summaryrefslogtreecommitdiffstats
path: root/media/libvpx/libvpx/vp9/encoder/vp9_ratectrl.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libvpx/libvpx/vp9/encoder/vp9_ratectrl.c')
-rw-r--r--media/libvpx/libvpx/vp9/encoder/vp9_ratectrl.c3391
1 files changed, 3391 insertions, 0 deletions
diff --git a/media/libvpx/libvpx/vp9/encoder/vp9_ratectrl.c b/media/libvpx/libvpx/vp9/encoder/vp9_ratectrl.c
new file mode 100644
index 0000000000..62d6b93028
--- /dev/null
+++ b/media/libvpx/libvpx/vp9/encoder/vp9_ratectrl.c
@@ -0,0 +1,3391 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "./vpx_dsp_rtcd.h"
+#include "vpx_dsp/vpx_dsp_common.h"
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/mem.h"
+#include "vpx_ports/system_state.h"
+
+#include "vp9/common/vp9_alloccommon.h"
+#include "vp9/common/vp9_blockd.h"
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_onyxc_int.h"
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_seg_common.h"
+
+#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_ext_ratectrl.h"
+#include "vp9/encoder/vp9_firstpass.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+
+#include "vpx/vpx_codec.h"
+#include "vpx/vpx_ext_ratectrl.h"
+#include "vpx/internal/vpx_codec_internal.h"
+
+// Max rate per frame for 1080P and below encodes if no level requirement given.
+// For larger formats limit to MAX_MB_RATE bits per MB
+// 4Mbits is derived from the level requirement for level 4 (1080P 30) which
+// requires that HW can sustain a rate of 16Mbits over a 4 frame group.
+// If a lower level requirement is specified then this may over ride this value.
+#define MAX_MB_RATE 250
+#define MAXRATE_1080P 4000000
+
+#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
+
+#define MIN_BPB_FACTOR 0.005
+#define MAX_BPB_FACTOR 50
+
+#if CONFIG_VP9_HIGHBITDEPTH
+#define ASSIGN_MINQ_TABLE(bit_depth, name) \
+ do { \
+ switch (bit_depth) { \
+ case VPX_BITS_8: name = name##_8; break; \
+ case VPX_BITS_10: name = name##_10; break; \
+ default: \
+ assert(bit_depth == VPX_BITS_12); \
+ name = name##_12; \
+ break; \
+ } \
+ } while (0)
+#else
+#define ASSIGN_MINQ_TABLE(bit_depth, name) \
+ do { \
+ (void)bit_depth; \
+ name = name##_8; \
+ } while (0)
+#endif
+
+// Tables relating active max Q to active min Q
+static int kf_low_motion_minq_8[QINDEX_RANGE];
+static int kf_high_motion_minq_8[QINDEX_RANGE];
+static int arfgf_low_motion_minq_8[QINDEX_RANGE];
+static int arfgf_high_motion_minq_8[QINDEX_RANGE];
+static int inter_minq_8[QINDEX_RANGE];
+static int rtc_minq_8[QINDEX_RANGE];
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static int kf_low_motion_minq_10[QINDEX_RANGE];
+static int kf_high_motion_minq_10[QINDEX_RANGE];
+static int arfgf_low_motion_minq_10[QINDEX_RANGE];
+static int arfgf_high_motion_minq_10[QINDEX_RANGE];
+static int inter_minq_10[QINDEX_RANGE];
+static int rtc_minq_10[QINDEX_RANGE];
+static int kf_low_motion_minq_12[QINDEX_RANGE];
+static int kf_high_motion_minq_12[QINDEX_RANGE];
+static int arfgf_low_motion_minq_12[QINDEX_RANGE];
+static int arfgf_high_motion_minq_12[QINDEX_RANGE];
+static int inter_minq_12[QINDEX_RANGE];
+static int rtc_minq_12[QINDEX_RANGE];
+#endif
+
+#ifdef AGGRESSIVE_VBR
+static int gf_high = 2400;
+static int gf_low = 400;
+static int kf_high = 4000;
+static int kf_low = 400;
+#else
+static int gf_high = 2000;
+static int gf_low = 400;
+static int kf_high = 4800;
+static int kf_low = 300;
+#endif
+
+// Functions to compute the active minq lookup table entries based on a
+// formulaic approach to facilitate easier adjustment of the Q tables.
+// The formulae were derived from computing a 3rd order polynomial best
+// fit to the original data (after plotting real maxq vs minq (not q index))
+static int get_minq_index(double maxq, double x3, double x2, double x1,
+ vpx_bit_depth_t bit_depth) {
+ int i;
+ const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
+
+ // Special case handling to deal with the step from q2.0
+ // down to lossless mode represented by q 1.0.
+ if (minqtarget <= 2.0) return 0;
+
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth)) return i;
+ }
+
+ return QINDEX_RANGE - 1;
+}
+
+static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
+ int *arfgf_high, int *inter, int *rtc,
+ vpx_bit_depth_t bit_depth) {
+ int i;
+ for (i = 0; i < QINDEX_RANGE; i++) {
+ const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
+ kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
+ kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
+#ifdef AGGRESSIVE_VBR
+ arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.275, bit_depth);
+ inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.80, bit_depth);
+#else
+ arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
+ inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
+#endif
+ arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
+ rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
+ }
+}
+
+void vp9_rc_init_minq_luts(void) {
+ init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
+ arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
+ inter_minq_8, rtc_minq_8, VPX_BITS_8);
+#if CONFIG_VP9_HIGHBITDEPTH
+ init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
+ arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
+ inter_minq_10, rtc_minq_10, VPX_BITS_10);
+ init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
+ arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
+ inter_minq_12, rtc_minq_12, VPX_BITS_12);
+#endif
+}
+
+// These functions use formulaic calculations to make playing with the
+// quantizer tables easier. If necessary they can be replaced by lookup
+// tables if and when things settle down in the experimental bitstream
+double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
+// Convert the index to a real Q value (scaled down to match old Q values)
+#if CONFIG_VP9_HIGHBITDEPTH
+ switch (bit_depth) {
+ case VPX_BITS_8: return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
+ case VPX_BITS_10: return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
+ default:
+ assert(bit_depth == VPX_BITS_12);
+ return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
+ }
+#else
+ return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
+#endif
+}
+
+int vp9_convert_q_to_qindex(double q_val, vpx_bit_depth_t bit_depth) {
+ int i;
+
+ for (i = 0; i < QINDEX_RANGE; ++i)
+ if (vp9_convert_qindex_to_q(i, bit_depth) >= q_val) break;
+
+ if (i == QINDEX_RANGE) i--;
+
+ return i;
+}
+
+int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
+ double correction_factor, vpx_bit_depth_t bit_depth) {
+ const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
+ int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
+
+ assert(correction_factor <= MAX_BPB_FACTOR &&
+ correction_factor >= MIN_BPB_FACTOR);
+
+ // q based adjustment to baseline enumerator
+ enumerator += (int)(enumerator * q) >> 12;
+ return (int)(enumerator * correction_factor / q);
+}
+
+int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
+ double correction_factor,
+ vpx_bit_depth_t bit_depth) {
+ const int bpm =
+ (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
+ return VPXMAX(FRAME_OVERHEAD_BITS,
+ (int)(((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS));
+}
+
+int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+
+ const int min_frame_target =
+ VPXMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
+ if (target < min_frame_target) target = min_frame_target;
+ if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
+ // If there is an active ARF at this location use the minimum
+ // bits on this frame even if it is a constructed arf.
+ // The active maximum quantizer insures that an appropriate
+ // number of bits will be spent if needed for constructed ARFs.
+ target = min_frame_target;
+ }
+
+ // Clip the frame target to the maximum allowed value.
+ if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
+
+ if (oxcf->rc_max_inter_bitrate_pct) {
+ const int64_t max_rate =
+ (int64_t)rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
+ // target is of type int and VPXMIN cannot evaluate to larger than target
+ target = (int)VPXMIN(target, max_rate);
+ }
+ return target;
+}
+
+int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ if (oxcf->rc_max_intra_bitrate_pct) {
+ const int64_t max_rate =
+ (int64_t)rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
+ target = (int)VPXMIN(target, max_rate);
+ }
+ if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
+ return target;
+}
+
+// TODO(marpan/jianj): bits_off_target and buffer_level are used in the same
+// way for CBR mode, for the buffering updates below. Look into removing one
+// of these (i.e., bits_off_target).
+// Update the buffer level before encoding with the per-frame-bandwidth,
+void vp9_update_buffer_level_preencode(VP9_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ rc->bits_off_target += rc->avg_frame_bandwidth;
+ // Clip the buffer level to the maximum specified buffer size.
+ rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
+ rc->buffer_level = rc->bits_off_target;
+}
+
+// Update the buffer level before encoding with the per-frame-bandwidth
+// for SVC. The current and all upper temporal layers are updated, needed
+// for the layered rate control which involves cumulative buffer levels for
+// the temporal layers. Allow for using the timestamp(pts) delta for the
+// framerate when the set_ref_frame_config is used.
+void vp9_update_buffer_level_svc_preencode(VP9_COMP *cpi) {
+ SVC *const svc = &cpi->svc;
+ int i;
+ // Set this to 1 to use timestamp delta for "framerate" under
+ // ref_frame_config usage.
+ int use_timestamp = 1;
+ const int64_t ts_delta =
+ svc->time_stamp_superframe - svc->time_stamp_prev[svc->spatial_layer_id];
+ for (i = svc->temporal_layer_id; i < svc->number_temporal_layers; ++i) {
+ const int layer =
+ LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
+ LAYER_CONTEXT *const lc = &svc->layer_context[layer];
+ RATE_CONTROL *const lrc = &lc->rc;
+ if (use_timestamp && cpi->svc.use_set_ref_frame_config &&
+ svc->number_temporal_layers == 1 && ts_delta > 0 &&
+ svc->current_superframe > 0) {
+ // TODO(marpan): This may need to be modified for temporal layers.
+ const double framerate_pts = 10000000.0 / ts_delta;
+ lrc->bits_off_target += (int)round(lc->target_bandwidth / framerate_pts);
+ } else {
+ lrc->bits_off_target += (int)round(lc->target_bandwidth / lc->framerate);
+ }
+ // Clip buffer level to maximum buffer size for the layer.
+ lrc->bits_off_target =
+ VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
+ lrc->buffer_level = lrc->bits_off_target;
+ if (i == svc->temporal_layer_id) {
+ cpi->rc.bits_off_target = lrc->bits_off_target;
+ cpi->rc.buffer_level = lrc->buffer_level;
+ }
+ }
+}
+
+// Update the buffer level for higher temporal layers, given the encoded current
+// temporal layer.
+static void update_layer_buffer_level_postencode(SVC *svc,
+ int encoded_frame_size) {
+ int i = 0;
+ const int current_temporal_layer = svc->temporal_layer_id;
+ for (i = current_temporal_layer + 1; i < svc->number_temporal_layers; ++i) {
+ const int layer =
+ LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ RATE_CONTROL *lrc = &lc->rc;
+ lrc->bits_off_target -= encoded_frame_size;
+ // Clip buffer level to maximum buffer size for the layer.
+ lrc->bits_off_target =
+ VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
+ lrc->buffer_level = lrc->bits_off_target;
+ }
+}
+
+// Update the buffer level after encoding with encoded frame size.
+static void update_buffer_level_postencode(VP9_COMP *cpi,
+ int encoded_frame_size) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ rc->bits_off_target -= encoded_frame_size;
+ // Clip the buffer level to the maximum specified buffer size.
+ rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
+ // For screen-content mode, and if frame-dropper is off, don't let buffer
+ // level go below threshold, given here as -rc->maximum_ buffer_size.
+ if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
+ cpi->oxcf.drop_frames_water_mark == 0)
+ rc->bits_off_target = VPXMAX(rc->bits_off_target, -rc->maximum_buffer_size);
+
+ rc->buffer_level = rc->bits_off_target;
+
+ if (is_one_pass_svc(cpi)) {
+ update_layer_buffer_level_postencode(&cpi->svc, encoded_frame_size);
+ }
+}
+
+int vp9_rc_get_default_min_gf_interval(int width, int height,
+ double framerate) {
+ // Assume we do not need any constraint lower than 4K 20 fps
+ static const double factor_safe = 3840 * 2160 * 20.0;
+ const double factor = width * height * framerate;
+ const int default_interval =
+ clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
+
+ if (factor <= factor_safe)
+ return default_interval;
+ else
+ return VPXMAX(default_interval,
+ (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
+ // Note this logic makes:
+ // 4K24: 5
+ // 4K30: 6
+ // 4K60: 12
+}
+
+int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
+ int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
+ interval += (interval & 0x01); // Round to even value
+ return VPXMAX(interval, min_gf_interval);
+}
+
+void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
+ int i;
+
+ if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
+ rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
+ rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
+ } else {
+ rc->avg_frame_qindex[KEY_FRAME] =
+ (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
+ rc->avg_frame_qindex[INTER_FRAME] =
+ (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
+ }
+
+ rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
+ rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
+
+ rc->buffer_level = rc->starting_buffer_level;
+ rc->bits_off_target = rc->starting_buffer_level;
+
+ rc->rolling_target_bits = rc->avg_frame_bandwidth;
+ rc->rolling_actual_bits = rc->avg_frame_bandwidth;
+ rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
+ rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
+
+ rc->total_actual_bits = 0;
+ rc->total_target_bits = 0;
+ rc->total_target_vs_actual = 0;
+ rc->avg_frame_low_motion = 0;
+ rc->count_last_scene_change = 0;
+ rc->af_ratio_onepass_vbr = 10;
+ rc->prev_avg_source_sad_lag = 0;
+ rc->high_source_sad = 0;
+ rc->reset_high_source_sad = 0;
+ rc->high_source_sad_lagindex = -1;
+ rc->high_num_blocks_with_motion = 0;
+ rc->hybrid_intra_scene_change = 0;
+ rc->re_encode_maxq_scene_change = 0;
+ rc->alt_ref_gf_group = 0;
+ rc->last_frame_is_src_altref = 0;
+ rc->fac_active_worst_inter = 150;
+ rc->fac_active_worst_gf = 100;
+ rc->force_qpmin = 0;
+ for (i = 0; i < MAX_LAG_BUFFERS; ++i) rc->avg_source_sad[i] = 0;
+ rc->frames_to_key = 0;
+ rc->frames_since_key = 8; // Sensible default for first frame.
+ rc->this_key_frame_forced = 0;
+ rc->next_key_frame_forced = 0;
+ rc->source_alt_ref_pending = 0;
+ rc->source_alt_ref_active = 0;
+
+ rc->frames_till_gf_update_due = 0;
+ rc->constrain_gf_key_freq_onepass_vbr = 1;
+ rc->ni_av_qi = oxcf->worst_allowed_q;
+ rc->ni_tot_qi = 0;
+ rc->ni_frames = 0;
+
+ rc->tot_q = 0.0;
+ rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
+
+ for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
+ rc->rate_correction_factors[i] = 1.0;
+ rc->damped_adjustment[i] = 0;
+ }
+
+ rc->min_gf_interval = oxcf->min_gf_interval;
+ rc->max_gf_interval = oxcf->max_gf_interval;
+ if (rc->min_gf_interval == 0)
+ rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
+ oxcf->width, oxcf->height, oxcf->init_framerate);
+ if (rc->max_gf_interval == 0)
+ rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
+ oxcf->init_framerate, rc->min_gf_interval);
+ rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
+ if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
+ rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
+ } else {
+ rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
+ }
+
+ rc->force_max_q = 0;
+ rc->last_post_encode_dropped_scene_change = 0;
+ rc->use_post_encode_drop = 0;
+ rc->ext_use_post_encode_drop = 0;
+ rc->disable_overshoot_maxq_cbr = 0;
+ rc->arf_active_best_quality_adjustment_factor = 1.0;
+ rc->arf_increase_active_best_quality = 0;
+ rc->preserve_arf_as_gld = 0;
+ rc->preserve_next_arf_as_gld = 0;
+ rc->show_arf_as_gld = 0;
+}
+
+static int check_buffer_above_thresh(VP9_COMP *cpi, int drop_mark) {
+ SVC *svc = &cpi->svc;
+ if (!cpi->use_svc || cpi->svc.framedrop_mode != FULL_SUPERFRAME_DROP) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ return (rc->buffer_level > drop_mark);
+ } else {
+ int i;
+ // For SVC in the FULL_SUPERFRAME_DROP): the condition on
+ // buffer (if its above threshold, so no drop) is checked on current and
+ // upper spatial layers. If any spatial layer is not above threshold then
+ // we return 0.
