summaryrefslogtreecommitdiffstats
path: root/media/libvpx/libvpx/vp9/encoder/vp9_rd.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libvpx/libvpx/vp9/encoder/vp9_rd.c')
-rw-r--r--media/libvpx/libvpx/vp9/encoder/vp9_rd.c795
1 files changed, 795 insertions, 0 deletions
diff --git a/media/libvpx/libvpx/vp9/encoder/vp9_rd.c b/media/libvpx/libvpx/vp9/encoder/vp9_rd.c
new file mode 100644
index 0000000000..95c95971c5
--- /dev/null
+++ b/media/libvpx/libvpx/vp9/encoder/vp9_rd.c
@@ -0,0 +1,795 @@
+/*
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include <assert.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "./vp9_rtcd.h"
+
+#include "vpx_dsp/vpx_dsp_common.h"
+#include "vpx_mem/vpx_mem.h"
+#include "vpx_ports/bitops.h"
+#include "vpx_ports/mem.h"
+#include "vpx_ports/system_state.h"
+
+#include "vp9/common/vp9_common.h"
+#include "vp9/common/vp9_entropy.h"
+#include "vp9/common/vp9_entropymode.h"
+#include "vp9/common/vp9_mvref_common.h"
+#include "vp9/common/vp9_pred_common.h"
+#include "vp9/common/vp9_quant_common.h"
+#include "vp9/common/vp9_reconinter.h"
+#include "vp9/common/vp9_reconintra.h"
+#include "vp9/common/vp9_seg_common.h"
+
+#include "vp9/encoder/vp9_cost.h"
+#include "vp9/encoder/vp9_encodemb.h"
+#include "vp9/encoder/vp9_encodemv.h"
+#include "vp9/encoder/vp9_encoder.h"
+#include "vp9/encoder/vp9_mcomp.h"
+#include "vp9/encoder/vp9_quantize.h"
+#include "vp9/encoder/vp9_ratectrl.h"
+#include "vp9/encoder/vp9_rd.h"
+#include "vp9/encoder/vp9_tokenize.h"
+
+#define RD_THRESH_POW 1.25
+
+// Factor to weigh the rate for switchable interp filters.
+#define SWITCHABLE_INTERP_RATE_FACTOR 1
+
+void vp9_rd_cost_reset(RD_COST *rd_cost) {
+ rd_cost->rate = INT_MAX;
+ rd_cost->dist = INT64_MAX;
+ rd_cost->rdcost = INT64_MAX;
+}
+
+void vp9_rd_cost_init(RD_COST *rd_cost) {
+ rd_cost->rate = 0;
+ rd_cost->dist = 0;
+ rd_cost->rdcost = 0;
+}
+
+int64_t vp9_calculate_rd_cost(int mult, int div, int rate, int64_t dist) {
+ assert(mult >= 0);
+ assert(div > 0);
+ if (rate >= 0 && dist >= 0) {
+ return RDCOST(mult, div, rate, dist);
+ }
+ if (rate >= 0 && dist < 0) {
+ return RDCOST_NEG_D(mult, div, rate, -dist);
+ }
+ if (rate < 0 && dist >= 0) {
+ return RDCOST_NEG_R(mult, div, -rate, dist);
+ }
+ return -RDCOST(mult, div, -rate, -dist);
+}
+
+void vp9_rd_cost_update(int mult, int div, RD_COST *rd_cost) {
+ if (rd_cost->rate < INT_MAX && rd_cost->dist < INT64_MAX) {
+ rd_cost->rdcost =
+ vp9_calculate_rd_cost(mult, div, rd_cost->rate, rd_cost->dist);
+ } else {
+ vp9_rd_cost_reset(rd_cost);
+ }
+}
+
+// The baseline rd thresholds for breaking out of the rd loop for
+// certain modes are assumed to be based on 8x8 blocks.
+// This table is used to correct for block size.
+// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
+static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = {
+ 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32
+};
+
+static void fill_mode_costs(VP9_COMP *cpi) {
+ const FRAME_CONTEXT *const fc = cpi->common.fc;
+ int i, j;
+
+ for (i = 0; i < INTRA_MODES; ++i) {
+ for (j = 0; j < INTRA_MODES; ++j) {
+ vp9_cost_tokens(cpi->y_mode_costs[i][j], vp9_kf_y_mode_prob[i][j],
+ vp9_intra_mode_tree);
+ }
+ }
+
+ vp9_cost_tokens(cpi->mbmode_cost, fc->y_mode_prob[1], vp9_intra_mode_tree);
+ for (i = 0; i < INTRA_MODES; ++i) {
+ vp9_cost_tokens(cpi->intra_uv_mode_cost[KEY_FRAME][i],
+ vp9_kf_uv_mode_prob[i], vp9_intra_mode_tree);
+ vp9_cost_tokens(cpi->intra_uv_mode_cost[INTER_FRAME][i],
+ fc->uv_mode_prob[i], vp9_intra_mode_tree);
+ }
+
+ for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) {
+ vp9_cost_tokens(cpi->switchable_interp_costs[i],
+ fc->switchable_interp_prob[i], vp9_switchable_interp_tree);
+ }
+
+ for (i = TX_8X8; i < TX_SIZES; ++i) {
+ for (j = 0; j < TX_SIZE_CONTEXTS; ++j) {
+ const vpx_prob *tx_probs = get_tx_probs(i, j, &fc->tx_probs);
+ int k;
+ for (k = 0; k <= i; ++k) {
+ int cost = 0;
+ int m;
+ for (m = 0; m <= k - (k == i); ++m) {
+ if (m == k)
+ cost += vp9_cost_zero(tx_probs[m]);
+ else
+ cost += vp9_cost_one(tx_probs[m]);
+ }
+ cpi->tx_size_cost[i - 1][j][k] = cost;
+ }
+ }
+ }
+}
+
+static void fill_token_costs(vp9_coeff_cost *c,
+ vp9_coeff_probs_model (*p)[PLANE_TYPES]) {
+ int i, j, k, l;
+ TX_SIZE t;
+ for (t = TX_4X4; t <= TX_32X32; ++t)
+ for (i = 0; i < PLANE_TYPES; ++i)
+ for (j = 0; j < REF_TYPES; ++j)
+ for (k = 0; k < COEF_BANDS; ++k)
+ for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
+ vpx_prob probs[ENTROPY_NODES];
+ vp9_model_to_full_probs(p[t][i][j][k][l], probs);
+ vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs, vp9_coef_tree);
+ vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs,
+ vp9_coef_tree);
+ assert(c[t][i][j][k][0][l][EOB_TOKEN] ==
+ c[t][i][j][k][1][l][EOB_TOKEN]);
+ }
+}
+
+// Values are now correlated to quantizer.
+static int sad_per_bit16lut_8[QINDEX_RANGE];
+static int sad_per_bit4lut_8[QINDEX_RANGE];
+
+#if CONFIG_VP9_HIGHBITDEPTH
+static int sad_per_bit16lut_10[QINDEX_RANGE];
+static int sad_per_bit4lut_10[QINDEX_RANGE];
+static int sad_per_bit16lut_12[QINDEX_RANGE];
+static int sad_per_bit4lut_12[QINDEX_RANGE];
+#endif
+
+static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range,
+ vpx_bit_depth_t bit_depth) {
+ int i;
+ // Initialize the sad lut tables using a formulaic calculation for now.
+ // This is to make it easier to resolve the impact of experimental changes
+ // to the quantizer tables.
