+ const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
+ TX_SIZE tx_size;
+ for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) {
+ vp9_coeff_stats frame_branch_ct[PLANE_TYPES];
+ vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES];
+ if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 ||
+ (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
+ vpx_write_bit(w, 0);
+ } else {
+ build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs);
+ update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
+ frame_coef_probs);
+ }
+ }
+}
+
+static void encode_loopfilter(struct loopfilter *lf,
+ struct vpx_write_bit_buffer *wb) {
+ int i;
+
+ // Encode the loop filter level and type
+ vpx_wb_write_literal(wb, lf->filter_level, 6);
+ vpx_wb_write_literal(wb, lf->sharpness_level, 3);
+
+ // Write out loop filter deltas applied at the MB level based on mode or
+ // ref frame (if they are enabled).
+ vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled);
+
+ if (lf->mode_ref_delta_enabled) {
+ vpx_wb_write_bit(wb, lf->mode_ref_delta_update);
+ if (lf->mode_ref_delta_update) {
+ for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
+ const int delta = lf->ref_deltas[i];
+ const int changed = delta != lf->last_ref_deltas[i];
+ vpx_wb_write_bit(wb, changed);
+ if (changed) {
+ lf->last_ref_deltas[i] = delta;
+ vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
+ vpx_wb_write_bit(wb, delta < 0);
+ }
+ }
+
+ for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
+ const int delta = lf->mode_deltas[i];
+ const int changed = delta != lf->last_mode_deltas[i];
+ vpx_wb_write_bit(wb, changed);
+ if (changed) {
+ lf->last_mode_deltas[i] = delta;
+ vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
+ vpx_wb_write_bit(wb, delta < 0);
+ }
+ }
+ }
+ }
+}
+
+static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) {
+ if (delta_q != 0) {
+ vpx_wb_write_bit(wb, 1);
+ vpx_wb_write_literal(wb, abs(delta_q), 4);
+ vpx_wb_write_bit(wb, delta_q < 0);
+ } else {
+ vpx_wb_write_bit(wb, 0);
+ }
+}
+
+static void encode_quantization(const VP9_COMMON *const cm,
+ struct vpx_write_bit_buffer *wb) {
+ vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
+ write_delta_q(wb, cm->y_dc_delta_q);
+ write_delta_q(wb, cm->uv_dc_delta_q);
+ write_delta_q(wb, cm->uv_ac_delta_q);
+}
+
+static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
+ struct vpx_write_bit_buffer *wb) {
+ int i, j;
+
+ const struct segmentation *seg = &cm->seg;
+
+ vpx_wb_write_bit(wb, seg->enabled);
+ if (!seg->enabled) return;
+
+ // Segmentation map
+ vpx_wb_write_bit(wb, seg->update_map);
+ if (seg->update_map) {
+ // Select the coding strategy (temporal or spatial)
+ vp9_choose_segmap_coding_method(cm, xd);
+ // Write out probabilities used to decode unpredicted macro-block segments
+ for (i = 0; i < SEG_TREE_PROBS; i++) {
+ const int prob = seg->tree_probs[i];
+ const int update = prob != MAX_PROB;
+ vpx_wb_write_bit(wb, update);
+ if (update) vpx_wb_write_literal(wb, prob, 8);
+ }
+
+ // Write out the chosen coding method.