+ for (i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
+ const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
+ svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ RATE_CONTROL *lrc = &lc->rc;
+ // Exclude check for layer whose bitrate is 0.
+ if (lc->target_bandwidth > 0) {
+ const int drop_mark_layer = (int)(cpi->svc.framedrop_thresh[i] *
+ lrc->optimal_buffer_level / 100);
+ if (!(lrc->buffer_level > drop_mark_layer)) return 0;
+ }
+ }
+ return 1;
+ }
+}
+
+static int check_buffer_below_thresh(VP9_COMP *cpi, int drop_mark) {
+ SVC *svc = &cpi->svc;
+ if (!cpi->use_svc || cpi->svc.framedrop_mode == LAYER_DROP) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ return (rc->buffer_level <= drop_mark);
+ } else {
+ int i;
+ // For SVC in the constrained framedrop mode (svc->framedrop_mode =
+ // CONSTRAINED_LAYER_DROP or FULL_SUPERFRAME_DROP): the condition on
+ // buffer (if its below threshold, so drop frame) is checked on current
+ // and upper spatial layers. For FULL_SUPERFRAME_DROP mode if any
+ // spatial layer is <= threshold, then we return 1 (drop).
+ for (i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
+ const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
+ svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ RATE_CONTROL *lrc = &lc->rc;
+ // Exclude check for layer whose bitrate is 0.
+ if (lc->target_bandwidth > 0) {
+ const int drop_mark_layer = (int)(cpi->svc.framedrop_thresh[i] *
+ lrc->optimal_buffer_level / 100);
+ if (cpi->svc.framedrop_mode == FULL_SUPERFRAME_DROP) {
+ if (lrc->buffer_level <= drop_mark_layer) return 1;
+ } else {
+ if (!(lrc->buffer_level <= drop_mark_layer)) return 0;
+ }
+ }
+ }
+ if (cpi->svc.framedrop_mode == FULL_SUPERFRAME_DROP)
+ return 0;
+ else
+ return 1;
+ }
+}
+
+int vp9_test_drop(VP9_COMP *cpi) {
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ SVC *svc = &cpi->svc;
+ int drop_frames_water_mark = oxcf->drop_frames_water_mark;
+ if (cpi->use_svc) {
+ // If we have dropped max_consec_drop frames, then we don't
+ // drop this spatial layer, and reset counter to 0.
+ if (svc->drop_count[svc->spatial_layer_id] == svc->max_consec_drop) {
+ svc->drop_count[svc->spatial_layer_id] = 0;
+ return 0;
+ } else {
+ drop_frames_water_mark = svc->framedrop_thresh[svc->spatial_layer_id];
+ }
+ }
+ if (!drop_frames_water_mark ||
+ (svc->spatial_layer_id > 0 &&
+ svc->framedrop_mode == FULL_SUPERFRAME_DROP)) {
+ return 0;
+ } else {
+ if ((rc->buffer_level < 0 && svc->framedrop_mode != FULL_SUPERFRAME_DROP) ||
+ (check_buffer_below_thresh(cpi, -1) &&
+ svc->framedrop_mode == FULL_SUPERFRAME_DROP)) {
+ // Always drop if buffer is below 0.
+ return 1;
+ } else {
+ // If buffer is below drop_mark, for now just drop every other frame
+ // (starting with the next frame) until it increases back over drop_mark.
+ int drop_mark =
+ (int)(drop_frames_water_mark * rc->optimal_buffer_level / 100);
+ if (check_buffer_above_thresh(cpi, drop_mark) &&
+ (rc->decimation_factor > 0)) {
+ --rc->decimation_factor;
+ } else if (check_buffer_below_thresh(cpi, drop_mark) &&
+ rc->decimation_factor == 0) {
+ rc->decimation_factor = 1;
+ }
+ if (rc->decimation_factor > 0) {
+ if (rc->decimation_count > 0) {
+ --rc->decimation_count;
+ return 1;
+ } else {
+ rc->decimation_count = rc->decimation_factor;
+ return 0;
+ }
+ } else {
+ rc->decimation_count = 0;
+ return 0;
+ }
+ }
+ }
+}
+
+int post_encode_drop_cbr(VP9_COMP *cpi, size_t *size) {
+ size_t frame_size = *size << 3;
+ int64_t new_buffer_level =
+ cpi->rc.buffer_level + cpi->rc.avg_frame_bandwidth - (int64_t)frame_size;
+
+ // For now we drop if new buffer level (given the encoded frame size) goes
+ // below 0.
+ if (new_buffer_level < 0) {
+ *size = 0;
+ vp9_rc_postencode_update_drop_frame(cpi);
+ // Update flag to use for next frame.
+ if (cpi->rc.high_source_sad ||
+ (cpi->use_svc && cpi->svc.high_source_sad_superframe))
+ cpi->rc.last_post_encode_dropped_scene_change = 1;
+ // Force max_q on next fame.
+ cpi->rc.force_max_q = 1;
+ cpi->rc.avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality;
+ cpi->last_frame_dropped = 1;
+ cpi->ext_refresh_frame_flags_pending = 0;
+ if (cpi->use_svc) {
+ SVC *svc = &cpi->svc;
+ int sl = 0;
+ int tl = 0;
+ svc->last_layer_dropped[svc->spatial_layer_id] = 1;
+ svc->drop_spatial_layer[svc->spatial_layer_id] = 1;
+ svc->drop_count[svc->spatial_layer_id]++;
+ svc->skip_enhancement_layer = 1;
+ // Postencode drop is only checked on base spatial layer,
+ // for now if max-q is set on base we force it on all layers.
+ for (sl = 0; sl < svc->number_spatial_layers; ++sl) {
+ for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
+ const int layer =
+ LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ RATE_CONTROL *lrc = &lc->rc;
+ lrc->force_max_q = 1;
+ lrc->avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality;
+ }
+ }
+ }
+ return 1;
+ }
+
+ cpi->rc.force_max_q = 0;
+ cpi->rc.last_post_encode_dropped_scene_change = 0;
+ return 0;
+}
+
+int vp9_rc_drop_frame(VP9_COMP *cpi) {
+ SVC *svc = &cpi->svc;
+ int svc_prev_layer_dropped = 0;
+ // In the constrained or full_superframe framedrop mode for svc
+ // (framedrop_mode != (LAYER_DROP && CONSTRAINED_FROM_ABOVE)),
+ // if the previous spatial layer was dropped, drop the current spatial layer.
+ if (cpi->use_svc && svc->spatial_layer_id > 0 &&
+ svc->drop_spatial_layer[svc->spatial_layer_id - 1])
+ svc_prev_layer_dropped = 1;
+ if ((svc_prev_layer_dropped && svc->framedrop_mode != LAYER_DROP &&
+ svc->framedrop_mode != CONSTRAINED_FROM_ABOVE_DROP) ||
+ svc->force_drop_constrained_from_above[svc->spatial_layer_id] ||
+ vp9_test_drop(cpi)) {
+ vp9_rc_postencode_update_drop_frame(cpi);
+ cpi->ext_refresh_frame_flags_pending = 0;
+ cpi->last_frame_dropped = 1;
+ if (cpi->use_svc) {
+ svc->last_layer_dropped[svc->spatial_layer_id] = 1;
+ svc->drop_spatial_layer[svc->spatial_layer_id] = 1;
+ svc->drop_count[svc->spatial_layer_id]++;
+ svc->skip_enhancement_layer = 1;
+ if (svc->framedrop_mode == LAYER_DROP ||
+ (svc->framedrop_mode == CONSTRAINED_FROM_ABOVE_DROP &&
+ svc->force_drop_constrained_from_above[svc->number_spatial_layers -
+ 1] == 0) ||
+ svc->drop_spatial_layer[0] == 0) {
+ // For the case of constrained drop mode where full superframe is
+ // dropped, we don't increment the svc frame counters.
+ // In particular temporal layer counter (which is incremented in
+ // vp9_inc_frame_in_layer()) won't be incremented, so on a dropped
+ // frame we try the same temporal_layer_id on next incoming frame.
+ // This is to avoid an issue with temporal alignment with full
+ // superframe dropping.
+ vp9_inc_frame_in_layer(cpi);
+ }
+ if (svc->spatial_layer_id == svc->number_spatial_layers - 1) {
+ int i;
+ int all_layers_drop = 1;
+ for (i = 0; i < svc->spatial_layer_id; i++) {
+ if (svc->drop_spatial_layer[i] == 0) {
+ all_layers_drop = 0;
+ break;
+ }
+ }
+ if (all_layers_drop == 1) svc->skip_enhancement_layer = 0;
+ }
+ }
+ return 1;
+ }
+ return 0;
+}
+
+static int adjust_q_cbr(const VP9_COMP *cpi, int q) {
+ // This makes sure q is between oscillating Qs to prevent resonance.
+ if (!cpi->rc.reset_high_source_sad &&
+ (!cpi->oxcf.gf_cbr_boost_pct ||
+ !(cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)) &&
+ (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
+ cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
+ int qclamp = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
+ VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
+ // If the previous frame had overshoot and the current q needs to increase
+ // above the clamped value, reduce the clamp for faster reaction to
+ // overshoot.
+ if (cpi->rc.rc_1_frame == -1 && q > qclamp)
+ q = (q + qclamp) >> 1;
+ else
+ q = qclamp;
+ }
+ if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
+ cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_limit_q(cpi, &q);
+ return VPXMAX(VPXMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality);
+}
+
+static double get_rate_correction_factor(const VP9_COMP *cpi) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9_COMMON *const cm = &cpi->common;
+ double rcf;
+
+ if (frame_is_intra_only(cm)) {
+ rcf = rc->rate_correction_factors[KF_STD];
+ } else if (cpi->oxcf.pass == 2) {
+ RATE_FACTOR_LEVEL rf_lvl =
+ cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
+ rcf = rc->rate_correction_factors[rf_lvl];
+ } else {
+ if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
+ !rc->is_src_frame_alt_ref && !cpi->use_svc &&
+ (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
+ rcf = rc->rate_correction_factors[GF_ARF_STD];
+ else
+ rcf = rc->rate_correction_factors[INTER_NORMAL];
+ }
+ rcf *= rcf_mult[rc->frame_size_selector];
+ return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
+}
+
+static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ const VP9_COMMON *const cm = &cpi->common;
+
+ // Normalize RCF to account for the size-dependent scaling factor.
+ factor /= rcf_mult[cpi->rc.frame_size_selector];
+
+ factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
+
+ if (frame_is_intra_only(cm)) {
+ rc->rate_correction_factors[KF_STD] = factor;
+ } else if (cpi->oxcf.pass == 2) {
+ RATE_FACTOR_LEVEL rf_lvl =
+ cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
+ rc->rate_correction_factors[rf_lvl] = factor;
+ } else {
+ if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
+ !rc->is_src_frame_alt_ref && !cpi->use_svc &&
+ (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
+ rc->rate_correction_factors[GF_ARF_STD] = factor;
+ else
+ rc->rate_correction_factors[INTER_NORMAL] = factor;
+ }
+}
+
+void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
+ const VP9_COMMON *const cm = &cpi->common;
+ int correction_factor = 100;
+ double rate_correction_factor = get_rate_correction_factor(cpi);
+ double adjustment_limit;
+ RATE_FACTOR_LEVEL rf_lvl =
+ cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
+
+ int projected_size_based_on_q = 0;
+
+ // Do not update the rate factors for arf overlay frames.
+ if (cpi->rc.is_src_frame_alt_ref) return;
+
+ // Clear down mmx registers to allow floating point in what follows
+ vpx_clear_system_state();
+
+ // Work out how big we would have expected the frame to be at this Q given
+ // the current correction factor.
+ // Stay in double to avoid int overflow when values are large
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
+ projected_size_based_on_q =
+ vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
+ } else {
+ FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
+ projected_size_based_on_q =
+ vp9_estimate_bits_at_q(frame_type, cm->base_qindex, cm->MBs,
+ rate_correction_factor, cm->bit_depth);
+ }
+ // Work out a size correction factor.
+ if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
+ correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
+ projected_size_based_on_q);
+
+ // Do not use damped adjustment for the first frame of each frame type
+ if (!cpi->rc.damped_adjustment[rf_lvl]) {
+ adjustment_limit = 1.0;
+ cpi->rc.damped_adjustment[rf_lvl] = 1;
+ } else {
+ // More heavily damped adjustment used if we have been oscillating either
+ // side of target.
+ adjustment_limit =
+ 0.25 + 0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
+ }
+
+ cpi->rc.q_2_frame = cpi->rc.q_1_frame;
+ cpi->rc.q_1_frame = cm->base_qindex;
+ cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
+ if (correction_factor > 110)
+ cpi->rc.rc_1_frame = -1;
+ else if (correction_factor < 90)
+ cpi->rc.rc_1_frame = 1;
+ else
+ cpi->rc.rc_1_frame = 0;
+
+ // Turn off oscilation detection in the case of massive overshoot.
+ if (cpi->rc.rc_1_frame == -1 && cpi->rc.rc_2_frame == 1 &&
+ correction_factor > 1000) {
+ cpi->rc.rc_2_frame = 0;
+ }
+
+ if (correction_factor > 102) {
+ // We are not already at the worst allowable quality
+ correction_factor =
+ (int)(100 + ((correction_factor - 100) * adjustment_limit));
+ rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
+ // Keep rate_correction_factor within limits
+ if (rate_correction_factor > MAX_BPB_FACTOR)
+ rate_correction_factor = MAX_BPB_FACTOR;
+ } else if (correction_factor < 99) {
+ // We are not already at the best allowable quality
+ correction_factor =
+ (int)(100 - ((100 - correction_factor) * adjustment_limit));
+ rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
+
+ // Keep rate_correction_factor within limits
+ if (rate_correction_factor < MIN_BPB_FACTOR)
+ rate_correction_factor = MIN_BPB_FACTOR;
+ }
+
+ set_rate_correction_factor(cpi, rate_correction_factor);
+}
+
+int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
+ int active_best_quality, int active_worst_quality) {
+ const VP9_COMMON *const cm = &cpi->common;
+ CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
+ int q = active_worst_quality;
+ int last_error = INT_MAX;
+ int i, target_bits_per_mb, bits_per_mb_at_this_q;
+ const double correction_factor = get_rate_correction_factor(cpi);
+
+ // Calculate required scaling factor based on target frame size and size of
+ // frame produced using previous Q.
+ target_bits_per_mb =
+ (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs);
+
+ i = active_best_quality;
+
+ do {
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cr->apply_cyclic_refresh &&
+ (!cpi->oxcf.gf_cbr_boost_pct || !cpi->refresh_golden_frame)) {
+ bits_per_mb_at_this_q =
+ (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
+ } else {
+ FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
+ bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(
+ frame_type, i, correction_factor, cm->bit_depth);
+ }
+
+ if (bits_per_mb_at_this_q <= target_bits_per_mb) {
+ if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
+ q = i;
+ else
+ q = i - 1;
+
+ break;
+ } else {
+ last_error = bits_per_mb_at_this_q - target_bits_per_mb;
+ }
+ } while (++i <= active_worst_quality);
+
+ // Adjustment to q for CBR mode.