+ for (i = 0; i < range; i++) {
+ const double q = vp9_convert_qindex_to_q(i, bit_depth);
+ bit16lut[i] = (int)(0.0418 * q + 2.4107);
+ bit4lut[i] = (int)(0.063 * q + 2.742);
+ }
+}
+
+void vp9_init_me_luts(void) {
+ init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE,
+ VPX_BITS_8);
+#if CONFIG_VP9_HIGHBITDEPTH
+ init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE,
+ VPX_BITS_10);
+ init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE,
+ VPX_BITS_12);
+#endif
+}
+
+static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12,
+ 8, 8, 4, 4, 2, 2, 1, 0 };
+
+// Note that the element below for frame type "USE_BUF_FRAME", which indicates
+// that the show frame flag is set, should not be used as no real frame
+// is encoded so we should not reach here. However, a dummy value
+// is inserted here to make sure the data structure has the right number
+// of values assigned.
+static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { 128, 144, 128,
+ 128, 144, 144 };
+
+// Configure Vizier RD parameters.
+// Later this function will use passed in command line values.
+void vp9_init_rd_parameters(VP9_COMP *cpi) {
+ RD_CONTROL *const rdc = &cpi->rd_ctrl;
+
+ // When |use_vizier_rc_params| is 1, we expect the rd parameters have been
+ // initialized by the pass in values.
+ // Be careful that parameters below are only initialized to 1, if we do not
+ // pass values to them. It is desired to take care of each parameter when
+ // using |use_vizier_rc_params|.
+ if (cpi->twopass.use_vizier_rc_params) return;
+
+ // Make sure this function is floating point safe.
+ vpx_clear_system_state();
+
+ rdc->rd_mult_inter_qp_fac = 1.0;
+ rdc->rd_mult_arf_qp_fac = 1.0;
+ rdc->rd_mult_key_qp_fac = 1.0;
+}
+
+// Returns the default rd multiplier for inter frames for a given qindex.
+// The function here is a first pass estimate based on data from
+// a previous Vizer run
+static double def_inter_rd_multiplier(int qindex) {
+ return 4.15 + (0.001 * (double)qindex);
+}
+
+// Returns the default rd multiplier for ARF/Golden Frames for a given qindex.
+// The function here is a first pass estimate based on data from
+// a previous Vizer run
+static double def_arf_rd_multiplier(int qindex) {
+ return 4.25 + (0.001 * (double)qindex);
+}
+
+// Returns the default rd multiplier for key frames for a given qindex.
+// The function here is a first pass estimate based on data from
+// a previous Vizer run
+static double def_kf_rd_multiplier(int qindex) {
+ return 4.35 + (0.001 * (double)qindex);
+}
+
+int vp9_compute_rd_mult_based_on_qindex(const VP9_COMP *cpi, int qindex) {
+ const RD_CONTROL *rdc = &cpi->rd_ctrl;
+ const int q = vp9_dc_quant(qindex, 0, cpi->common.bit_depth);
+ // largest dc_quant is 21387, therefore rdmult should fit in int32_t
+ int rdmult = q * q;
+
+ if (cpi->ext_ratectrl.ready &&
+ (cpi->ext_ratectrl.funcs.rc_type & VPX_RC_RDMULT) != 0 &&
+ cpi->ext_ratectrl.ext_rdmult != VPX_DEFAULT_RDMULT) {
+ return cpi->ext_ratectrl.ext_rdmult;
+ }
+
+ // Make sure this function is floating point safe.