+ vpx_wb_write_bit(wb, seg->temporal_update);
+ if (seg->temporal_update) {
+ for (i = 0; i < PREDICTION_PROBS; i++) {
+ const int prob = seg->pred_probs[i];
+ const int update = prob != MAX_PROB;
+ vpx_wb_write_bit(wb, update);
+ if (update) vpx_wb_write_literal(wb, prob, 8);
+ }
+ }
+ }
+
+ // Segmentation data
+ vpx_wb_write_bit(wb, seg->update_data);
+ if (seg->update_data) {
+ vpx_wb_write_bit(wb, seg->abs_delta);
+
+ for (i = 0; i < MAX_SEGMENTS; i++) {
+ for (j = 0; j < SEG_LVL_MAX; j++) {
+ const int active = segfeature_active(seg, i, j);
+ vpx_wb_write_bit(wb, active);
+ if (active) {
+ const int data = get_segdata(seg, i, j);
+ const int data_max = vp9_seg_feature_data_max(j);
+
+ if (vp9_is_segfeature_signed(j)) {
+ encode_unsigned_max(wb, abs(data), data_max);
+ vpx_wb_write_bit(wb, data < 0);
+ } else {
+ encode_unsigned_max(wb, data, data_max);
+ }
+ }
+ }
+ }
+ }
+}
+
+static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w,
+ FRAME_COUNTS *counts) {
+ // Mode
+ vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2);
+ if (cm->tx_mode >= ALLOW_32X32)
+ vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
+
+ // Probabilities
+ if (cm->tx_mode == TX_MODE_SELECT) {
+ int i, j;
+ unsigned int ct_8x8p[TX_SIZES - 3][2];
+ unsigned int ct_16x16p[TX_SIZES - 2][2];
+ unsigned int ct_32x32p[TX_SIZES - 1][2];
+
+ for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
+ tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p);
+ for (j = 0; j < TX_SIZES - 3; j++)
+ vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]);
+ }
+
+ for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
+ tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p);
+ for (j = 0; j < TX_SIZES - 2; j++)
+ vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j],
+ ct_16x16p[j]);
+ }
+
+ for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
+ tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p);
+ for (j = 0; j < TX_SIZES - 1; j++)
+ vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j],
+ ct_32x32p[j]);
+ }
+ }
+}
+
+static void write_interp_filter(INTERP_FILTER filter,
+ struct vpx_write_bit_buffer *wb) {
+ const int filter_to_literal[] = { 1, 0, 2, 3 };
+
+ vpx_wb_write_bit(wb, filter == SWITCHABLE);
+ if (filter != SWITCHABLE)
+ vpx_wb_write_literal(wb, filter_to_literal[filter], 2);
+}
+
+static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) {
+ if (cm->interp_filter == SWITCHABLE) {
+ // Check to see if only one of the filters is actually used
+ int count[SWITCHABLE_FILTERS];
+ int i, j, c = 0;
+ for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+ count[i] = 0;
+ for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
+ count[i] += counts->switchable_interp[j][i];
+ c += (count[i] > 0);
+ }
+ if (c == 1) {
+ // Only one filter is used. So set the filter at frame level
+ for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
+ if (count[i]) {
+ cm->interp_filter = i;
+ break;
+ }
+ }
+ }
+ }
+}
+
+static void write_tile_info(const VP9_COMMON *const cm,
+ struct vpx_write_bit_buffer *wb) {
+ int min_log2_tile_cols, max_log2_tile_cols, ones;
+ vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
+
+ // columns
+ ones = cm->log2_tile_cols - min_log2_tile_cols;
+ while (ones--) vpx_wb_write_bit(wb, 1);
+
+ if (cm->log2_tile_cols < max_log2_tile_cols) vpx_wb_write_bit(wb, 0);
+
+ // rows
+ vpx_wb_write_bit(wb, cm->log2_tile_rows != 0);
+ if (cm->log2_tile_rows != 0) vpx_wb_write_bit(wb, cm->log2_tile_rows != 1);
+}
+
+int vp9_get_refresh_mask(VP9_COMP *cpi) {
+ if (vp9_preserve_existing_gf(cpi)) {
+ // We have decided to preserve the previously existing golden frame as our
+ // new ARF frame. However, in the short term we leave it in the GF slot and,
+ // if we're updating the GF with the current decoded frame, we save it
+ // instead to the ARF slot.
+ // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
+ // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
+ // there so that it can be done outside of the recode loop.
+ // Note: This is highly specific to the use of ARF as a forward reference,
+ // and this needs to be generalized as other uses are implemented
+ // (like RTC/temporal scalability).