+ if (cpi->oxcf.rc_mode == VPX_CBR) return adjust_q_cbr(cpi, q);
+
+ return q;
+}
+
+static int get_active_quality(int q, int gfu_boost, int low, int high,
+ int *low_motion_minq, int *high_motion_minq) {
+ if (gfu_boost > high) {
+ return low_motion_minq[q];
+ } else if (gfu_boost < low) {
+ return high_motion_minq[q];
+ } else {
+ const int gap = high - low;
+ const int offset = high - gfu_boost;
+ const int qdiff = high_motion_minq[q] - low_motion_minq[q];
+ const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
+ return low_motion_minq[q] + adjustment;
+ }
+}
+
+static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
+ vpx_bit_depth_t bit_depth) {
+ int *kf_low_motion_minq;
+ int *kf_high_motion_minq;
+ ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
+ ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
+ return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
+ kf_low_motion_minq, kf_high_motion_minq);
+}
+
+static int get_gf_active_quality(const VP9_COMP *const cpi, int q,
+ vpx_bit_depth_t bit_depth) {
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ const RATE_CONTROL *const rc = &cpi->rc;
+
+ int *arfgf_low_motion_minq;
+ int *arfgf_high_motion_minq;
+ const int gfu_boost = cpi->multi_layer_arf
+ ? gf_group->gfu_boost[gf_group->index]
+ : rc->gfu_boost;
+ ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
+ ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
+ return get_active_quality(q, gfu_boost, gf_low, gf_high,
+ arfgf_low_motion_minq, arfgf_high_motion_minq);
+}
+
+static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const unsigned int curr_frame = cpi->common.current_video_frame;
+ int active_worst_quality;
+
+ if (cpi->common.frame_type == KEY_FRAME) {
+ active_worst_quality =
+ curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] << 1;
+ } else {
+ if (!rc->is_src_frame_alt_ref && !cpi->use_svc &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ active_worst_quality =
+ curr_frame == 1
+ ? rc->last_q[KEY_FRAME] * 5 >> 2
+ : rc->last_q[INTER_FRAME] * rc->fac_active_worst_gf / 100;
+ } else {
+ active_worst_quality = curr_frame == 1
+ ? rc->last_q[KEY_FRAME] << 1
+ : rc->avg_frame_qindex[INTER_FRAME] *
+ rc->fac_active_worst_inter / 100;
+ }
+ }
+ return VPXMIN(active_worst_quality, rc->worst_quality);
+}
+
+// Adjust active_worst_quality level based on buffer level.
+static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
+ // Adjust active_worst_quality: If buffer is above the optimal/target level,
+ // bring active_worst_quality down depending on fullness of buffer.
+ // If buffer is below the optimal level, let the active_worst_quality go from
+ // ambient Q (at buffer = optimal level) to worst_quality level
+ // (at buffer = critical level).
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *rc = &cpi->rc;
+ // Buffer level below which we push active_worst to worst_quality.
+ int64_t critical_level = rc->optimal_buffer_level >> 3;
+ int64_t buff_lvl_step = 0;
+ int adjustment = 0;
+ int active_worst_quality;
+ int ambient_qp;
+ unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
+ if (frame_is_intra_only(cm) || rc->reset_high_source_sad || rc->force_max_q)
+ return rc->worst_quality;
+ // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
+ // for the first few frames following key frame. These are both initialized
+ // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
+ // So for first few frames following key, the qp of that key frame is weighted
+ // into the active_worst_quality setting.
+ ambient_qp = (cm->current_video_frame < num_frames_weight_key)
+ ? VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
+ rc->avg_frame_qindex[KEY_FRAME])
+ : rc->avg_frame_qindex[INTER_FRAME];
+ active_worst_quality = VPXMIN(rc->worst_quality, (ambient_qp * 5) >> 2);
+ // For SVC if the current base spatial layer was key frame, use the QP from
+ // that base layer for ambient_qp.
+ if (cpi->use_svc && cpi->svc.spatial_layer_id > 0) {
+ int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
+ cpi->svc.number_temporal_layers);
+ const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
+ if (lc->is_key_frame) {
+ const RATE_CONTROL *lrc = &lc->rc;
+ ambient_qp = VPXMIN(ambient_qp, lrc->last_q[KEY_FRAME]);
+ active_worst_quality = VPXMIN(rc->worst_quality, (ambient_qp * 9) >> 3);
+ }
+ }
+ if (rc->buffer_level > rc->optimal_buffer_level) {
+ // Adjust down.
+ // Maximum limit for down adjustment ~30%; make it lower for screen content.
+ int max_adjustment_down = active_worst_quality / 3;
+ if (cpi->oxcf.content == VP9E_CONTENT_SCREEN)
+ max_adjustment_down = active_worst_quality >> 3;
+ if (max_adjustment_down) {
+ buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
+ max_adjustment_down);
+ if (buff_lvl_step)
+ adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
+ buff_lvl_step);
+ active_worst_quality -= adjustment;
+ }
+ } else if (rc->buffer_level > critical_level) {
+ // Adjust up from ambient Q.
+ if (critical_level) {
+ buff_lvl_step = (rc->optimal_buffer_level - critical_level);
+ if (buff_lvl_step) {
+ adjustment = (int)((rc->worst_quality - ambient_qp) *
+ (rc->optimal_buffer_level - rc->buffer_level) /
+ buff_lvl_step);
+ }
+ active_worst_quality = ambient_qp + adjustment;
+ }
+ } else {
+ // Set to worst_quality if buffer is below critical level.
+ active_worst_quality = rc->worst_quality;
+ }
+ return active_worst_quality;
+}
+
+static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int active_best_quality;
+ int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
+ int q;
+ int *rtc_minq;
+ ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
+
+ if (frame_is_intra_only(cm)) {
+ active_best_quality = rc->best_quality;
+ // Handle the special case for key frames forced when we have reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ if (rc->this_key_frame_forced) {
+ int qindex = rc->last_boosted_qindex;
+ double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ int delta_qindex = vp9_compute_qdelta(
+ rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth);
+ active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+ } else if (cm->current_video_frame > 0) {
+ // not first frame of one pass and kf_boost is set
+ double q_adj_factor = 1.0;
+ double q_val;
+
+ active_best_quality = get_kf_active_quality(
+ rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+ active_best_quality +=
+ vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
+ }
+ } else if (!rc->is_src_frame_alt_ref && !cpi->use_svc &&
+ cpi->oxcf.gf_cbr_boost_pct &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
+ } else {
+ q = active_worst_quality;
+ }
+ active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
+ } else {
+ // Use the lower of active_worst_quality and recent/average Q.
+ if (cm->current_video_frame > 1) {
+ if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
+ active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
+ else
+ active_best_quality = rtc_minq[active_worst_quality];
+ } else {
+ if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
+ active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
+ else
+ active_best_quality = rtc_minq[active_worst_quality];
+ }
+ }
+
+ // Clip the active best and worst quality values to limits
+ active_best_quality =
+ clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+ active_worst_quality =
+ clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+ // Special case code to try and match quality with forced key frames
+ if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
+ q = rc->last_boosted_qindex;
+ } else {
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+ active_worst_quality);
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+ }
+
+ assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+static int get_active_cq_level_one_pass(const RATE_CONTROL *rc,
+ const VP9EncoderConfig *const oxcf) {
+ static const double cq_adjust_threshold = 0.1;
+ int active_cq_level = oxcf->cq_level;
+ if (oxcf->rc_mode == VPX_CQ && rc->total_target_bits > 0) {
+ const double x = (double)rc->total_actual_bits / rc->total_target_bits;
+ if (x < cq_adjust_threshold) {
+ active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
+ }
+ }
+ return active_cq_level;
+}
+
+#define SMOOTH_PCT_MIN 0.1
+#define SMOOTH_PCT_DIV 0.05
+static int get_active_cq_level_two_pass(const TWO_PASS *twopass,
+ const RATE_CONTROL *rc,
+ const VP9EncoderConfig *const oxcf) {
+ static const double cq_adjust_threshold = 0.1;
+ int active_cq_level = oxcf->cq_level;
+ if (oxcf->rc_mode == VPX_CQ) {
+ if (twopass->mb_smooth_pct > SMOOTH_PCT_MIN) {
+ active_cq_level -=
+ (int)((twopass->mb_smooth_pct - SMOOTH_PCT_MIN) / SMOOTH_PCT_DIV);
+ active_cq_level = VPXMAX(active_cq_level, 0);
+ }
+ if (rc->total_target_bits > 0) {
+ const double x = (double)rc->total_actual_bits / rc->total_target_bits;
+ if (x < cq_adjust_threshold) {
+ active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
+ }
+ }
+ }
+ return active_cq_level;
+}
+
+static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
+ int *bottom_index,
+ int *top_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const int cq_level = get_active_cq_level_one_pass(rc, oxcf);
+ int active_best_quality;
+ int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
+ int q;
+ int *inter_minq;
+ ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
+
+ if (frame_is_intra_only(cm)) {
+ if (oxcf->rc_mode == VPX_Q) {
+ int qindex = cq_level;
+ double qstart = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ int delta_qindex =
+ vp9_compute_qdelta(rc, qstart, qstart * 0.25, cm->bit_depth);
+ active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+ } else if (rc->this_key_frame_forced) {
+ // Handle the special case for key frames forced when we have reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ int qindex = rc->last_boosted_qindex;
+ double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ int delta_qindex = vp9_compute_qdelta(
+ rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth);
+ active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+ } else {
+ // not first frame of one pass and kf_boost is set
+ double q_adj_factor = 1.0;
+ double q_val;
+
+ active_best_quality = get_kf_active_quality(
+ rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+ active_best_quality +=
+ vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
+ }
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1) {
+ if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
+ } else {
+ q = active_worst_quality;
+ }
+ } else {
+ q = rc->avg_frame_qindex[KEY_FRAME];
+ }
+ // For constrained quality don't allow Q less than the cq level
+ if (oxcf->rc_mode == VPX_CQ) {
+ if (q < cq_level) q = cq_level;
+
+ active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
+
+ // Constrained quality use slightly lower active best.
+ active_best_quality = active_best_quality * 15 / 16;
+
+ } else if (oxcf->rc_mode == VPX_Q) {
+ int qindex = cq_level;
+ double qstart = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ int delta_qindex;
+ if (cpi->refresh_alt_ref_frame)
+ delta_qindex =
+ vp9_compute_qdelta(rc, qstart, qstart * 0.40, cm->bit_depth);
+ else
+ delta_qindex =
+ vp9_compute_qdelta(rc, qstart, qstart * 0.50, cm->bit_depth);
+ active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+ } else {
+ active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
+ }
+ } else {
+ if (oxcf->rc_mode == VPX_Q) {
+ int qindex = cq_level;
+ double qstart = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
+ 0.70, 1.0, 0.85, 1.0 };
+ int delta_qindex = vp9_compute_qdelta(
+ rc, qstart,
+ qstart * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL],
+ cm->bit_depth);
+ active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+ } else {
+ // Use the min of the average Q and active_worst_quality as basis for
+ // active_best.
+ if (cm->current_video_frame > 1) {
+ q = VPXMIN(rc->avg_frame_qindex[INTER_FRAME], active_worst_quality);
+ active_best_quality = inter_minq[q];
+ } else {
+ active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
+ }
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
+ active_best_quality = cq_level;
+ }
+ }
+ }
+
+ // Clip the active best and worst quality values to limits
+ active_best_quality =
+ clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+ active_worst_quality =
+ clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+ {
+ int qdelta = 0;
+ vpx_clear_system_state();
+
+ // Limit Q range for the adaptive loop.
+ if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
+ !(cm->current_video_frame == 0)) {
+ qdelta = vp9_compute_qdelta_by_rate(
+ &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
+ } else if (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ qdelta = vp9_compute_qdelta_by_rate(
+ &cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth);
+ }
+ if (rc->high_source_sad && cpi->sf.use_altref_onepass) qdelta = 0;
+ *top_index = active_worst_quality + qdelta;
+ *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
+ }
+#endif
+
+ if (oxcf->rc_mode == VPX_Q) {
+ q = active_best_quality;
+ // Special case code to try and match quality with forced key frames
+ } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
+ q = rc->last_boosted_qindex;
+ } else {
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+ active_worst_quality);
+ if (q > *top_index) {
+ // Special case when we are targeting the max allowed rate
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ *top_index = q;
+ else
+ q = *top_index;
+ }
+ }
+
+ assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) {
+ static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
+ 1.00, // INTER_NORMAL
+ 1.00, // INTER_HIGH
+ 1.50, // GF_ARF_LOW
+ 1.75, // GF_ARF_STD
+ 2.00, // KF_STD
+ };
+ const VP9_COMMON *const cm = &cpi->common;
+
+ int qdelta = vp9_compute_qdelta_by_rate(
+ &cpi->rc, cm->frame_type, q, rate_factor_deltas[rf_level], cm->bit_depth);
+ return qdelta;
+}
+
+#define STATIC_MOTION_THRESH 95
+
+static void pick_kf_q_bound_two_pass(const VP9_COMP *cpi, int *bottom_index,
+ int *top_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ int active_best_quality;
+ int active_worst_quality = cpi->twopass.active_worst_quality;
+
+ if (rc->this_key_frame_forced) {
+ // Handle the special case for key frames forced when we have reached
+ // the maximum key frame interval. Here force the Q to a range
+ // based on the ambient Q to reduce the risk of popping.
+ double last_boosted_q;
+ int delta_qindex;
+ int qindex;
+
+ if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
+ qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
+ active_best_quality = qindex;
+ last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 1.25, cm->bit_depth);
+ active_worst_quality =
+ VPXMIN(qindex + delta_qindex, active_worst_quality);
+ } else {
+ qindex = rc->last_boosted_qindex;
+ last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
+ last_boosted_q * 0.75, cm->bit_depth);
+ active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
+ }
+ } else {
+ // Not forced keyframe.
+ double q_adj_factor = 1.0;
+ double q_val;
+ // Baseline value derived from cpi->active_worst_quality and kf boost.
+ active_best_quality =
+ get_kf_active_quality(rc, active_worst_quality, cm->bit_depth);
+ if (cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
+ active_best_quality /= 4;
+ }
+
+ // Don't allow the active min to be lossless (q0) unlesss the max q
+ // already indicates lossless.
+ active_best_quality =
+ VPXMIN(active_worst_quality, VPXMAX(1, active_best_quality));
+
+ // Allow somewhat lower kf minq with small image formats.
+ if ((cm->width * cm->height) <= (352 * 288)) {
+ q_adj_factor -= 0.25;
+ }
+
+ // Make a further adjustment based on the kf zero motion measure.
+ q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
+
+ // Convert the adjustment factor to a qindex delta
+ // on active_best_quality.
+ q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
+ active_best_quality +=
+ vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
+ }
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+}
+
+static int rc_constant_q(const VP9_COMP *cpi, int *bottom_index, int *top_index,
+ int gf_group_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const GF_GROUP *gf_group = &cpi->twopass.gf_group;
+ const int is_intra_frame = frame_is_intra_only(cm);
+
+ const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
+
+ int q = cq_level;
+ int active_best_quality = cq_level;
+ int active_worst_quality = cq_level;
+
+ // Key frame qp decision
+ if (is_intra_frame && rc->frames_to_key > 1)
+ pick_kf_q_bound_two_pass(cpi, &active_best_quality, &active_worst_quality);
+
+ // ARF / GF qp decision
+ if (!is_intra_frame && !rc->is_src_frame_alt_ref &&
+ cpi->refresh_alt_ref_frame) {
+ active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
+
+ // Modify best quality for second level arfs. For mode VPX_Q this
+ // becomes the baseline frame q.
+ if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
+ const int layer_depth = gf_group->layer_depth[gf_group_index];
+ // linearly fit the frame q depending on the layer depth index from
+ // the base layer ARF.