+ vpx_clear_system_state();
+
+ if (cpi->common.frame_type == KEY_FRAME) {
+ double def_rd_q_mult = def_kf_rd_multiplier(qindex);
+ rdmult = (int)((double)rdmult * def_rd_q_mult * rdc->rd_mult_key_qp_fac);
+ } else if (!cpi->rc.is_src_frame_alt_ref &&
+ (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
+ double def_rd_q_mult = def_arf_rd_multiplier(qindex);
+ rdmult = (int)((double)rdmult * def_rd_q_mult * rdc->rd_mult_arf_qp_fac);
+ } else {
+ double def_rd_q_mult = def_inter_rd_multiplier(qindex);
+ rdmult = (int)((double)rdmult * def_rd_q_mult * rdc->rd_mult_inter_qp_fac);
+ }
+
+#if CONFIG_VP9_HIGHBITDEPTH
+ switch (cpi->common.bit_depth) {
+ case VPX_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break;
+ case VPX_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break;
+ default: break;
+ }
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ return rdmult > 0 ? rdmult : 1;
+}
+
+static int modulate_rdmult(const VP9_COMP *cpi, int rdmult) {
+ int64_t rdmult_64 = rdmult;
+ if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
+ const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
+ const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index];
+ const int gfu_boost = cpi->multi_layer_arf
+ ? gf_group->gfu_boost[gf_group->index]
+ : cpi->rc.gfu_boost;
+ const int boost_index = VPXMIN(15, (gfu_boost / 100));
+
+ rdmult_64 = (rdmult_64 * rd_frame_type_factor[frame_type]) >> 7;
+ rdmult_64 += ((rdmult_64 * rd_boost_factor[boost_index]) >> 7);
+ }
+ return (int)rdmult_64;
+}
+
+int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex) {
+ int rdmult = vp9_compute_rd_mult_based_on_qindex(cpi, qindex);
+ if (cpi->ext_ratectrl.ready &&
+ (cpi->ext_ratectrl.funcs.rc_type & VPX_RC_RDMULT) != 0 &&
+ cpi->ext_ratectrl.ext_rdmult != VPX_DEFAULT_RDMULT) {
+ return cpi->ext_ratectrl.ext_rdmult;
+ }
+ return modulate_rdmult(cpi, rdmult);
+}
+
+int vp9_get_adaptive_rdmult(const VP9_COMP *cpi, double beta) {
+ int rdmult =
+ vp9_compute_rd_mult_based_on_qindex(cpi, cpi->common.base_qindex);
+ rdmult = (int)((double)rdmult / beta);
+ rdmult = rdmult > 0 ? rdmult : 1;
+ return modulate_rdmult(cpi, rdmult);
+}
+
+static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) {
+ double q;
+#if CONFIG_VP9_HIGHBITDEPTH
+ switch (bit_depth) {
+ case VPX_BITS_8: q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0; break;
+ case VPX_BITS_10: q = vp9_dc_quant(qindex, 0, VPX_BITS_10) / 16.0; break;
+ default:
+ assert(bit_depth == VPX_BITS_12);
+ q = vp9_dc_quant(qindex, 0, VPX_BITS_12) / 64.0;
+ break;
+ }
+#else
+ (void)bit_depth;
+ q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0;
+#endif // CONFIG_VP9_HIGHBITDEPTH
+ // TODO(debargha): Adjust the function below.
+ return VPXMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
+}
+
+void vp9_initialize_me_consts(VP9_COMP *cpi, MACROBLOCK *x, int qindex) {
+#if CONFIG_VP9_HIGHBITDEPTH
+ switch (cpi->common.bit_depth) {
+ case VPX_BITS_8:
+ x->sadperbit16 = sad_per_bit16lut_8[qindex];
+ x->sadperbit4 = sad_per_bit4lut_8[qindex];
+ break;
+ case VPX_BITS_10:
+ x->sadperbit16 = sad_per_bit16lut_10[qindex];
+ x->sadperbit4 = sad_per_bit4lut_10[qindex];
+ break;
+ default:
+ assert(cpi->common.bit_depth == VPX_BITS_12);
+ x->sadperbit16 = sad_per_bit16lut_12[qindex];
+ x->sadperbit4 = sad_per_bit4lut_12[qindex];
+ break;
+ }
+#else
+ (void)cpi;
+ x->sadperbit16 = sad_per_bit16lut_8[qindex];
+ x->sadperbit4 = sad_per_bit4lut_8[qindex];
+#endif // CONFIG_VP9_HIGHBITDEPTH
+}
+
+static void set_block_thresholds(const VP9_COMMON *cm, RD_OPT *rd) {
+ int i, bsize, segment_id;
+
+ for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
+ const int qindex =
+ clamp(vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex) +
+ cm->y_dc_delta_q,
+ 0, MAXQ);
+ const int q = compute_rd_thresh_factor(qindex, cm->bit_depth);
+
+ for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) {
+ // Threshold here seems unnecessarily harsh but fine given actual
+ // range of values used for cpi->sf.thresh_mult[].