+ return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
+ (cpi->refresh_golden_frame << cpi->alt_fb_idx);
+ } else {
+ int arf_idx = cpi->alt_fb_idx;
+ GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+
+ if (cpi->multi_layer_arf) {
+ for (arf_idx = 0; arf_idx < REF_FRAMES; ++arf_idx) {
+ if (arf_idx != cpi->alt_fb_idx && arf_idx != cpi->lst_fb_idx &&
+ arf_idx != cpi->gld_fb_idx) {
+ int idx;
+ for (idx = 0; idx < gf_group->stack_size; ++idx)
+ if (arf_idx == gf_group->arf_index_stack[idx]) break;
+ if (idx == gf_group->stack_size) break;
+ }
+ }
+ }
+ cpi->twopass.gf_group.top_arf_idx = arf_idx;
+
+ if (cpi->use_svc && cpi->svc.use_set_ref_frame_config &&
+ cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS)
+ return cpi->svc.update_buffer_slot[cpi->svc.spatial_layer_id];
+ return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
+ (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
+ (cpi->refresh_alt_ref_frame << arf_idx);
+ }
+}
+
+static int encode_tile_worker(void *arg1, void *arg2) {
+ VP9_COMP *cpi = (VP9_COMP *)arg1;
+ VP9BitstreamWorkerData *data = (VP9BitstreamWorkerData *)arg2;
+ MACROBLOCKD *const xd = &data->xd;
+ const int tile_row = 0;
+ vpx_start_encode(&data->bit_writer, data->dest);
+ write_modes(cpi, xd, &cpi->tile_data[data->tile_idx].tile_info,
+ &data->bit_writer, tile_row, data->tile_idx,
+ &data->max_mv_magnitude, data->interp_filter_selected);
+ vpx_stop_encode(&data->bit_writer);
+ return 1;
+}
+
+void vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP *const cpi) {
+ if (cpi->vp9_bitstream_worker_data) {
+ int i;
+ for (i = 1; i < cpi->num_workers; ++i) {
+ vpx_free(cpi->vp9_bitstream_worker_data[i].dest);
+ }
+ vpx_free(cpi->vp9_bitstream_worker_data);
+ cpi->vp9_bitstream_worker_data = NULL;
+ }
+}
+
+static void encode_tiles_buffer_alloc(VP9_COMP *const cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ int i;
+ const size_t worker_data_size =
+ cpi->num_workers * sizeof(*cpi->vp9_bitstream_worker_data);
+ CHECK_MEM_ERROR(&cm->error, cpi->vp9_bitstream_worker_data,
+ vpx_memalign(16, worker_data_size));
+ memset(cpi->vp9_bitstream_worker_data, 0, worker_data_size);
+ for (i = 1; i < cpi->num_workers; ++i) {
+ cpi->vp9_bitstream_worker_data[i].dest_size =
+ cpi->oxcf.width * cpi->oxcf.height;
+ CHECK_MEM_ERROR(&cm->error, cpi->vp9_bitstream_worker_data[i].dest,
+ vpx_malloc(cpi->vp9_bitstream_worker_data[i].dest_size));
+ }
+}
+
+static size_t encode_tiles_mt(VP9_COMP *cpi, uint8_t *data_ptr) {
+ const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
+ VP9_COMMON *const cm = &cpi->common;
+ const int tile_cols = 1 << cm->log2_tile_cols;
+ const int num_workers = cpi->num_workers;
+ size_t total_size = 0;
+ int tile_col = 0;
+
+ if (!cpi->vp9_bitstream_worker_data ||
+ cpi->vp9_bitstream_worker_data[1].dest_size >
+ (cpi->oxcf.width * cpi->oxcf.height)) {
+ vp9_bitstream_encode_tiles_buffer_dealloc(cpi);
+ encode_tiles_buffer_alloc(cpi);
+ }
+
+ while (tile_col < tile_cols) {
+ int i, j;
+ for (i = 0; i < num_workers && tile_col < tile_cols; ++i) {
+ VPxWorker *const worker = &cpi->workers[i];
+ VP9BitstreamWorkerData *const data = &cpi->vp9_bitstream_worker_data[i];
+
+ // Populate the worker data.
+ data->xd = cpi->td.mb.e_mbd;
+ data->tile_idx = tile_col;
+ data->max_mv_magnitude = cpi->max_mv_magnitude;
+ memset(data->interp_filter_selected, 0,
+ sizeof(data->interp_filter_selected[0][0]) * SWITCHABLE);
+
+ // First thread can directly write into the output buffer.