+ active_best_quality = ((layer_depth - 1) * cq_level +
+ active_best_quality + layer_depth / 2) /
+ layer_depth;
+ }
+ }
+
+ q = active_best_quality;
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+ return q;
+}
+
+static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, int *bottom_index,
+ int *top_index, int gf_group_index) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ const GF_GROUP *gf_group = &cpi->twopass.gf_group;
+ const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
+ int active_best_quality;
+ int active_worst_quality = cpi->twopass.active_worst_quality;
+ int q;
+ int *inter_minq;
+ int arf_active_best_quality_hl;
+ int *arfgf_high_motion_minq, *arfgf_low_motion_minq;
+ const int boost_frame =
+ !rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame);
+
+ ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
+
+ if (oxcf->rc_mode == VPX_Q)
+ return rc_constant_q(cpi, bottom_index, top_index, gf_group_index);
+
+ if (frame_is_intra_only(cm)) {
+ pick_kf_q_bound_two_pass(cpi, &active_best_quality, &active_worst_quality);
+ } else if (boost_frame) {
+ // Use the lower of active_worst_quality and recent
+ // average Q as basis for GF/ARF best Q limit unless last frame was
+ // a key frame.
+ if (rc->frames_since_key > 1 &&
+ rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
+ q = rc->avg_frame_qindex[INTER_FRAME];
+ } else {
+ q = active_worst_quality;
+ }
+ // For constrained quality don't allow Q less than the cq level
+ if (oxcf->rc_mode == VPX_CQ) {
+ if (q < cq_level) q = cq_level;
+ }
+ active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
+ arf_active_best_quality_hl = active_best_quality;
+
+ if (rc->arf_increase_active_best_quality == 1) {
+ ASSIGN_MINQ_TABLE(cm->bit_depth, arfgf_high_motion_minq);
+ arf_active_best_quality_hl = arfgf_high_motion_minq[q];
+ } else if (rc->arf_increase_active_best_quality == -1) {
+ ASSIGN_MINQ_TABLE(cm->bit_depth, arfgf_low_motion_minq);
+ arf_active_best_quality_hl = arfgf_low_motion_minq[q];
+ }
+ active_best_quality =
+ (int)((double)active_best_quality *
+ rc->arf_active_best_quality_adjustment_factor +
+ (double)arf_active_best_quality_hl *
+ (1.0 - rc->arf_active_best_quality_adjustment_factor));
+
+ // Modify best quality for second level arfs. For mode VPX_Q this
+ // becomes the baseline frame q.
+ if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
+ const int layer_depth = gf_group->layer_depth[gf_group_index];
+ // linearly fit the frame q depending on the layer depth index from
+ // the base layer ARF.
+ active_best_quality =
+ ((layer_depth - 1) * q + active_best_quality + layer_depth / 2) /
+ layer_depth;
+ }
+ } else {
+ active_best_quality = inter_minq[active_worst_quality];
+
+ // For the constrained quality mode we don't want
+ // q to fall below the cq level.
+ if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
+ active_best_quality = cq_level;
+ }
+ }
+
+ // Extension to max or min Q if undershoot or overshoot is outside
+ // the permitted range.
+ if (frame_is_intra_only(cm) || boost_frame) {
+ const int layer_depth = gf_group->layer_depth[gf_group_index];
+ active_best_quality -=
+ (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
+ active_worst_quality += (cpi->twopass.extend_maxq / 2);
+
+ if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
+ assert(layer_depth > 1);
+ active_best_quality =
+ VPXMAX(active_best_quality,
+ cpi->twopass.last_qindex_of_arf_layer[layer_depth - 1]);
+ }
+ } else {
+ const int max_layer_depth = gf_group->max_layer_depth;
+ assert(max_layer_depth > 0);
+
+ active_best_quality -=
+ (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
+ active_worst_quality += cpi->twopass.extend_maxq;
+
+ // For normal frames do not allow an active minq lower than the q used for
+ // the last boosted frame.
+ active_best_quality =
+ VPXMAX(active_best_quality,
+ cpi->twopass.last_qindex_of_arf_layer[max_layer_depth - 1]);
+ }
+
+#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
+ vpx_clear_system_state();
+ // Static forced key frames Q restrictions dealt with elsewhere.
+ if (!frame_is_intra_only(cm) || !rc->this_key_frame_forced ||
+ cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH) {
+ int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group_index],
+ active_worst_quality);
+ active_worst_quality =
+ VPXMAX(active_worst_quality + qdelta, active_best_quality);
+ }
+#endif
+
+ // Modify active_best_quality for downscaled normal frames.
+ if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
+ int qdelta = vp9_compute_qdelta_by_rate(
+ rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth);
+ active_best_quality =
+ VPXMAX(active_best_quality + qdelta, rc->best_quality);
+ }
+
+ active_best_quality =
+ clamp(active_best_quality, rc->best_quality, rc->worst_quality);
+ active_worst_quality =
+ clamp(active_worst_quality, active_best_quality, rc->worst_quality);
+
+ if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
+ // If static since last kf use better of last boosted and last kf q.
+ if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
+ q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
+ } else {
+ q = rc->last_boosted_qindex;
+ }
+ } else if (frame_is_intra_only(cm) && !rc->this_key_frame_forced) {
+ q = active_best_quality;
+ } else {
+ q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
+ active_worst_quality);
+ if (q > active_worst_quality) {
+ // Special case when we are targeting the max allowed rate.
+ if (rc->this_frame_target >= rc->max_frame_bandwidth)
+ active_worst_quality = q;
+ else
+ q = active_worst_quality;
+ }
+ }
+ clamp(q, active_best_quality, active_worst_quality);
+
+ *top_index = active_worst_quality;
+ *bottom_index = active_best_quality;
+
+ assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
+ assert(*bottom_index <= rc->worst_quality &&
+ *bottom_index >= rc->best_quality);
+ assert(q <= rc->worst_quality && q >= rc->best_quality);
+ return q;
+}
+
+int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi, int *bottom_index,
+ int *top_index) {
+ int q;
+ const int gf_group_index = cpi->twopass.gf_group.index;
+ if (cpi->oxcf.pass == 0) {
+ if (cpi->oxcf.rc_mode == VPX_CBR)
+ q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
+ else
+ q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
+ } else {
+ q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index,
+ gf_group_index);
+ }
+ if (cpi->sf.use_nonrd_pick_mode) {
+ if (cpi->sf.force_frame_boost == 1) q -= cpi->sf.max_delta_qindex;
+
+ if (q < *bottom_index)
+ *bottom_index = q;
+ else if (q > *top_index)
+ *top_index = q;
+ }
+ return q;
+}
+
+void vp9_configure_buffer_updates(VP9_COMP *cpi, int gf_group_index) {
+ VP9_COMMON *cm = &cpi->common;
+ TWO_PASS *const twopass = &cpi->twopass;
+
+ cpi->rc.is_src_frame_alt_ref = 0;
+ cm->show_existing_frame = 0;
+ cpi->rc.show_arf_as_gld = 0;
+ switch (twopass->gf_group.update_type[gf_group_index]) {
+ case KF_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_alt_ref_frame = 1;
+ break;
+ case LF_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+ break;
+ case GF_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_alt_ref_frame = 0;
+ break;
+ case OVERLAY_UPDATE:
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_alt_ref_frame = 0;
+ cpi->rc.is_src_frame_alt_ref = 1;
+ if (cpi->rc.preserve_arf_as_gld) {
+ cpi->rc.show_arf_as_gld = 1;
+ cpi->refresh_golden_frame = 0;
+ cm->show_existing_frame = 1;
+ cm->refresh_frame_context = 0;
+ }
+ break;
+ case MID_OVERLAY_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+ cpi->rc.is_src_frame_alt_ref = 1;
+ break;
+ case USE_BUF_FRAME:
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+ cpi->rc.is_src_frame_alt_ref = 1;
+ cm->show_existing_frame = 1;
+ cm->refresh_frame_context = 0;
+ break;
+ default:
+ assert(twopass->gf_group.update_type[gf_group_index] == ARF_UPDATE);
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_alt_ref_frame = 1;
+ break;
+ }
+}
+
+void vp9_estimate_qp_gop(VP9_COMP *cpi) {
+ int gop_length = cpi->twopass.gf_group.gf_group_size;
+ int bottom_index, top_index;
+ int idx;
+ const int gf_index = cpi->twopass.gf_group.index;
+ const int is_src_frame_alt_ref = cpi->rc.is_src_frame_alt_ref;
+ const int refresh_frame_context = cpi->common.refresh_frame_context;
+
+ for (idx = 1; idx <= gop_length; ++idx) {
+ TplDepFrame *tpl_frame = &cpi->tpl_stats[idx];
+ int target_rate = cpi->twopass.gf_group.bit_allocation[idx];
+ cpi->twopass.gf_group.index = idx;
+ vp9_rc_set_frame_target(cpi, target_rate);
+ vp9_configure_buffer_updates(cpi, idx);
+ if (cpi->tpl_with_external_rc) {
+ if (cpi->ext_ratectrl.ready &&
+ (cpi->ext_ratectrl.funcs.rc_type & VPX_RC_QP) != 0 &&
+ cpi->ext_ratectrl.funcs.get_encodeframe_decision != NULL) {
+ VP9_COMMON *cm = &cpi->common;
+ vpx_codec_err_t codec_status;
+ const GF_GROUP *gf_group = &cpi->twopass.gf_group;
+ vpx_rc_encodeframe_decision_t encode_frame_decision;
+ FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_group->index];
+ RefCntBuffer *ref_frame_bufs[MAX_INTER_REF_FRAMES];
+ const RefCntBuffer *curr_frame_buf =
+ get_ref_cnt_buffer(cm, cm->new_fb_idx);
+ // index 0 of a gf group is always KEY/OVERLAY/GOLDEN.
+ // index 1 refers to the first encoding frame in a gf group.
+ // Therefore if it is ARF_UPDATE, it means this gf group uses alt ref.
+ // See function define_gf_group_structure().
+ const int use_alt_ref = gf_group->update_type[1] == ARF_UPDATE;
+ const int frame_coding_index = cm->current_frame_coding_index + idx - 1;
+ get_ref_frame_bufs(cpi, ref_frame_bufs);
+ codec_status = vp9_extrc_get_encodeframe_decision(
+ &cpi->ext_ratectrl, curr_frame_buf->frame_index, frame_coding_index,
+ gf_group->index, update_type, gf_group->gf_group_size, use_alt_ref,
+ ref_frame_bufs, 0 /*ref_frame_flags is not used*/,
+ &encode_frame_decision);
+ if (codec_status != VPX_CODEC_OK) {
+ vpx_internal_error(&cm->error, codec_status,
+ "vp9_extrc_get_encodeframe_decision() failed");
+ }
+ tpl_frame->base_qindex = encode_frame_decision.q_index;
+ }
+ } else {
+ tpl_frame->base_qindex =
+ rc_pick_q_and_bounds_two_pass(cpi, &bottom_index, &top_index, idx);
+ tpl_frame->base_qindex = VPXMAX(tpl_frame->base_qindex, 1);
+ }
+ }
+ // Reset the actual index and frame update
+ cpi->twopass.gf_group.index = gf_index;
+ cpi->rc.is_src_frame_alt_ref = is_src_frame_alt_ref;
+ cpi->common.refresh_frame_context = refresh_frame_context;
+ vp9_configure_buffer_updates(cpi, gf_index);
+}
+
+void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, int frame_target,
+ int *frame_under_shoot_limit,
+ int *frame_over_shoot_limit) {
+ if (cpi->oxcf.rc_mode == VPX_Q) {
+ *frame_under_shoot_limit = 0;
+ *frame_over_shoot_limit = INT_MAX;
+ } else {
+ // For very small rate targets where the fractional adjustment
+ // may be tiny make sure there is at least a minimum range.
+ const int tol_low =
+ (int)(((int64_t)cpi->sf.recode_tolerance_low * frame_target) / 100);
+ const int tol_high =
+ (int)(((int64_t)cpi->sf.recode_tolerance_high * frame_target) / 100);
+ *frame_under_shoot_limit = VPXMAX(frame_target - tol_low - 100, 0);
+ *frame_over_shoot_limit =
+ VPXMIN(frame_target + tol_high + 100, cpi->rc.max_frame_bandwidth);
+ }
+}
+
+void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
+ const VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ rc->this_frame_target = target;
+
+ // Modify frame size target when down-scaling.
+ if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
+ rc->frame_size_selector != UNSCALED) {
+ rc->this_frame_target = (int)(rc->this_frame_target *
+ rate_thresh_mult[rc->frame_size_selector]);
+ }
+
+#if CONFIG_RATE_CTRL
+ if (cpi->oxcf.use_simple_encode_api) {
+ if (cpi->encode_command.use_external_target_frame_bits) {
+ rc->this_frame_target = cpi->encode_command.target_frame_bits;
+ }
+ }
+#endif // CONFIG_RATE_CTRL
+
+ // Target rate per SB64 (including partial SB64s.
+ rc->sb64_target_rate = (int)(((int64_t)rc->this_frame_target * 64 * 64) /
+ (cm->width * cm->height));
+}
+
+static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
+ // this frame refreshes means next frames don't unless specified by user
+ RATE_CONTROL *const rc = &cpi->rc;
+ rc->frames_since_golden = 0;
+
+ // Mark the alt ref as done (setting to 0 means no further alt refs pending).
+ rc->source_alt_ref_pending = 0;
+
+ // Set the alternate reference frame active flag
+ rc->source_alt_ref_active = 1;
+}
+
+static void update_golden_frame_stats(VP9_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ // Update the Golden frame usage counts.
+ if (cpi->refresh_golden_frame) {
+ // this frame refreshes means next frames don't unless specified by user
+ rc->frames_since_golden = 0;
+
+ // If we are not using alt ref in the up and coming group clear the arf
+ // active flag. In multi arf group case, if the index is not 0 then
+ // we are overlaying a mid group arf so should not reset the flag.
+ if (cpi->oxcf.pass == 2) {
+ if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
+ rc->source_alt_ref_active = 0;
+ } else if (!rc->source_alt_ref_pending) {
+ rc->source_alt_ref_active = 0;
+ }
+
+ // Decrement count down till next gf
+ if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
+
+ } else if (!cpi->refresh_alt_ref_frame) {
+ // Decrement count down till next gf
+ if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
+
+ rc->frames_since_golden++;
+
+ if (rc->show_arf_as_gld) {
+ rc->frames_since_golden = 0;
+ // If we are not using alt ref in the up and coming group clear the arf
+ // active flag. In multi arf group case, if the index is not 0 then
+ // we are overlaying a mid group arf so should not reset the flag.
+ if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
+ rc->source_alt_ref_active = 0;
+ }
+ }
+}
+
+static void update_altref_usage(VP9_COMP *const cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ int sum_ref_frame_usage = 0;
+ int arf_frame_usage = 0;
+ int mi_row, mi_col;
+ if (cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
+ !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame)
+ for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8) {
+ for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8) {
+ int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
+ sum_ref_frame_usage += cpi->count_arf_frame_usage[sboffset] +
+ cpi->count_lastgolden_frame_usage[sboffset];
+ arf_frame_usage += cpi->count_arf_frame_usage[sboffset];
+ }
+ }
+ if (sum_ref_frame_usage > 0) {
+ double altref_count = 100.0 * arf_frame_usage / sum_ref_frame_usage;
+ cpi->rc.perc_arf_usage =
+ 0.75 * cpi->rc.perc_arf_usage + 0.25 * altref_count;
+ }
+}
+
+void vp9_compute_frame_low_motion(VP9_COMP *const cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ SVC *const svc = &cpi->svc;
+ int mi_row, mi_col;
+ MODE_INFO **mi = cm->mi_grid_visible;
+ RATE_CONTROL *const rc = &cpi->rc;
+ const int rows = cm->mi_rows, cols = cm->mi_cols;
+ int cnt_zeromv = 0;
+ for (mi_row = 0; mi_row < rows; mi_row++) {
+ for (mi_col = 0; mi_col < cols; mi_col++) {
+ if (mi[0]->ref_frame[0] == LAST_FRAME &&
+ abs(mi[0]->mv[0].as_mv.row) < 16 && abs(mi[0]->mv[0].as_mv.col) < 16)
+ cnt_zeromv++;
+ mi++;
+ }
+ mi += 8;
+ }
+ cnt_zeromv = 100 * cnt_zeromv / (rows * cols);
+ rc->avg_frame_low_motion = (3 * rc->avg_frame_low_motion + cnt_zeromv) >> 2;
+
+ // For SVC: set avg_frame_low_motion (only computed on top spatial layer)
+ // to all lower spatial layers.