+ const int t = q * rd_thresh_block_size_factor[bsize];
+ const int thresh_max = INT_MAX / t;
+
+ if (bsize >= BLOCK_8X8) {
+ for (i = 0; i < MAX_MODES; ++i)
+ rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max
+ ? rd->thresh_mult[i] * t / 4
+ : INT_MAX;
+ } else {
+ for (i = 0; i < MAX_REFS; ++i)
+ rd->threshes[segment_id][bsize][i] =
+ rd->thresh_mult_sub8x8[i] < thresh_max
+ ? rd->thresh_mult_sub8x8[i] * t / 4
+ : INT_MAX;
+ }
+ }
+ }
+}
+
+void vp9_build_inter_mode_cost(VP9_COMP *cpi) {
+ const VP9_COMMON *const cm = &cpi->common;
+ int i;
+ for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
+ vp9_cost_tokens((int *)cpi->inter_mode_cost[i], cm->fc->inter_mode_probs[i],
+ vp9_inter_mode_tree);
+ }
+}
+
+void vp9_initialize_rd_consts(VP9_COMP *cpi) {
+ VP9_COMMON *const cm = &cpi->common;
+ MACROBLOCK *const x = &cpi->td.mb;
+ MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
+ RD_OPT *const rd = &cpi->rd;
+ int i;
+
+ vpx_clear_system_state();
+
+ rd->RDDIV = RDDIV_BITS; // In bits (to multiply D by 128).
+ rd->RDMULT = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
+
+ set_error_per_bit(x, rd->RDMULT);
+
+ x->select_tx_size = (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
+ cm->frame_type != KEY_FRAME)
+ ? 0
+ : 1;
+
+ set_block_thresholds(cm, rd);
+ set_partition_probs(cm, xd);
+
+ if (cpi->oxcf.pass == 1) {
+ if (!frame_is_intra_only(cm))
+ vp9_build_nmv_cost_table(
+ x->nmvjointcost,
+ cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost,
+ &cm->fc->nmvc, cm->allow_high_precision_mv);
+ } else {
+ if (!cpi->sf.use_nonrd_pick_mode || cm->frame_type == KEY_FRAME)
+ fill_token_costs(x->token_costs, cm->fc->coef_probs);
+
+ if (cpi->sf.partition_search_type != VAR_BASED_PARTITION ||
+ cm->frame_type == KEY_FRAME) {
+ for (i = 0; i < PARTITION_CONTEXTS; ++i)
+ vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(xd, i),
+ vp9_partition_tree);
+ }
+
+ if (!cpi->sf.use_nonrd_pick_mode || (cm->current_video_frame & 0x07) == 1 ||
+ cm->frame_type == KEY_FRAME) {
+ fill_mode_costs(cpi);
+
+ if (!frame_is_intra_only(cm)) {
+ vp9_build_nmv_cost_table(
+ x->nmvjointcost,
+ cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost,
+ &cm->fc->nmvc, cm->allow_high_precision_mv);
+ vp9_build_inter_mode_cost(cpi);
+ }
+ }
+ }
+}
+
+// NOTE: The tables below must be of the same size.
+
+// The functions described below are sampled at the four most significant
+// bits of x^2 + 8 / 256.
+
+// Normalized rate:
+// This table models the rate for a Laplacian source with given variance
+// when quantized with a uniform quantizer with given stepsize. The
+// closed form expression is:
+// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
+// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
+// and H(x) is the binary entropy function.
+static const int rate_tab_q10[] = {
+ 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, 4044,
+ 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, 3133, 3037,
+ 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, 2290, 2232, 2179,
+ 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, 1608, 1530, 1460, 1398,
+ 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, 911, 864, 821, 781, 745,
+ 680, 623, 574, 530, 490, 455, 424, 395, 345, 304, 269, 239, 213,
+ 190, 171, 154, 126, 104, 87, 73, 61, 52, 44, 38, 28, 21,
+ 16, 12, 10, 8, 6, 5, 3, 2, 1, 1, 1, 0, 0,
+};
+
+// Normalized distortion:
+// This table models the normalized distortion for a Laplacian source
+// with given variance when quantized with a uniform quantizer
+// with given stepsize. The closed form expression is:
+// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
+// where x = qpstep / sqrt(variance).