+ if (i == 0) {
+ // If this worker happens to be for the last tile, then do not offset it
+ // by 4 for the tile size.
+ data->dest =
+ data_ptr + total_size + (tile_col == tile_cols - 1 ? 0 : 4);
+ }
+ worker->data1 = cpi;
+ worker->data2 = data;
+ worker->hook = encode_tile_worker;
+ worker->had_error = 0;
+
+ if (i < num_workers - 1) {
+ winterface->launch(worker);
+ } else {
+ winterface->execute(worker);
+ }
+ ++tile_col;
+ }
+ for (j = 0; j < i; ++j) {
+ VPxWorker *const worker = &cpi->workers[j];
+ VP9BitstreamWorkerData *const data =
+ (VP9BitstreamWorkerData *)worker->data2;
+ uint32_t tile_size;
+ int k;
+
+ if (!winterface->sync(worker)) return 0;
+ tile_size = data->bit_writer.pos;
+
+ // Aggregate per-thread bitstream stats.
+ cpi->max_mv_magnitude =
+ VPXMAX(cpi->max_mv_magnitude, data->max_mv_magnitude);
+ for (k = 0; k < SWITCHABLE; ++k) {
+ cpi->interp_filter_selected[0][k] += data->interp_filter_selected[0][k];
+ }
+
+ // Prefix the size of the tile on all but the last.
+ if (tile_col != tile_cols || j < i - 1) {
+ mem_put_be32(data_ptr + total_size, tile_size);
+ total_size += 4;
+ }
+ if (j > 0) {
+ memcpy(data_ptr + total_size, data->dest, tile_size);
+ }
+ total_size += tile_size;
+ }
+ }
+ return total_size;
+}
+
+static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+ vpx_writer residual_bc;
+ int tile_row, tile_col;
+ size_t total_size = 0;
+ const int tile_cols = 1 << cm->log2_tile_cols;
+ const int tile_rows = 1 << cm->log2_tile_rows;
+
+ memset(cm->above_seg_context, 0,
+ sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols));
+
+ // Encoding tiles in parallel is done only for realtime mode now. In other
+ // modes the speed up is insignificant and requires further testing to ensure
+ // that it does not make the overall process worse in any case.
+ if (cpi->oxcf.mode == REALTIME && cpi->num_workers > 1 && tile_rows == 1 &&
+ tile_cols > 1) {
+ return encode_tiles_mt(cpi, data_ptr);
+ }
+
+ for (tile_row = 0; tile_row < tile_rows; tile_row++) {
+ for (tile_col = 0; tile_col < tile_cols; tile_col++) {
+ int tile_idx = tile_row * tile_cols + tile_col;
+
+ if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
+ vpx_start_encode(&residual_bc, data_ptr + total_size + 4);
+ else
+ vpx_start_encode(&residual_bc, data_ptr + total_size);
+
+ write_modes(cpi, xd, &cpi->tile_data[tile_idx].tile_info, &residual_bc,
+ tile_row, tile_col, &cpi->max_mv_magnitude,
+ cpi->interp_filter_selected);
+
+ vpx_stop_encode(&residual_bc);
+ if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
+ // size of this tile
+ mem_put_be32(data_ptr + total_size, residual_bc.pos);
+ total_size += 4;
+ }
+
+ total_size += residual_bc.pos;
+ }
+ }
+ return total_size;
+}
+
+static void write_render_size(const VP9_COMMON *cm,
+ struct vpx_write_bit_buffer *wb) {
+ const int scaling_active =
+ cm->width != cm->render_width || cm->height != cm->render_height;
+ vpx_wb_write_bit(wb, scaling_active);
+ if (scaling_active) {
+ vpx_wb_write_literal(wb, cm->render_width - 1, 16);
+ vpx_wb_write_literal(wb, cm->render_height - 1, 16);
+ }
+}
+
+static void write_frame_size(const VP9_COMMON *cm,
+ struct vpx_write_bit_buffer *wb) {
+ vpx_wb_write_literal(wb, cm->width - 1, 16);
+ vpx_wb_write_literal(wb, cm->height - 1, 16);
+