+ if (cpi->use_svc && svc->spatial_layer_id == svc->number_spatial_layers - 1) {
+ int i;
+ for (i = 0; i < svc->number_spatial_layers - 1; ++i) {
+ const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
+ svc->number_temporal_layers);
+ LAYER_CONTEXT *const lc = &svc->layer_context[layer];
+ RATE_CONTROL *const lrc = &lc->rc;
+ lrc->avg_frame_low_motion = rc->avg_frame_low_motion;
+ }
+ }
+}
+
+void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ SVC *const svc = &cpi->svc;
+ const int qindex = cm->base_qindex;
+ const GF_GROUP *gf_group = &cpi->twopass.gf_group;
+ const int gf_group_index = cpi->twopass.gf_group.index;
+ const int layer_depth = gf_group->layer_depth[gf_group_index];
+
+ // Update rate control heuristics
+ rc->projected_frame_size = (int)(bytes_used << 3);
+
+ // Post encode loop adjustment of Q prediction.
+ vp9_rc_update_rate_correction_factors(cpi);
+
+ // Keep a record of last Q and ambient average Q.
+ if (frame_is_intra_only(cm)) {
+ rc->last_q[KEY_FRAME] = qindex;
+ rc->avg_frame_qindex[KEY_FRAME] =
+ ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
+ if (cpi->use_svc) {
+ int i;
+ for (i = 0; i < svc->number_temporal_layers; ++i) {
+ const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
+ svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ RATE_CONTROL *lrc = &lc->rc;
+ lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME];
+ lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME];
+ }
+ }
+ } else {
+ if ((cpi->use_svc) ||
+ (!rc->is_src_frame_alt_ref &&
+ !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
+ rc->last_q[INTER_FRAME] = qindex;
+ rc->avg_frame_qindex[INTER_FRAME] =
+ ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
+ rc->ni_frames++;
+ rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
+ rc->avg_q = rc->tot_q / rc->ni_frames;
+ // Calculate the average Q for normal inter frames (not key or GFU
+ // frames).
+ rc->ni_tot_qi += qindex;
+ rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
+ }
+ }
+
+ if (cpi->use_svc) vp9_svc_adjust_avg_frame_qindex(cpi);
+
+ // Keep record of last boosted (KF/KF/ARF) Q value.
+ // If the current frame is coded at a lower Q then we also update it.
+ // If all mbs in this group are skipped only update if the Q value is
+ // better than that already stored.
+ // This is used to help set quality in forced key frames to reduce popping
+ if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) ||
+ (!rc->constrained_gf_group &&
+ (cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
+ rc->last_boosted_qindex = qindex;
+ }
+
+ if ((qindex < cpi->twopass.last_qindex_of_arf_layer[layer_depth]) ||
+ (cm->frame_type == KEY_FRAME) ||
+ (!rc->constrained_gf_group &&
+ (cpi->refresh_alt_ref_frame ||
+ (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
+ cpi->twopass.last_qindex_of_arf_layer[layer_depth] = qindex;
+ }
+
+ if (frame_is_intra_only(cm)) rc->last_kf_qindex = qindex;
+
+ update_buffer_level_postencode(cpi, rc->projected_frame_size);
+
+ // Rolling monitors of whether we are over or underspending used to help
+ // regulate min and Max Q in two pass.
+ if (!frame_is_intra_only(cm)) {
+ rc->rolling_target_bits = (int)ROUND64_POWER_OF_TWO(
+ (int64_t)rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
+ rc->rolling_actual_bits = (int)ROUND64_POWER_OF_TWO(
+ (int64_t)rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
+ rc->long_rolling_target_bits = (int)ROUND64_POWER_OF_TWO(
+ (int64_t)rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
+ rc->long_rolling_actual_bits = (int)ROUND64_POWER_OF_TWO(
+ (int64_t)rc->long_rolling_actual_bits * 31 + rc->projected_frame_size,
+ 5);
+ }
+
+ // Actual bits spent
+ rc->total_actual_bits += rc->projected_frame_size;
+ rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
+
+ rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
+
+ if (!cpi->use_svc) {
+ if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
+ (!frame_is_intra_only(cm)))
+ // Update the alternate reference frame stats as appropriate.
+ update_alt_ref_frame_stats(cpi);
+ else
+ // Update the Golden frame stats as appropriate.
+ update_golden_frame_stats(cpi);
+ }
+
+ // If second (long term) temporal reference is used for SVC,
+ // update the golden frame counter, only for base temporal layer.
+ if (cpi->use_svc && svc->use_gf_temporal_ref_current_layer &&
+ svc->temporal_layer_id == 0) {
+ int i = 0;
+ if (cpi->refresh_golden_frame)
+ rc->frames_since_golden = 0;
+ else
+ rc->frames_since_golden++;
+ // Decrement count down till next gf
+ if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
+ // Update the frames_since_golden for all upper temporal layers.
+ for (i = 1; i < svc->number_temporal_layers; ++i) {
+ const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
+ svc->number_temporal_layers);
+ LAYER_CONTEXT *const lc = &svc->layer_context[layer];
+ RATE_CONTROL *const lrc = &lc->rc;
+ lrc->frames_since_golden = rc->frames_since_golden;
+ }
+ }
+
+ if (frame_is_intra_only(cm)) rc->frames_since_key = 0;
+ if (cm->show_frame) {
+ rc->frames_since_key++;
+ rc->frames_to_key--;
+ }
+
+ // Trigger the resizing of the next frame if it is scaled.
+ if (oxcf->pass != 0) {
+ cpi->resize_pending =
+ rc->next_frame_size_selector != rc->frame_size_selector;
+ rc->frame_size_selector = rc->next_frame_size_selector;
+ }
+
+ if (oxcf->pass == 0) {
+ if (!frame_is_intra_only(cm))
+ if (cpi->sf.use_altref_onepass) update_altref_usage(cpi);
+ cpi->rc.last_frame_is_src_altref = cpi->rc.is_src_frame_alt_ref;
+ }
+
+ if (!frame_is_intra_only(cm)) rc->reset_high_source_sad = 0;
+
+ rc->last_avg_frame_bandwidth = rc->avg_frame_bandwidth;
+ if (cpi->use_svc && svc->spatial_layer_id < svc->number_spatial_layers - 1)
+ svc->lower_layer_qindex = cm->base_qindex;
+ cpi->deadline_mode_previous_frame = cpi->oxcf.mode;
+}
+
+void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
+ cpi->common.current_video_frame++;
+ cpi->rc.frames_since_key++;
+ cpi->rc.frames_to_key--;
+ cpi->rc.rc_2_frame = 0;
+ cpi->rc.rc_1_frame = 0;
+ cpi->rc.last_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth;
+ cpi->rc.last_q[INTER_FRAME] = cpi->common.base_qindex;
+ // For SVC on dropped frame when framedrop_mode != LAYER_DROP:
+ // in this mode the whole superframe may be dropped if only a single layer
+ // has buffer underflow (below threshold). Since this can then lead to
+ // increasing buffer levels/overflow for certain layers even though whole
+ // superframe is dropped, we cap buffer level if its already stable.
+ if (cpi->use_svc && cpi->svc.framedrop_mode != LAYER_DROP &&
+ cpi->rc.buffer_level > cpi->rc.optimal_buffer_level) {
+ cpi->rc.buffer_level = cpi->rc.optimal_buffer_level;
+ cpi->rc.bits_off_target = cpi->rc.optimal_buffer_level;
+ }
+ cpi->deadline_mode_previous_frame = cpi->oxcf.mode;
+}
+
+int vp9_calc_pframe_target_size_one_pass_vbr(const VP9_COMP *cpi) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const int af_ratio = rc->af_ratio_onepass_vbr;
+ int64_t target =
+ (!rc->is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))
+ ? ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval *
+ af_ratio) /
+ (rc->baseline_gf_interval + af_ratio - 1)
+ : ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
+ (rc->baseline_gf_interval + af_ratio - 1);
+ // For SVC: refresh flags are used to define the pattern, so we can't
+ // use that for boosting the target size here.
+ // TODO(marpan): Consider adding internal boost on TL0 for VBR-SVC.
+ // For now just use the CBR logic for setting target size.
+ if (cpi->use_svc) target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
+ if (target > INT_MAX) target = INT_MAX;
+ return vp9_rc_clamp_pframe_target_size(cpi, (int)target);
+}
+
+int vp9_calc_iframe_target_size_one_pass_vbr(const VP9_COMP *cpi) {
+ static const int kf_ratio = 25;
+ const RATE_CONTROL *rc = &cpi->rc;
+ int target = rc->avg_frame_bandwidth;
+ if (target > INT_MAX / kf_ratio)
+ target = INT_MAX;
+ else
+ target = rc->avg_frame_bandwidth * kf_ratio;
+ return vp9_rc_clamp_iframe_target_size(cpi, target);
+}
+
+static void adjust_gfint_frame_constraint(VP9_COMP *cpi, int frame_constraint) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ rc->constrained_gf_group = 0;
+ // Reset gf interval to make more equal spacing for frame_constraint.
+ if ((frame_constraint <= 7 * rc->baseline_gf_interval >> 2) &&
+ (frame_constraint > rc->baseline_gf_interval)) {
+ rc->baseline_gf_interval = frame_constraint >> 1;
+ if (rc->baseline_gf_interval < 5)
+ rc->baseline_gf_interval = frame_constraint;
+ rc->constrained_gf_group = 1;
+ } else {
+ // Reset to keep gf_interval <= frame_constraint.
+ if (rc->baseline_gf_interval > frame_constraint) {
+ rc->baseline_gf_interval = frame_constraint;
+ rc->constrained_gf_group = 1;
+ }
+ }
+}
+
+void vp9_set_gf_update_one_pass_vbr(VP9_COMP *const cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ VP9_COMMON *const cm = &cpi->common;
+ if (rc->frames_till_gf_update_due == 0) {
+ double rate_err = 1.0;
+ rc->gfu_boost = DEFAULT_GF_BOOST;
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0) {
+ vp9_cyclic_refresh_set_golden_update(cpi);
+ } else {
+ rc->baseline_gf_interval = VPXMIN(
+ 20, VPXMAX(10, (rc->min_gf_interval + rc->max_gf_interval) / 2));
+ }
+ rc->af_ratio_onepass_vbr = 10;
+ if (rc->rolling_target_bits > 0)
+ rate_err =
+ (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
+ if (cm->current_video_frame > 30) {
+ if (rc->avg_frame_qindex[INTER_FRAME] > (7 * rc->worst_quality) >> 3 &&
+ rate_err > 3.5) {
+ rc->baseline_gf_interval =
+ VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
+ } else if (rc->avg_frame_low_motion > 0 &&
+ rc->avg_frame_low_motion < 20) {
+ // Decrease gf interval for high motion case.
+ rc->baseline_gf_interval = VPXMAX(6, rc->baseline_gf_interval >> 1);
+ }
+ // Adjust boost and af_ratio based on avg_frame_low_motion, which
+ // varies between 0 and 100 (stationary, 100% zero/small motion).
+ if (rc->avg_frame_low_motion > 0)
+ rc->gfu_boost =
+ VPXMAX(500, DEFAULT_GF_BOOST * (rc->avg_frame_low_motion << 1) /
+ (rc->avg_frame_low_motion + 100));
+ else if (rc->avg_frame_low_motion == 0 && rate_err > 1.0)
+ rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
+ rc->af_ratio_onepass_vbr = VPXMIN(15, VPXMAX(5, 3 * rc->gfu_boost / 400));
+ }
+ if (rc->constrain_gf_key_freq_onepass_vbr)
+ adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ cpi->refresh_golden_frame = 1;
+ rc->source_alt_ref_pending = 0;
+ rc->alt_ref_gf_group = 0;
+ if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) {
+ rc->source_alt_ref_pending = 1;
+ rc->alt_ref_gf_group = 1;
+ }
+ }
+}
+
+void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+ if (!cpi->refresh_alt_ref_frame &&
+ (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ rc->frames_to_key == 0 ||
+ (cpi->oxcf.mode != cpi->deadline_mode_previous_frame))) {
+ cm->frame_type = KEY_FRAME;
+ rc->this_key_frame_forced =
+ cm->current_video_frame != 0 && rc->frames_to_key == 0;
+ rc->frames_to_key = cpi->oxcf.key_freq;
+ rc->kf_boost = DEFAULT_KF_BOOST;
+ rc->source_alt_ref_active = 0;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+ vp9_set_gf_update_one_pass_vbr(cpi);
+ if (cm->frame_type == KEY_FRAME)
+ target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
+ else
+ target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
+ vp9_rc_set_frame_target(cpi, target);
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0)
+ vp9_cyclic_refresh_update_parameters(cpi);
+}
+
+int vp9_calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ const RATE_CONTROL *rc = &cpi->rc;
+ const SVC *const svc = &cpi->svc;
+ const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
+ const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
+ int min_frame_target =
+ VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
+ int target;
+
+ if (oxcf->gf_cbr_boost_pct) {
+ const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
+ target = cpi->refresh_golden_frame
+ ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval *
+ af_ratio_pct) /
+ (rc->baseline_gf_interval * 100 + af_ratio_pct - 100)
+ : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
+ (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
+ } else {
+ target = rc->avg_frame_bandwidth;
+ }
+ if (is_one_pass_svc(cpi)) {
+ // Note that for layers, avg_frame_bandwidth is the cumulative
+ // per-frame-bandwidth. For the target size of this frame, use the
+ // layer average frame size (i.e., non-cumulative per-frame-bw).
+ int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
+ svc->number_temporal_layers);
+ const LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ target = lc->avg_frame_size;
+ min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
+ }
+ if (diff > 0) {
+ // Lower the target bandwidth for this frame.
+ const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
+ target -= (int)(((int64_t)target * pct_low) / 200);
+ } else if (diff < 0) {
+ // Increase the target bandwidth for this frame.
+ const int pct_high =
+ (int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
+ target += (int)(((int64_t)target * pct_high) / 200);
+ }
+ if (oxcf->rc_max_inter_bitrate_pct) {
+ const int max_rate =
+ rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
+ target = VPXMIN(target, max_rate);
+ }
+ return VPXMAX(min_frame_target, target);
+}
+
+int vp9_calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
+ const RATE_CONTROL *rc = &cpi->rc;
+ const VP9EncoderConfig *oxcf = &cpi->oxcf;
+ const SVC *const svc = &cpi->svc;
+ int target;
+ if (cpi->common.current_video_frame == 0) {
+ target = ((rc->starting_buffer_level / 2) > INT_MAX)
+ ? INT_MAX
+ : (int)(rc->starting_buffer_level / 2);
+ } else {
+ int kf_boost = 32;
+ double framerate = cpi->framerate;
+ if (svc->number_temporal_layers > 1 && oxcf->rc_mode == VPX_CBR) {
+ // Use the layer framerate for temporal layers CBR mode.
+ const int layer =
+ LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
+ svc->number_temporal_layers);
+ const LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ framerate = lc->framerate;
+ }
+ kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16));
+ if (rc->frames_since_key < framerate / 2) {
+ kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
+ }
+ target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
+ }
+ return vp9_rc_clamp_iframe_target_size(cpi, target);
+}
+
+static void set_intra_only_frame(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ SVC *const svc = &cpi->svc;
+ // Don't allow intra_only frame for bypass/flexible SVC mode, or if number
+ // of spatial layers is 1 or if number of spatial or temporal layers > 3.
+ // Also if intra-only is inserted on very first frame, don't allow if
+ // if number of temporal layers > 1. This is because on intra-only frame
+ // only 3 reference buffers can be updated, but for temporal layers > 1
+ // we generally need to use buffer slots 4 and 5.