+// Note the actual distortion is Dn * variance.
+static const int dist_tab_q10[] = {
+ 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5,
+ 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 21,
+ 24, 26, 29, 31, 34, 36, 39, 44, 49, 54, 59, 64, 69,
+ 73, 78, 88, 97, 106, 115, 124, 133, 142, 151, 167, 184, 200,
+ 215, 231, 245, 260, 274, 301, 327, 351, 375, 397, 418, 439, 458,
+ 495, 528, 559, 587, 613, 637, 659, 680, 717, 749, 777, 801, 823,
+ 842, 859, 874, 899, 919, 936, 949, 960, 969, 977, 983, 994, 1001,
+ 1006, 1010, 1013, 1015, 1017, 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
+};
+static const int xsq_iq_q10[] = {
+ 0, 4, 8, 12, 16, 20, 24, 28, 32,
+ 40, 48, 56, 64, 72, 80, 88, 96, 112,
+ 128, 144, 160, 176, 192, 208, 224, 256, 288,
+ 320, 352, 384, 416, 448, 480, 544, 608, 672,
+ 736, 800, 864, 928, 992, 1120, 1248, 1376, 1504,
+ 1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296,
+ 3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136,
+ 7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328,
+ 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736,
+ 36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696,
+ 81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808,
+ 180192, 196576, 212960, 229344, 245728,
+};
+
+static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
+ const int tmp = (xsq_q10 >> 2) + 8;
+ const int k = get_msb(tmp) - 3;
+ const int xq = (k << 3) + ((tmp >> k) & 0x7);
+ const int one_q10 = 1 << 10;
+ const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
+ const int b_q10 = one_q10 - a_q10;
+ *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
+ *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
+}
+
+static const uint32_t MAX_XSQ_Q10 = 245727;
+
+void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2,
+ unsigned int qstep, int *rate,
+ int64_t *dist) {
+ // This function models the rate and distortion for a Laplacian
+ // source with given variance when quantized with a uniform quantizer
+ // with given stepsize. The closed form expressions are in:
+ // Hang and Chen, "Source Model for transform video coder and its
+ // application - Part I: Fundamental Theory", IEEE Trans. Circ.
+ // Sys. for Video Tech., April 1997.
+ if (var == 0) {
+ *rate = 0;
+ *dist = 0;
+ } else {
+ int d_q10, r_q10;
+ const uint64_t xsq_q10_64 =
+ (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
+ const int xsq_q10 = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10);
+ model_rd_norm(xsq_q10, &r_q10, &d_q10);
+ *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - VP9_PROB_COST_SHIFT);
+ *dist = (var * (int64_t)d_q10 + 512) >> 10;
+ }
+}
+
+// Disable gcc 12.2 false positive warning.