+ write_render_size(cm, wb);
+}
+
+static void write_frame_size_with_refs(VP9_COMP *cpi,
+ struct vpx_write_bit_buffer *wb) {
+ VP9_COMMON *const cm = &cpi->common;
+ int found = 0;
+
+ MV_REFERENCE_FRAME ref_frame;
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
+
+ // Set "found" to 0 for temporal svc and for spatial svc key frame
+ if (cpi->use_svc &&
+ ((cpi->svc.number_temporal_layers > 1 &&
+ cpi->oxcf.rc_mode == VPX_CBR) ||
+ (cpi->svc.number_spatial_layers > 1 &&
+ cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame))) {
+ found = 0;
+ } else if (cfg != NULL) {
+ found =
+ cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height;
+ }
+ vpx_wb_write_bit(wb, found);
+ if (found) {
+ break;
+ }
+ }
+
+ if (!found) {
+ vpx_wb_write_literal(wb, cm->width - 1, 16);
+ vpx_wb_write_literal(wb, cm->height - 1, 16);
+ }
+
+ write_render_size(cm, wb);
+}
+
+static void write_sync_code(struct vpx_write_bit_buffer *wb) {
+ vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
+ vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
+ vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
+}
+
+static void write_profile(BITSTREAM_PROFILE profile,
+ struct vpx_write_bit_buffer *wb) {
+ switch (profile) {
+ case PROFILE_0: vpx_wb_write_literal(wb, 0, 2); break;
+ case PROFILE_1: vpx_wb_write_literal(wb, 2, 2); break;
+ case PROFILE_2: vpx_wb_write_literal(wb, 1, 2); break;
+ default:
+ assert(profile == PROFILE_3);
+ vpx_wb_write_literal(wb, 6, 3);
+ break;
+ }
+}
+
+static void write_bitdepth_colorspace_sampling(
+ VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) {
+ if (cm->profile >= PROFILE_2) {
+ assert(cm->bit_depth > VPX_BITS_8);
+ vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
+ }
+ vpx_wb_write_literal(wb, cm->color_space, 3);
+ if (cm->color_space != VPX_CS_SRGB) {
+ // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
+ vpx_wb_write_bit(wb, cm->color_range);
+ if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
+ assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
+ vpx_wb_write_bit(wb, cm->subsampling_x);
+ vpx_wb_write_bit(wb, cm->subsampling_y);
+ vpx_wb_write_bit(wb, 0); // unused
+ } else {
+ assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
+ }
+ } else {
+ assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
+ vpx_wb_write_bit(wb, 0); // unused
+ }
+}
+
+static void write_uncompressed_header(VP9_COMP *cpi,
+ struct vpx_write_bit_buffer *wb) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+
+ vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
+
+ write_profile(cm->profile, wb);
+
+ // If to use show existing frame.
+ vpx_wb_write_bit(wb, cm->show_existing_frame);
+ if (cm->show_existing_frame) {
+ vpx_wb_write_literal(wb, cpi->alt_fb_idx, 3);
+ return;
+ }
+
+ vpx_wb_write_bit(wb, cm->frame_type);
+ vpx_wb_write_bit(wb, cm->show_frame);
+ vpx_wb_write_bit(wb, cm->error_resilient_mode);
+
+ if (cm->frame_type == KEY_FRAME) {
+ write_sync_code(wb);
+ write_bitdepth_colorspace_sampling(cm, wb);
+ write_frame_size(cm, wb);
+ } else {
+ if (!cm->show_frame) vpx_wb_write_bit(wb, cm->intra_only);
+
+ if (!cm->error_resilient_mode)
+ vpx_wb_write_literal(wb, cm->reset_frame_context, 2);
+
+ if (cm->intra_only) {
+ write_sync_code(wb);
+
+ // Note for profile 0, 420 8bpp is assumed.