+ if ((cm->current_video_frame == 0 && svc->number_temporal_layers > 1) ||
+ svc->number_spatial_layers > 3 || svc->number_temporal_layers > 3 ||
+ svc->number_spatial_layers == 1)
+ return;
+ cm->show_frame = 0;
+ cm->intra_only = 1;
+ cm->frame_type = INTER_FRAME;
+ cpi->ext_refresh_frame_flags_pending = 1;
+ cpi->ext_refresh_last_frame = 1;
+ cpi->ext_refresh_golden_frame = 1;
+ cpi->ext_refresh_alt_ref_frame = 1;
+ if (cm->current_video_frame == 0) {
+ cpi->lst_fb_idx = 0;
+ cpi->gld_fb_idx = 1;
+ cpi->alt_fb_idx = 2;
+ } else {
+ int i;
+ int count = 0;
+ cpi->lst_fb_idx = -1;
+ cpi->gld_fb_idx = -1;
+ cpi->alt_fb_idx = -1;
+ svc->update_buffer_slot[0] = 0;
+ // For intra-only frame we need to refresh all slots that were
+ // being used for the base layer (fb_idx_base[i] == 1).
+ // Start with assigning last first, then golden and then alt.
+ for (i = 0; i < REF_FRAMES; ++i) {
+ if (svc->fb_idx_base[i] == 1) {
+ svc->update_buffer_slot[0] |= 1 << i;
+ count++;
+ }
+ if (count == 1 && cpi->lst_fb_idx == -1) cpi->lst_fb_idx = i;
+ if (count == 2 && cpi->gld_fb_idx == -1) cpi->gld_fb_idx = i;
+ if (count == 3 && cpi->alt_fb_idx == -1) cpi->alt_fb_idx = i;
+ }
+ // If golden or alt is not being used for base layer, then set them
+ // to the lst_fb_idx.
+ if (cpi->gld_fb_idx == -1) cpi->gld_fb_idx = cpi->lst_fb_idx;
+ if (cpi->alt_fb_idx == -1) cpi->alt_fb_idx = cpi->lst_fb_idx;
+ if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
+ cpi->ext_refresh_last_frame = 0;
+ cpi->ext_refresh_golden_frame = 0;
+ cpi->ext_refresh_alt_ref_frame = 0;
+ cpi->ref_frame_flags = 0;
+ }
+ }
+}
+
+void vp9_rc_get_svc_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ SVC *const svc = &cpi->svc;
+ int target = rc->avg_frame_bandwidth;
+ int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
+ svc->number_temporal_layers);
+ if (svc->first_spatial_layer_to_encode)
+ svc->layer_context[svc->temporal_layer_id].is_key_frame = 0;
+ // Periodic key frames is based on the super-frame counter
+ // (svc.current_superframe), also only base spatial layer is key frame.
+ // Key frame is set for any of the following: very first frame, frame flags
+ // indicates key, superframe counter hits key frequency,(non-intra) sync
+ // flag is set for spatial layer 0, or deadline mode changes.
+ if ((cm->current_video_frame == 0 && !svc->previous_frame_is_intra_only) ||
+ (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ (cpi->oxcf.auto_key &&
+ (svc->current_superframe % cpi->oxcf.key_freq == 0) &&
+ !svc->previous_frame_is_intra_only && svc->spatial_layer_id == 0) ||
+ (svc->spatial_layer_sync[0] == 1 && svc->spatial_layer_id == 0) ||
+ (cpi->oxcf.mode != cpi->deadline_mode_previous_frame)) {
+ cm->frame_type = KEY_FRAME;
+ rc->source_alt_ref_active = 0;
+ if (is_one_pass_svc(cpi)) {
+ if (cm->current_video_frame > 0) vp9_svc_reset_temporal_layers(cpi, 1);
+ layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
+ svc->number_temporal_layers);
+ svc->layer_context[layer].is_key_frame = 1;
+ cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
+ // Assumption here is that LAST_FRAME is being updated for a keyframe.
+ // Thus no change in update flags.
+ if (cpi->oxcf.rc_mode == VPX_CBR)
+ target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
+ else
+ target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
+ }
+ } else {
+ cm->frame_type = INTER_FRAME;
+ if (is_one_pass_svc(cpi)) {
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ // Add condition current_video_frame > 0 for the case where first frame
+ // is intra only followed by overlay/copy frame. In this case we don't
+ // want to reset is_key_frame to 0 on overlay/copy frame.
+ lc->is_key_frame =
+ (svc->spatial_layer_id == 0 && cm->current_video_frame > 0)
+ ? 0
+ : svc->layer_context[svc->temporal_layer_id].is_key_frame;
+ if (cpi->oxcf.rc_mode == VPX_CBR) {
+ target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
+ } else {
+ double rate_err = 0.0;
+ rc->fac_active_worst_inter = 140;
+ rc->fac_active_worst_gf = 100;
+ if (rc->rolling_target_bits > 0) {
+ rate_err =
+ (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
+ if (rate_err < 1.0)
+ rc->fac_active_worst_inter = 120;
+ else if (rate_err > 2.0)
+ // Increase active_worst faster if rate fluctuation is high.
+ rc->fac_active_worst_inter = 160;
+ }
+ target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
+ }
+ }
+ }
+
+ if (svc->simulcast_mode) {
+ if (svc->spatial_layer_id > 0 &&
+ svc->layer_context[layer].is_key_frame == 1) {
+ cm->frame_type = KEY_FRAME;
+ cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
+ if (cpi->oxcf.rc_mode == VPX_CBR)
+ target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
+ else
+ target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
+ }
+ // Set the buffer idx and refresh flags for key frames in simulcast mode.
+ // Note the buffer slot for long-term reference is set below (line 2255),
+ // and alt_ref is used for that on key frame. So use last and golden for
+ // the other two normal slots.
+ if (cm->frame_type == KEY_FRAME) {
+ if (svc->number_spatial_layers == 2) {
+ if (svc->spatial_layer_id == 0) {
+ cpi->lst_fb_idx = 0;
+ cpi->gld_fb_idx = 2;
+ cpi->alt_fb_idx = 6;
+ } else if (svc->spatial_layer_id == 1) {
+ cpi->lst_fb_idx = 1;
+ cpi->gld_fb_idx = 3;
+ cpi->alt_fb_idx = 6;
+ }
+ } else if (svc->number_spatial_layers == 3) {
+ if (svc->spatial_layer_id == 0) {
+ cpi->lst_fb_idx = 0;
+ cpi->gld_fb_idx = 3;
+ cpi->alt_fb_idx = 6;
+ } else if (svc->spatial_layer_id == 1) {
+ cpi->lst_fb_idx = 1;
+ cpi->gld_fb_idx = 4;
+ cpi->alt_fb_idx = 6;
+ } else if (svc->spatial_layer_id == 2) {
+ cpi->lst_fb_idx = 2;
+ cpi->gld_fb_idx = 5;
+ cpi->alt_fb_idx = 7;
+ }
+ }
+ cpi->ext_refresh_last_frame = 1;
+ cpi->ext_refresh_golden_frame = 1;
+ cpi->ext_refresh_alt_ref_frame = 1;
+ }
+ }
+
+ // Check if superframe contains a sync layer request.
+ vp9_svc_check_spatial_layer_sync(cpi);
+
+ // If long term termporal feature is enabled, set the period of the update.
+ // The update/refresh of this reference frame is always on base temporal
+ // layer frame.
+ if (svc->use_gf_temporal_ref_current_layer) {
+ // Only use gf long-term prediction on non-key superframes.
+ if (!svc->layer_context[svc->temporal_layer_id].is_key_frame) {
+ // Use golden for this reference, which will be used for prediction.
+ int index = svc->spatial_layer_id;
+ if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
+ assert(index >= 0);
+ cpi->gld_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
+ // Enable prediction off LAST (last reference) and golden (which will
+ // generally be further behind/long-term reference).
+ cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
+ }
+ // Check for update/refresh of reference: only refresh on base temporal
+ // layer.
+ if (svc->temporal_layer_id == 0) {
+ if (svc->layer_context[svc->temporal_layer_id].is_key_frame) {
+ // On key frame we update the buffer index used for long term reference.
+ // Use the alt_ref since it is not used or updated on key frames.
+ int index = svc->spatial_layer_id;
+ if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
+ assert(index >= 0);
+ cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
+ cpi->ext_refresh_alt_ref_frame = 1;
+ } else if (rc->frames_till_gf_update_due == 0) {
+ // Set perdiod of next update. Make it a multiple of 10, as the cyclic
+ // refresh is typically ~10%, and we'd like the update to happen after
+ // a few cylces of the refresh (so it better quality frame). Note the
+ // cyclic refresh for SVC only operates on base temporal layer frames.
+ // Choose 20 as perdiod for now (2 cycles).
+ rc->baseline_gf_interval = 20;
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ cpi->ext_refresh_golden_frame = 1;
+ rc->gfu_boost = DEFAULT_GF_BOOST;
+ }
+ }
+ } else if (!svc->use_gf_temporal_ref) {
+ rc->frames_till_gf_update_due = INT_MAX;
+ rc->baseline_gf_interval = INT_MAX;
+ }
+ if (svc->set_intra_only_frame) {
+ set_intra_only_frame(cpi);
+ if (cpi->oxcf.rc_mode == VPX_CBR)
+ target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
+ else
+ target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
+ }
+ // Overlay frame predicts from LAST (intra-only)
+ if (svc->previous_frame_is_intra_only) cpi->ref_frame_flags |= VP9_LAST_FLAG;
+
+ // Any update/change of global cyclic refresh parameters (amount/delta-qp)
+ // should be done here, before the frame qp is selected.
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_update_parameters(cpi);
+
+ vp9_rc_set_frame_target(cpi, target);
+ if (cm->show_frame) vp9_update_buffer_level_svc_preencode(cpi);
+
+ if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC && svc->single_layer_svc == 1 &&
+ svc->spatial_layer_id == svc->first_spatial_layer_to_encode &&
+ svc->temporal_layer_id == 0) {
+ LAYER_CONTEXT *lc = NULL;
+ cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
+ if (cpi->resize_pending) {
+ int tl, width, height;
+ // Apply the same scale to all temporal layers.
+ for (tl = 0; tl < svc->number_temporal_layers; tl++) {
+ lc = &svc->layer_context[svc->spatial_layer_id *
+ svc->number_temporal_layers +
+ tl];
+ lc->scaling_factor_num_resize =
+ cpi->resize_scale_num * lc->scaling_factor_num;
+ lc->scaling_factor_den_resize =
+ cpi->resize_scale_den * lc->scaling_factor_den;
+ // Reset rate control for all temporal layers.
+ lc->rc.buffer_level = lc->rc.optimal_buffer_level;
+ lc->rc.bits_off_target = lc->rc.optimal_buffer_level;
+ lc->rc.rate_correction_factors[INTER_FRAME] =
+ rc->rate_correction_factors[INTER_FRAME];
+ }
+ // Set the size for this current temporal layer.
+ lc = &svc->layer_context[svc->spatial_layer_id *
+ svc->number_temporal_layers +
+ svc->temporal_layer_id];
+ get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height,
+ lc->scaling_factor_num_resize,
+ lc->scaling_factor_den_resize, &width, &height);
+ vp9_set_size_literal(cpi, width, height);
+ svc->resize_set = 1;
+ }
+ } else {
+ cpi->resize_pending = 0;
+ svc->resize_set = 0;
+ }
+}
+
+void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+ if ((cm->current_video_frame == 0) || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
+ (cpi->oxcf.auto_key && rc->frames_to_key == 0) ||
+ (cpi->oxcf.mode != cpi->deadline_mode_previous_frame)) {
+ cm->frame_type = KEY_FRAME;
+ rc->frames_to_key = cpi->oxcf.key_freq;
+ rc->kf_boost = DEFAULT_KF_BOOST;
+ rc->source_alt_ref_active = 0;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+ if (rc->frames_till_gf_update_due == 0) {
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_set_golden_update(cpi);
+ else
+ rc->baseline_gf_interval =
+ (rc->min_gf_interval + rc->max_gf_interval) / 2;
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ // NOTE: frames_till_gf_update_due must be <= frames_to_key.
+ if (rc->frames_till_gf_update_due > rc->frames_to_key)
+ rc->frames_till_gf_update_due = rc->frames_to_key;
+ cpi->refresh_golden_frame = 1;
+ rc->gfu_boost = DEFAULT_GF_BOOST;
+ }
+
+ // Any update/change of global cyclic refresh parameters (amount/delta-qp)
+ // should be done here, before the frame qp is selected.
+ if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
+ vp9_cyclic_refresh_update_parameters(cpi);
+
+ if (frame_is_intra_only(cm))
+ target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
+ else
+ target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
+
+ vp9_rc_set_frame_target(cpi, target);
+
+ if (cm->show_frame) vp9_update_buffer_level_preencode(cpi);
+
+ if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
+ cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
+ else
+ cpi->resize_pending = 0;
+}
+
+int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
+ vpx_bit_depth_t bit_depth) {
+ int start_index = rc->worst_quality;
+ int target_index = rc->worst_quality;
+ int i;
+
+ // Convert the average q value to an index.
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ start_index = i;
+ if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart) break;
+ }
+
+ // Convert the q target to an index
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ target_index = i;
+ if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget) break;
+ }
+
+ return target_index - start_index;
+}
+
+int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
+ int qindex, double rate_target_ratio,
+ vpx_bit_depth_t bit_depth) {
+ int target_index = rc->worst_quality;
+ int i;
+
+ // Look up the current projected bits per block for the base index
+ const int base_bits_per_mb =
+ vp9_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
+
+ // Find the target bits per mb based on the base value and given ratio.
+ const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
+
+ // Convert the q target to an index
+ for (i = rc->best_quality; i < rc->worst_quality; ++i) {
+ if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
+ target_bits_per_mb) {
+ target_index = i;
+ break;
+ }
+ }
+ return target_index - qindex;
+}
+
+void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
+ RATE_CONTROL *const rc) {
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+
+ // Special case code for 1 pass fixed Q mode tests
+ if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
+ rc->max_gf_interval = FIXED_GF_INTERVAL;
+ rc->min_gf_interval = FIXED_GF_INTERVAL;
+ rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
+ } else {
+ double framerate = cpi->framerate;
+ // Set Maximum gf/arf interval
+ rc->max_gf_interval = oxcf->max_gf_interval;
+ rc->min_gf_interval = oxcf->min_gf_interval;
+#if CONFIG_RATE_CTRL
+ if (oxcf->use_simple_encode_api) {
+ // In this experiment, we avoid framerate being changed dynamically during
+ // encoding.
+ framerate = oxcf->init_framerate;
+ }
+#endif // CONFIG_RATE_CTRL
+ if (rc->min_gf_interval == 0) {
+ rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
+ oxcf->width, oxcf->height, framerate);
+ }
+ if (rc->max_gf_interval == 0) {
+ rc->max_gf_interval =
+ vp9_rc_get_default_max_gf_interval(framerate, rc->min_gf_interval);
+ }
+
+ // Extended max interval for genuinely static scenes like slide shows.
+ rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
+
+ if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
+ rc->max_gf_interval = rc->static_scene_max_gf_interval;
+
+ // Clamp min to max
+ rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
+
+ if (oxcf->target_level == LEVEL_AUTO) {
+ const uint32_t pic_size = cpi->common.width * cpi->common.height;
+ const uint32_t pic_breadth =
+ VPXMAX(cpi->common.width, cpi->common.height);
+ int i;
+ for (i = 0; i < VP9_LEVELS; ++i) {
+ if (vp9_level_defs[i].max_luma_picture_size >= pic_size &&
+ vp9_level_defs[i].max_luma_picture_breadth >= pic_breadth) {
+ if (rc->min_gf_interval <=
+ (int)vp9_level_defs[i].min_altref_distance) {
+ rc->min_gf_interval = (int)vp9_level_defs[i].min_altref_distance;
+ rc->max_gf_interval =
+ VPXMAX(rc->max_gf_interval, rc->min_gf_interval);
+ }
+ break;
+ }
+ }
+ }
+ }
+}
+
+void vp9_rc_update_framerate(VP9_COMP *cpi) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const VP9EncoderConfig *const oxcf = &cpi->oxcf;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int vbr_max_bits;
+
+ rc->avg_frame_bandwidth =
+ (int)VPXMIN(oxcf->target_bandwidth / cpi->framerate, INT_MAX);
+ rc->min_frame_bandwidth =
+ (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
+
+ rc->min_frame_bandwidth =
+ VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
+
+ // A maximum bitrate for a frame is defined.