+// warning: writing 1 byte into a region of size 0 [-Wstringop-overflow=]
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wstringop-overflow"
+#endif
+void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
+ const struct macroblockd_plane *pd,
+ ENTROPY_CONTEXT t_above[16],
+ ENTROPY_CONTEXT t_left[16]) {
+ const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
+ const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
+ const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
+ const ENTROPY_CONTEXT *const above = pd->above_context;
+ const ENTROPY_CONTEXT *const left = pd->left_context;
+
+ int i;
+ switch (tx_size) {
+ case TX_4X4:
+ memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
+ memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
+ break;
+ case TX_8X8:
+ for (i = 0; i < num_4x4_w; i += 2)
+ t_above[i] = !!*(const uint16_t *)&above[i];
+ for (i = 0; i < num_4x4_h; i += 2)
+ t_left[i] = !!*(const uint16_t *)&left[i];
+ break;
+ case TX_16X16:
+ for (i = 0; i < num_4x4_w; i += 4)
+ t_above[i] = !!*(const uint32_t *)&above[i];
+ for (i = 0; i < num_4x4_h; i += 4)
+ t_left[i] = !!*(const uint32_t *)&left[i];
+ break;
+ default:
+ assert(tx_size == TX_32X32);
+ for (i = 0; i < num_4x4_w; i += 8)
+ t_above[i] = !!*(const uint64_t *)&above[i];
+ for (i = 0; i < num_4x4_h; i += 8)
+ t_left[i] = !!*(const uint64_t *)&left[i];
+ break;
+ }
+}
+#if defined(__GNUC__) && !defined(__clang__)
+#pragma GCC diagnostic pop
+#endif
+
+void vp9_mv_pred(VP9_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer,
+ int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) {
+ int i;
+ int zero_seen = 0;
+ int best_index = 0;
+ int best_sad = INT_MAX;
+ int this_sad = INT_MAX;
+ int max_mv = 0;
+ int near_same_nearest;
+ uint8_t *src_y_ptr = x->plane[0].src.buf;
+ uint8_t *ref_y_ptr;
+ const int num_mv_refs =
+ MAX_MV_REF_CANDIDATES + (block_size < x->max_partition_size);
+
+ MV pred_mv[3];
+ pred_mv[0] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv;
+ pred_mv[1] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv;
+ pred_mv[2] = x->pred_mv[ref_frame];
+ assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));
+
+ near_same_nearest = x->mbmi_ext->ref_mvs[ref_frame][0].as_int ==
+ x->mbmi_ext->ref_mvs[ref_frame][1].as_int;
+
+ // Get the sad for each candidate reference mv.
+ for (i = 0; i < num_mv_refs; ++i) {
+ const MV *this_mv = &pred_mv[i];
+ int fp_row, fp_col;
+ if (this_mv->row == INT16_MAX || this_mv->col == INT16_MAX) continue;
+ if (i == 1 && near_same_nearest) continue;
+ fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
+ fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
+ max_mv = VPXMAX(max_mv, VPXMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
+
+ if (fp_row == 0 && fp_col == 0 && zero_seen) continue;
+ zero_seen |= (fp_row == 0 && fp_col == 0);
+
+ ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col];
+ // Find sad for current vector.
+ this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
+ ref_y_ptr, ref_y_stride);
+ // Note if it is the best so far.
+ if (this_sad < best_sad) {
+ best_sad = this_sad;
+ best_index = i;
+ }
+ }
+
+ // Note the index of the mv that worked best in the reference list.
+ x->mv_best_ref_index[ref_frame] = best_index;
+ x->max_mv_context[ref_frame] = max_mv;
+ x->pred_mv_sad[ref_frame] = best_sad;
+}
+
+void vp9_setup_pred_block(const MACROBLOCKD *xd,
+ struct buf_2d dst[MAX_MB_PLANE],
+ const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
+ const struct scale_factors *scale,
+ const struct scale_factors *scale_uv) {
+ int i;
+
+ dst[0].buf = src->y_buffer;
+ dst[0].stride = src->y_stride;
+ dst[1].buf = src->u_buffer;
+ dst[2].buf = src->v_buffer;
+ dst[1].stride = dst[2].stride = src->uv_stride;
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col,
+ i ? scale_uv : scale, xd->plane[i].subsampling_x,
+ xd->plane[i].subsampling_y);
+ }
+}
+
+int vp9_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block,
+ int stride) {
+ const int bw = b_width_log2_lookup[plane_bsize];
+ const int y = 4 * (raster_block >> bw);
+ const int x = 4 * (raster_block & ((1 << bw) - 1));
+ return y * stride + x;
+}
+
+int16_t *vp9_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block,
+ int16_t *base) {
+ const int stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
+ return base + vp9_raster_block_offset(plane_bsize, raster_block, stride);
+}
+
+YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi,
+ int ref_frame) {
+ const VP9_COMMON *const cm = &cpi->common;
+ const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1];
+ const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame);
+ assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME);
+ return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX)
+ ? &cm->buffer_pool->frame_bufs[scaled_idx].buf
+ : NULL;
+}
+
+int vp9_get_switchable_rate(const VP9_COMP *cpi, const MACROBLOCKD *const xd) {
+ const MODE_INFO *const mi = xd->mi[0];
+ const int ctx = get_pred_context_switchable_interp(xd);
+ return SWITCHABLE_INTERP_RATE_FACTOR *
+ cpi->switchable_interp_costs[ctx][mi->interp_filter];
+}
+
+void vp9_set_rd_speed_thresholds(VP9_COMP *cpi) {
+ int i;
+ RD_OPT *const rd = &cpi->rd;
+ SPEED_FEATURES *const sf = &cpi->sf;
+
+ // Set baseline threshold values.