+ if (cm->profile > PROFILE_0) {
+ write_bitdepth_colorspace_sampling(cm, wb);
+ }
+
+ vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES);
+ write_frame_size(cm, wb);
+ } else {
+ MV_REFERENCE_FRAME ref_frame;
+ vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES);
+ for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
+ assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
+ vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
+ REF_FRAMES_LOG2);
+ vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
+ }
+
+ write_frame_size_with_refs(cpi, wb);
+
+ vpx_wb_write_bit(wb, cm->allow_high_precision_mv);
+
+ fix_interp_filter(cm, cpi->td.counts);
+ write_interp_filter(cm->interp_filter, wb);
+ }
+ }
+
+ if (!cm->error_resilient_mode) {
+ vpx_wb_write_bit(wb, cm->refresh_frame_context);
+ vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
+ }
+
+ vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
+
+ encode_loopfilter(&cm->lf, wb);
+ encode_quantization(cm, wb);
+ encode_segmentation(cm, xd, wb);
+
+ write_tile_info(cm, wb);
+}
+
+static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+ FRAME_CONTEXT *const fc = cm->fc;
+ FRAME_COUNTS *counts = cpi->td.counts;
+ vpx_writer header_bc;
+
+ vpx_start_encode(&header_bc, data);
+
+ if (xd->lossless)
+ cm->tx_mode = ONLY_4X4;
+ else
+ encode_txfm_probs(cm, &header_bc, counts);
+
+ update_coef_probs(cpi, &header_bc);
+ update_skip_probs(cm, &header_bc, counts);
+
+ if (!frame_is_intra_only(cm)) {
+ int i;
+
+ for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
+ prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i],
+ counts->inter_mode[i], INTER_MODES, &header_bc);
+
+ if (cm->interp_filter == SWITCHABLE)
+ update_switchable_interp_probs(cm, &header_bc, counts);
+
+ for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
+ vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
+ counts->intra_inter[i]);
+
+ if (cpi->allow_comp_inter_inter) {
+ const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
+ const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
+
+ vpx_write_bit(&header_bc, use_compound_pred);
+ if (use_compound_pred) {
+ vpx_write_bit(&header_bc, use_hybrid_pred);
+ if (use_hybrid_pred)
+ for (i = 0; i < COMP_INTER_CONTEXTS; i++)
+ vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
+ counts->comp_inter[i]);
+ }
+ }
+
+ if (cm->reference_mode != COMPOUND_REFERENCE) {
+ for (i = 0; i < REF_CONTEXTS; i++) {
+ vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
+ counts->single_ref[i][0]);
+ vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
+ counts->single_ref[i][1]);
+ }
+ }
+
+ if (cm->reference_mode != SINGLE_REFERENCE)
+ for (i = 0; i < REF_CONTEXTS; i++)
+ vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
+ counts->comp_ref[i]);
+
+ for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
+ prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i],
+ counts->y_mode[i], INTRA_MODES, &header_bc);
+
+ for (i = 0; i < PARTITION_CONTEXTS; ++i)
+ prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
+ counts->partition[i], PARTITION_TYPES, &header_bc);
+
+ vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc,
+ &counts->mv);
+ }
+
+ vpx_stop_encode(&header_bc);
+ assert(header_bc.pos <= 0xffff);
+
+ return header_bc.pos;
+}
+
+void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
+ uint8_t *data = dest;
+ size_t first_part_size, uncompressed_hdr_size;
+ struct vpx_write_bit_buffer wb = { data, 0 };
+ struct vpx_write_bit_buffer saved_wb;
+
+#if CONFIG_BITSTREAM_DEBUG
+ bitstream_queue_reset_write();
+#endif
+
+ write_uncompressed_header(cpi, &wb);
+
+ // Skip the rest coding process if use show existing frame.
+ if (cpi->common.show_existing_frame) {
+ uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
+ data += uncompressed_hdr_size;
+ *size = data - dest;
+ return;
+ }
+
+ saved_wb = wb;
+ vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
+
+ uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
+ data += uncompressed_hdr_size;
+
+ vpx_clear_system_state();
+
+ first_part_size = write_compressed_header(cpi, data);
+ data += first_part_size;
+ // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
+ vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16);
+
+ data += encode_tiles(cpi, data);
+
+ *size = data - dest;
+}