+ // However this limit is extended if a very high rate is given on the command
+ // line or the rate can not be achieved because of a user specified max q
+ // (e.g. when the user specifies lossless encode).
+ //
+ // If a level is specified that requires a lower maximum rate then the level
+ // value take precedence.
+ vbr_max_bits =
+ (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
+ 100);
+ rc->max_frame_bandwidth =
+ VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
+
+ vp9_rc_set_gf_interval_range(cpi, rc);
+}
+
+#define VBR_PCT_ADJUSTMENT_LIMIT 50
+// For VBR...adjustment to the frame target based on error from previous frames
+static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
+ int max_delta;
+ int frame_window = VPXMIN(16, ((int)cpi->twopass.total_stats.count -
+ cpi->common.current_video_frame));
+
+ // Calcluate the adjustment to rate for this frame.
+ if (frame_window > 0) {
+ max_delta = (vbr_bits_off_target > 0)
+ ? (int)(vbr_bits_off_target / frame_window)
+ : (int)(-vbr_bits_off_target / frame_window);
+
+ max_delta = VPXMIN(max_delta,
+ ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
+
+ // vbr_bits_off_target > 0 means we have extra bits to spend
+ if (vbr_bits_off_target > 0) {
+ *this_frame_target += (vbr_bits_off_target > max_delta)
+ ? max_delta
+ : (int)vbr_bits_off_target;
+ } else {
+ *this_frame_target -= (vbr_bits_off_target < -max_delta)
+ ? max_delta
+ : (int)-vbr_bits_off_target;
+ }
+ }
+
+ // Fast redistribution of bits arising from massive local undershoot.
+ // Don't do it for kf,arf,gf or overlay frames.
+ if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
+ rc->vbr_bits_off_target_fast) {
+ int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target);
+ int fast_extra_bits;
+ fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
+ fast_extra_bits = (int)VPXMIN(
+ fast_extra_bits,
+ VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
+ *this_frame_target += (int)fast_extra_bits;
+ rc->vbr_bits_off_target_fast -= fast_extra_bits;
+ }
+}
+
+void vp9_set_target_rate(VP9_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target_rate = rc->base_frame_target;
+
+ if (cpi->common.frame_type == KEY_FRAME)
+ target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
+ else
+ target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
+
+ if (!cpi->oxcf.vbr_corpus_complexity) {
+ // Correction to rate target based on prior over or under shoot.
+ if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
+ vbr_rate_correction(cpi, &target_rate);
+ }
+ vp9_rc_set_frame_target(cpi, target_rate);
+}
+
+// Check if we should resize, based on average QP from past x frames.
+// Only allow for resize at most one scale down for now, scaling factor is 2.
+int vp9_resize_one_pass_cbr(VP9_COMP *cpi) {
+ const VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ RESIZE_ACTION resize_action = NO_RESIZE;
+ int avg_qp_thr1 = 70;
+ int avg_qp_thr2 = 50;
+ // Don't allow for resized frame to go below 320x180, resize in steps of 3/4.
+ int min_width = (320 * 4) / 3;
+ int min_height = (180 * 4) / 3;
+ int down_size_on = 1;
+ int force_downsize_rate = 0;
+ cpi->resize_scale_num = 1;
+ cpi->resize_scale_den = 1;
+ // Don't resize on key frame; reset the counters on key frame.
+ if (cm->frame_type == KEY_FRAME) {
+ cpi->resize_avg_qp = 0;
+ cpi->resize_count = 0;
+ return 0;
+ }
+
+ // No resizing down if frame size is below some limit.
+ if ((cm->width * cm->height) < min_width * min_height) down_size_on = 0;
+
+#if CONFIG_VP9_TEMPORAL_DENOISING
+ // If denoiser is on, apply a smaller qp threshold.
+ if (cpi->oxcf.noise_sensitivity > 0) {
+ avg_qp_thr1 = 60;
+ avg_qp_thr2 = 40;
+ }
+#endif
+
+ // Force downsize based on per-frame-bandwidth, for extreme case,
+ // for HD input.
+ if (cpi->resize_state == ORIG && cm->width * cm->height >= 1280 * 720) {
+ if (rc->avg_frame_bandwidth < 300000 / 30) {
+ resize_action = DOWN_ONEHALF;
+ cpi->resize_state = ONE_HALF;
+ force_downsize_rate = 1;
+ } else if (rc->avg_frame_bandwidth < 400000 / 30) {
+ resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
+ cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
+ force_downsize_rate = 1;
+ }
+ } else if (cpi->resize_state == THREE_QUARTER &&
+ cm->width * cm->height >= 960 * 540) {
+ if (rc->avg_frame_bandwidth < 300000 / 30) {
+ resize_action = DOWN_ONEHALF;
+ cpi->resize_state = ONE_HALF;
+ force_downsize_rate = 1;
+ }
+ }
+
+ // Resize based on average buffer underflow and QP over some window.
+ // Ignore samples close to key frame, since QP is usually high after key.
+ if (!force_downsize_rate && cpi->rc.frames_since_key > cpi->framerate) {
+ const int window = VPXMIN(30, (int)(2 * cpi->framerate));
+ cpi->resize_avg_qp += rc->last_q[INTER_FRAME];
+ if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
+ ++cpi->resize_buffer_underflow;
+ ++cpi->resize_count;
+ // Check for resize action every "window" frames.
+ if (cpi->resize_count >= window) {
+ int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
+ // Resize down if buffer level has underflowed sufficient amount in past
+ // window, and we are at original or 3/4 of original resolution.
+ // Resize back up if average QP is low, and we are currently in a resized
+ // down state, i.e. 1/2 or 3/4 of original resolution.
+ // Currently, use a flag to turn 3/4 resizing feature on/off.
+ if (cpi->resize_buffer_underflow > (cpi->resize_count >> 2) &&
+ down_size_on) {
+ if (cpi->resize_state == THREE_QUARTER) {
+ resize_action = DOWN_ONEHALF;
+ cpi->resize_state = ONE_HALF;
+ } else if (cpi->resize_state == ORIG) {
+ resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
+ cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
+ }
+ } else if (cpi->resize_state != ORIG &&
+ avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) {
+ if (cpi->resize_state == THREE_QUARTER ||
+ avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100 ||
+ ONEHALFONLY_RESIZE) {
+ resize_action = UP_ORIG;
+ cpi->resize_state = ORIG;
+ } else if (cpi->resize_state == ONE_HALF) {
+ resize_action = UP_THREEFOUR;
+ cpi->resize_state = THREE_QUARTER;
+ }
+ }
+ // Reset for next window measurement.
+ cpi->resize_avg_qp = 0;
+ cpi->resize_count = 0;
+ cpi->resize_buffer_underflow = 0;
+ }
+ }
+ // If decision is to resize, reset some quantities, and check is we should
+ // reduce rate correction factor,
+ if (resize_action != NO_RESIZE) {
+ int target_bits_per_frame;
+ int active_worst_quality;
+ int qindex;
+ int tot_scale_change;
+ if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) {
+ cpi->resize_scale_num = 3;
+ cpi->resize_scale_den = 4;
+ } else if (resize_action == DOWN_ONEHALF) {
+ cpi->resize_scale_num = 1;
+ cpi->resize_scale_den = 2;
+ } else { // UP_ORIG or anything else
+ cpi->resize_scale_num = 1;
+ cpi->resize_scale_den = 1;
+ }
+ tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
+ (cpi->resize_scale_num * cpi->resize_scale_num);
+ // Reset buffer level to optimal, update target size.
+ rc->buffer_level = rc->optimal_buffer_level;
+ rc->bits_off_target = rc->optimal_buffer_level;
+ rc->this_frame_target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
+ // Get the projected qindex, based on the scaled target frame size (scaled
+ // so target_bits_per_mb in vp9_rc_regulate_q will be correct target).
+ target_bits_per_frame = (resize_action >= 0)
+ ? rc->this_frame_target * tot_scale_change
+ : rc->this_frame_target / tot_scale_change;
+ active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
+ qindex = vp9_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality,
+ active_worst_quality);
+ // If resize is down, check if projected q index is close to worst_quality,
+ // and if so, reduce the rate correction factor (since likely can afford
+ // lower q for resized frame).
+ if (resize_action > 0 && qindex > 90 * cpi->rc.worst_quality / 100) {
+ rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
+ }
+ // If resize is back up, check if projected q index is too much above the
+ // current base_qindex, and if so, reduce the rate correction factor
+ // (since prefer to keep q for resized frame at least close to previous q).
+ if (resize_action < 0 && qindex > 130 * cm->base_qindex / 100) {
+ rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
+ }
+ }
+ return resize_action;
+}
+
+static void adjust_gf_boost_lag_one_pass_vbr(VP9_COMP *cpi,
+ uint64_t avg_sad_current) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ int target;
+ int found = 0;
+ int found2 = 0;
+ int frame;
+ int i;
+ uint64_t avg_source_sad_lag = avg_sad_current;
+ int high_source_sad_lagindex = -1;
+ int steady_sad_lagindex = -1;
+ uint32_t sad_thresh1 = 70000;
+ uint32_t sad_thresh2 = 120000;
+ int low_content = 0;
+ int high_content = 0;
+ double rate_err = 1.0;
+ // Get measure of complexity over the future frames, and get the first
+ // future frame with high_source_sad/scene-change.
+ int tot_frames = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
+ for (frame = tot_frames; frame >= 1; --frame) {
+ const int lagframe_idx = tot_frames - frame + 1;
+ uint64_t reference_sad = rc->avg_source_sad[0];
+ for (i = 1; i < lagframe_idx; ++i) {
+ if (rc->avg_source_sad[i] > 0)
+ reference_sad = (3 * reference_sad + rc->avg_source_sad[i]) >> 2;
+ }
+ // Detect up-coming scene change.
+ if (!found &&
+ (rc->avg_source_sad[lagframe_idx] >
+ VPXMAX(sad_thresh1, (unsigned int)(reference_sad << 1)) ||
+ rc->avg_source_sad[lagframe_idx] >
+ VPXMAX(3 * sad_thresh1 >> 2,
+ (unsigned int)(reference_sad << 2)))) {
+ high_source_sad_lagindex = lagframe_idx;
+ found = 1;
+ }
+ // Detect change from motion to steady.
+ if (!found2 && lagframe_idx > 1 && lagframe_idx < tot_frames &&
+ rc->avg_source_sad[lagframe_idx - 1] > (sad_thresh1 >> 2)) {
+ found2 = 1;
+ for (i = lagframe_idx; i < tot_frames; ++i) {
+ if (!(rc->avg_source_sad[i] > 0 &&
+ rc->avg_source_sad[i] < (sad_thresh1 >> 2) &&
+ rc->avg_source_sad[i] <
+ (rc->avg_source_sad[lagframe_idx - 1] >> 1))) {
+ found2 = 0;
+ i = tot_frames;
+ }
+ }
+ if (found2) steady_sad_lagindex = lagframe_idx;
+ }
+ avg_source_sad_lag += rc->avg_source_sad[lagframe_idx];
+ }
+ if (tot_frames > 0) avg_source_sad_lag = avg_source_sad_lag / tot_frames;
+ // Constrain distance between detected scene cuts.
+ if (high_source_sad_lagindex != -1 &&
+ high_source_sad_lagindex != rc->high_source_sad_lagindex - 1 &&
+ abs(high_source_sad_lagindex - rc->high_source_sad_lagindex) < 4)
+ rc->high_source_sad_lagindex = -1;
+ else
+ rc->high_source_sad_lagindex = high_source_sad_lagindex;
+ // Adjust some factors for the next GF group, ignore initial key frame,
+ // and only for lag_in_frames not too small.
+ if (cpi->refresh_golden_frame == 1 && cm->current_video_frame > 30 &&
+ cpi->oxcf.lag_in_frames > 8) {
+ int frame_constraint;
+ if (rc->rolling_target_bits > 0)
+ rate_err =
+ (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
+ high_content = high_source_sad_lagindex != -1 ||
+ avg_source_sad_lag > (rc->prev_avg_source_sad_lag << 1) ||
+ avg_source_sad_lag > sad_thresh2;
+ low_content = high_source_sad_lagindex == -1 &&
+ ((avg_source_sad_lag < (rc->prev_avg_source_sad_lag >> 1)) ||
+ (avg_source_sad_lag < sad_thresh1));
+ if (low_content) {
+ rc->gfu_boost = DEFAULT_GF_BOOST;
+ rc->baseline_gf_interval =
+ VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
+ } else if (high_content) {
+ rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
+ rc->baseline_gf_interval = (rate_err > 3.0)
+ ? VPXMAX(10, rc->baseline_gf_interval >> 1)
+ : VPXMAX(6, rc->baseline_gf_interval >> 1);
+ }
+ if (rc->baseline_gf_interval > cpi->oxcf.lag_in_frames - 1)
+ rc->baseline_gf_interval = cpi->oxcf.lag_in_frames - 1;
+ // Check for constraining gf_interval for up-coming scene/content changes,
+ // or for up-coming key frame, whichever is closer.
+ frame_constraint = rc->frames_to_key;
+ if (rc->high_source_sad_lagindex > 0 &&
+ frame_constraint > rc->high_source_sad_lagindex)
+ frame_constraint = rc->high_source_sad_lagindex;
+ if (steady_sad_lagindex > 3 && frame_constraint > steady_sad_lagindex)
+ frame_constraint = steady_sad_lagindex;
+ adjust_gfint_frame_constraint(cpi, frame_constraint);
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ // Adjust factors for active_worst setting & af_ratio for next gf interval.
+ rc->fac_active_worst_inter = 150; // corresponds to 3/2 (= 150 /100).
+ rc->fac_active_worst_gf = 100;
+ if (rate_err < 2.0 && !high_content) {
+ rc->fac_active_worst_inter = 120;
+ rc->fac_active_worst_gf = 90;
+ } else if (rate_err > 8.0 && rc->avg_frame_qindex[INTER_FRAME] < 16) {
+ // Increase active_worst faster at low Q if rate fluctuation is high.
+ rc->fac_active_worst_inter = 200;
+ if (rc->avg_frame_qindex[INTER_FRAME] < 8)
+ rc->fac_active_worst_inter = 400;
+ }
+ if (low_content && rc->avg_frame_low_motion > 80) {
+ rc->af_ratio_onepass_vbr = 15;
+ } else if (high_content || rc->avg_frame_low_motion < 30) {
+ rc->af_ratio_onepass_vbr = 5;
+ rc->gfu_boost = DEFAULT_GF_BOOST >> 2;
+ }
+ if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) {
+ // Flag to disable usage of ARF based on past usage, only allow this
+ // disabling if current frame/group does not start with key frame or
+ // scene cut. Note perc_arf_usage is only computed for speed >= 5.
+ int arf_usage_low =
+ (cm->frame_type != KEY_FRAME && !rc->high_source_sad &&
+ cpi->rc.perc_arf_usage < 15 && cpi->oxcf.speed >= 5);
+ // Don't use alt-ref for this group under certain conditions.
+ if (arf_usage_low ||
+ (rc->high_source_sad_lagindex > 0 &&
+ rc->high_source_sad_lagindex <= rc->frames_till_gf_update_due) ||
+ (avg_source_sad_lag > 3 * sad_thresh1 >> 3)) {
+ rc->source_alt_ref_pending = 0;
+ rc->alt_ref_gf_group = 0;
+ } else {
+ rc->source_alt_ref_pending = 1;
+ rc->alt_ref_gf_group = 1;
+ // If alt-ref is used for this gf group, limit the interval.
+ if (rc->baseline_gf_interval > 12) {
+ rc->baseline_gf_interval = 12;
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ }
+ }
+ }
+ target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
+ vp9_rc_set_frame_target(cpi, target);
+ }
+ rc->prev_avg_source_sad_lag = avg_source_sad_lag;
+}
+
+// Compute average source sad (temporal sad: between current source and
+// previous source) over a subset of superblocks. Use this is detect big changes
+// in content and allow rate control to react.
+// This function also handles special case of lag_in_frames, to measure content
+// level in #future frames set by the lag_in_frames.
+void vp9_scene_detection_onepass(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ YV12_BUFFER_CONFIG const *unscaled_src = cpi->un_scaled_source;
+ YV12_BUFFER_CONFIG const *unscaled_last_src = cpi->unscaled_last_source;
+ uint8_t *src_y;
+ int src_ystride;
+ int src_width;
+ int src_height;
+ uint8_t *last_src_y;
+ int last_src_ystride;
+ int last_src_width;
+ int last_src_height;
+ if (cpi->un_scaled_source == NULL || cpi->unscaled_last_source == NULL ||
+ (cpi->use_svc && cpi->svc.current_superframe == 0))
+ return;
+ src_y = unscaled_src->y_buffer;
+ src_ystride = unscaled_src->y_stride;
+ src_width = unscaled_src->y_width;
+ src_height = unscaled_src->y_height;
+ last_src_y = unscaled_last_src->y_buffer;
+ last_src_ystride = unscaled_last_src->y_stride;
+ last_src_width = unscaled_last_src->y_width;
+ last_src_height = unscaled_last_src->y_height;
+#if CONFIG_VP9_HIGHBITDEPTH
+ if (cm->use_highbitdepth) return;
+#endif
+ rc->high_source_sad = 0;
+ rc->high_num_blocks_with_motion = 0;
+ // For SVC: scene detection is only checked on first spatial layer of
+ // the superframe using the original/unscaled resolutions.
+ if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode &&
+ src_width == last_src_width && src_height == last_src_height) {
+ YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
+ int num_mi_cols = cm->mi_cols;
+ int num_mi_rows = cm->mi_rows;
+ int start_frame = 0;
+ int frames_to_buffer = 1;
+ int frame = 0;
+ int scene_cut_force_key_frame = 0;
+ int num_zero_temp_sad = 0;
+ uint64_t avg_sad_current = 0;
+ uint32_t min_thresh = 20000; // ~5 * 64 * 64
+ float thresh = 8.0f;
+ uint32_t thresh_key = 140000;
+ if (cpi->oxcf.speed <= 5) thresh_key = 240000;
+ if (cpi->oxcf.content != VP9E_CONTENT_SCREEN) min_thresh = 65000;
+ if (cpi->oxcf.rc_mode == VPX_VBR) thresh = 2.1f;
+ if (cpi->use_svc && cpi->svc.number_spatial_layers > 1) {
+ const int aligned_width = ALIGN_POWER_OF_TWO(src_width, MI_SIZE_LOG2);
+ const int aligned_height = ALIGN_POWER_OF_TWO(src_height, MI_SIZE_LOG2);
+ num_mi_cols = aligned_width >> MI_SIZE_LOG2;
+ num_mi_rows = aligned_height >> MI_SIZE_LOG2;
+ }
+ if (cpi->oxcf.lag_in_frames > 0) {
+ frames_to_buffer = (cm->current_video_frame == 1)
+ ? (int)vp9_lookahead_depth(cpi->lookahead) - 1
+ : 2;
+ start_frame = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
+ for (frame = 0; frame < frames_to_buffer; ++frame) {
+ const int lagframe_idx = start_frame - frame;
+ if (lagframe_idx >= 0) {
+ struct lookahead_entry *buf =
+ vp9_lookahead_peek(cpi->lookahead, lagframe_idx);
+ frames[frame] = &buf->img;
+ }
+ }
+ // The avg_sad for this current frame is the value of frame#1
+ // (first future frame) from previous frame.
+ avg_sad_current = rc->avg_source_sad[1];
+ if (avg_sad_current >
+ VPXMAX(min_thresh,
+ (unsigned int)(rc->avg_source_sad[0] * thresh)) &&
+ cm->current_video_frame > (unsigned int)cpi->oxcf.lag_in_frames)
+ rc->high_source_sad = 1;
+ else
+ rc->high_source_sad = 0;
+ if (rc->high_source_sad && avg_sad_current > thresh_key)
+ scene_cut_force_key_frame = 1;
+ // Update recursive average for current frame.
+ if (avg_sad_current > 0)
+ rc->avg_source_sad[0] =
+ (3 * rc->avg_source_sad[0] + avg_sad_current) >> 2;
+ // Shift back data, starting at frame#1.
+ for (frame = 1; frame < cpi->oxcf.lag_in_frames - 1; ++frame)
+ rc->avg_source_sad[frame] = rc->avg_source_sad[frame + 1];
+ }
+ for (frame = 0; frame < frames_to_buffer; ++frame) {
+ if (cpi->oxcf.lag_in_frames == 0 ||
+ (frames[frame] != NULL && frames[frame + 1] != NULL &&
+ frames[frame]->y_width == frames[frame + 1]->y_width &&
+ frames[frame]->y_height == frames[frame + 1]->y_height)) {
+ int sbi_row, sbi_col;
+ const int lagframe_idx =
+ (cpi->oxcf.lag_in_frames == 0) ? 0 : start_frame - frame + 1;
+ const BLOCK_SIZE bsize = BLOCK_64X64;
+ // Loop over sub-sample of frame, compute average sad over 64x64 blocks.
+ uint64_t avg_sad = 0;
+ uint64_t tmp_sad = 0;
+ int num_samples = 0;
+ int sb_cols = (num_mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
+ int sb_rows = (num_mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
+ if (cpi->oxcf.lag_in_frames > 0) {
+ src_y = frames[frame]->y_buffer;
+ src_ystride = frames[frame]->y_stride;
+ last_src_y = frames[frame + 1]->y_buffer;
+ last_src_ystride = frames[frame + 1]->y_stride;
+ }
+ num_zero_temp_sad = 0;
+ for (sbi_row = 0; sbi_row < sb_rows; ++sbi_row) {
+ for (sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
+ // Checker-board pattern, ignore boundary.
+ if (((sbi_row > 0 && sbi_col > 0) &&
+ (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) &&
+ ((sbi_row % 2 == 0 && sbi_col % 2 == 0) ||
+ (sbi_row % 2 != 0 && sbi_col % 2 != 0)))) {
+ tmp_sad = cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
+ last_src_ystride);
+ avg_sad += tmp_sad;
+ num_samples++;
+ if (tmp_sad == 0) num_zero_temp_sad++;
+ }
+ src_y += 64;
+ last_src_y += 64;
+ }
+ src_y += (src_ystride << 6) - (sb_cols << 6);
+ last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
+ }
+ if (num_samples > 0) avg_sad = avg_sad / num_samples;
+ // Set high_source_sad flag if we detect very high increase in avg_sad
+ // between current and previous frame value(s). Use minimum threshold
+ // for cases where there is small change from content that is completely
+ // static.
+ if (lagframe_idx == 0) {
+ if (avg_sad >
+ VPXMAX(min_thresh,
+ (unsigned int)(rc->avg_source_sad[0] * thresh)) &&
+ rc->frames_since_key > 1 + cpi->svc.number_spatial_layers &&
+ num_zero_temp_sad < 3 * (num_samples >> 2))
+ rc->high_source_sad = 1;
+ else
+ rc->high_source_sad = 0;
+ if (rc->high_source_sad && avg_sad > thresh_key)
+ scene_cut_force_key_frame = 1;
+ if (avg_sad > 0 || cpi->oxcf.rc_mode == VPX_CBR)
+ rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] + avg_sad) >> 2;
+ } else {
+ rc->avg_source_sad[lagframe_idx] = avg_sad;
+ }
+ if (num_zero_temp_sad < (3 * num_samples >> 2))
+ rc->high_num_blocks_with_motion = 1;
+ }
+ }
+ // For CBR non-screen content mode, check if we should reset the rate
+ // control. Reset is done if high_source_sad is detected and the rate
+ // control is at very low QP with rate correction factor at min level.
+ if (cpi->oxcf.rc_mode == VPX_CBR &&
+ cpi->oxcf.content != VP9E_CONTENT_SCREEN && !cpi->use_svc) {
+ if (rc->high_source_sad && rc->last_q[INTER_FRAME] == rc->best_quality &&
+ rc->avg_frame_qindex[INTER_FRAME] < (rc->best_quality << 1) &&
+ rc->rate_correction_factors[INTER_NORMAL] == MIN_BPB_FACTOR) {
+ rc->rate_correction_factors[INTER_NORMAL] = 0.5;
+ rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality;
+ rc->buffer_level = rc->optimal_buffer_level;
+ rc->bits_off_target = rc->optimal_buffer_level;
+ rc->reset_high_source_sad = 1;
+ }
+ if (cm->frame_type != KEY_FRAME && rc->reset_high_source_sad)
+ rc->this_frame_target = rc->avg_frame_bandwidth;
+ }
+ // For SVC the new (updated) avg_source_sad[0] for the current superframe
+ // updates the setting for all layers.
+ if (cpi->use_svc) {
+ int sl, tl;
+ SVC *const svc = &cpi->svc;
+ for (sl = 0; sl < svc->number_spatial_layers; ++sl)
+ for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
+ int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
+ LAYER_CONTEXT *const lc = &svc->layer_context[layer];
+ RATE_CONTROL *const lrc = &lc->rc;
+ lrc->avg_source_sad[0] = rc->avg_source_sad[0];
+ }
+ }
+ // For VBR, under scene change/high content change, force golden refresh.
+ if (cpi->oxcf.rc_mode == VPX_VBR && cm->frame_type != KEY_FRAME &&
+ rc->high_source_sad && rc->frames_to_key > 3 &&
+ rc->count_last_scene_change > 4 &&
+ cpi->ext_refresh_frame_flags_pending == 0) {
+ int target;
+ cpi->refresh_golden_frame = 1;
+ if (scene_cut_force_key_frame) cm->frame_type = KEY_FRAME;
+ rc->source_alt_ref_pending = 0;
+ if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf)
+ rc->source_alt_ref_pending = 1;
+ rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
+ rc->baseline_gf_interval =
+ VPXMIN(20, VPXMAX(10, rc->baseline_gf_interval));
+ adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+ target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
+ vp9_rc_set_frame_target(cpi, target);
+ rc->count_last_scene_change = 0;
+ } else {
+ rc->count_last_scene_change++;
+ }
+ // If lag_in_frame is used, set the gf boost and interval.
+ if (cpi->oxcf.lag_in_frames > 0)
+ adjust_gf_boost_lag_one_pass_vbr(cpi, avg_sad_current);
+ }
+}
+
+// Test if encoded frame will significantly overshoot the target bitrate, and
+// if so, set the QP, reset/adjust some rate control parameters, and return 1.
+// frame_size = -1 means frame has not been encoded.
+int vp9_encodedframe_overshoot(VP9_COMP *cpi, int frame_size, int *q) {
+ VP9_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ SPEED_FEATURES *const sf = &cpi->sf;
+ int thresh_qp = 7 * (rc->worst_quality >> 3);
+ int thresh_rate = rc->avg_frame_bandwidth << 3;
+ // Lower thresh_qp for video (more overshoot at lower Q) to be
+ // more conservative for video.
+ if (cpi->oxcf.content != VP9E_CONTENT_SCREEN)
+ thresh_qp = 3 * (rc->worst_quality >> 2);
+ // If this decision is not based on an encoded frame size but just on
+ // scene/slide change detection (i.e., re_encode_overshoot_cbr_rt ==
+ // FAST_DETECTION_MAXQ), for now skip the (frame_size > thresh_rate)
+ // condition in this case.
+ // TODO(marpan): Use a better size/rate condition for this case and
+ // adjust thresholds.
+ if ((sf->overshoot_detection_cbr_rt == FAST_DETECTION_MAXQ ||
+ frame_size > thresh_rate) &&
+ cm->base_qindex < thresh_qp) {
+ double rate_correction_factor =
+ cpi->rc.rate_correction_factors[INTER_NORMAL];
+ const int target_size = cpi->rc.avg_frame_bandwidth;
+ double new_correction_factor;
+ int target_bits_per_mb;
+ double q2;
+ int enumerator;
+ // Force a re-encode, and for now use max-QP.
+ *q = cpi->rc.worst_quality;
+ cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0;
+ cpi->rc.re_encode_maxq_scene_change = 1;
+ // If the frame_size is much larger than the threshold (big content change)
+ // and the encoded frame used alot of Intra modes, then force hybrid_intra
+ // encoding for the re-encode on this scene change. hybrid_intra will
+ // use rd-based intra mode selection for small blocks.
+ if (sf->overshoot_detection_cbr_rt == RE_ENCODE_MAXQ &&
+ frame_size > (thresh_rate << 1) && cpi->svc.spatial_layer_id == 0) {
+ MODE_INFO **mi = cm->mi_grid_visible;
+ int sum_intra_usage = 0;
+ int mi_row, mi_col;
+ for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
+ for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
+ if (mi[0]->ref_frame[0] == INTRA_FRAME) sum_intra_usage++;
+ mi++;
+ }
+ mi += 8;
+ }
+ sum_intra_usage = 100 * sum_intra_usage / (cm->mi_rows * cm->mi_cols);
+ if (sum_intra_usage > 60) cpi->rc.hybrid_intra_scene_change = 1;
+ }
+ // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
+ // these parameters will affect QP selection for subsequent frames. If they
+ // have settled down to a very different (low QP) state, then not adjusting
+ // them may cause next frame to select low QP and overshoot again.
+ cpi->rc.avg_frame_qindex[INTER_FRAME] = *q;
+ rc->buffer_level = rc->optimal_buffer_level;
+ rc->bits_off_target = rc->optimal_buffer_level;
+ // Reset rate under/over-shoot flags.
+ cpi->rc.rc_1_frame = 0;
+ cpi->rc.rc_2_frame = 0;
+ // Adjust rate correction factor.
+ target_bits_per_mb =
+ (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->MBs);
+ // Rate correction factor based on target_bits_per_mb and qp (==max_QP).
+ // This comes from the inverse computation of vp9_rc_bits_per_mb().
+ q2 = vp9_convert_qindex_to_q(*q, cm->bit_depth);
+ enumerator = 1800000; // Factor for inter frame.
+ enumerator += (int)(enumerator * q2) >> 12;
+ new_correction_factor = (double)target_bits_per_mb * q2 / enumerator;
+ if (new_correction_factor > rate_correction_factor) {
+ rate_correction_factor =
+ VPXMIN(2.0 * rate_correction_factor, new_correction_factor);
+ if (rate_correction_factor > MAX_BPB_FACTOR)
+ rate_correction_factor = MAX_BPB_FACTOR;
+ cpi->rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
+ }
+ // For temporal layers, reset the rate control parametes across all
+ // temporal layers. If the first_spatial_layer_to_encode > 0, then this
+ // superframe has skipped lower base layers. So in this case we should also
+ // reset and force max-q for spatial layers < first_spatial_layer_to_encode.
+ if (cpi->use_svc) {
+ int tl = 0;
+ int sl = 0;
+ SVC *svc = &cpi->svc;
+ for (sl = 0; sl < VPXMAX(1, svc->first_spatial_layer_to_encode); ++sl) {
+ for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
+ const int layer =
+ LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
+ LAYER_CONTEXT *lc = &svc->layer_context[layer];
+ RATE_CONTROL *lrc = &lc->rc;
+ lrc->avg_frame_qindex[INTER_FRAME] = *q;
+ lrc->buffer_level = lrc->optimal_buffer_level;
+ lrc->bits_off_target = lrc->optimal_buffer_level;
+ lrc->rc_1_frame = 0;
+ lrc->rc_2_frame = 0;
+ lrc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
+ lrc->force_max_q = 1;
+ }
+ }
+ }
+ return 1;
+ } else {
+ return 0;
+ }
+}