+ for (i = 0; i < MAX_MODES; ++i)
+ rd->thresh_mult[i] = cpi->oxcf.mode == BEST ? -500 : 0;
+
+ if (sf->adaptive_rd_thresh) {
+ rd->thresh_mult[THR_NEARESTMV] = 300;
+ rd->thresh_mult[THR_NEARESTG] = 300;
+ rd->thresh_mult[THR_NEARESTA] = 300;
+ } else {
+ rd->thresh_mult[THR_NEARESTMV] = 0;
+ rd->thresh_mult[THR_NEARESTG] = 0;
+ rd->thresh_mult[THR_NEARESTA] = 0;
+ }
+
+ rd->thresh_mult[THR_DC] += 1000;
+
+ rd->thresh_mult[THR_NEWMV] += 1000;
+ rd->thresh_mult[THR_NEWA] += 1000;
+ rd->thresh_mult[THR_NEWG] += 1000;
+
+ rd->thresh_mult[THR_NEARMV] += 1000;
+ rd->thresh_mult[THR_NEARA] += 1000;
+ rd->thresh_mult[THR_COMP_NEARESTLA] += 1000;
+ rd->thresh_mult[THR_COMP_NEARESTGA] += 1000;
+
+ rd->thresh_mult[THR_TM] += 1000;
+
+ rd->thresh_mult[THR_COMP_NEARLA] += 1500;
+ rd->thresh_mult[THR_COMP_NEWLA] += 2000;
+ rd->thresh_mult[THR_NEARG] += 1000;
+ rd->thresh_mult[THR_COMP_NEARGA] += 1500;
+ rd->thresh_mult[THR_COMP_NEWGA] += 2000;
+
+ rd->thresh_mult[THR_ZEROMV] += 2000;
+ rd->thresh_mult[THR_ZEROG] += 2000;
+ rd->thresh_mult[THR_ZEROA] += 2000;
+ rd->thresh_mult[THR_COMP_ZEROLA] += 2500;
+ rd->thresh_mult[THR_COMP_ZEROGA] += 2500;
+
+ rd->thresh_mult[THR_H_PRED] += 2000;
+ rd->thresh_mult[THR_V_PRED] += 2000;
+ rd->thresh_mult[THR_D45_PRED] += 2500;
+ rd->thresh_mult[THR_D135_PRED] += 2500;
+ rd->thresh_mult[THR_D117_PRED] += 2500;
+ rd->thresh_mult[THR_D153_PRED] += 2500;
+ rd->thresh_mult[THR_D207_PRED] += 2500;
+ rd->thresh_mult[THR_D63_PRED] += 2500;
+}
+
+void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) {
+ static const int thresh_mult[2][MAX_REFS] = {
+ { 2500, 2500, 2500, 4500, 4500, 2500 },
+ { 2000, 2000, 2000, 4000, 4000, 2000 }
+ };
+ RD_OPT *const rd = &cpi->rd;
+ const int idx = cpi->oxcf.mode == BEST;
+ memcpy(rd->thresh_mult_sub8x8, thresh_mult[idx], sizeof(thresh_mult[idx]));
+}
+
+void vp9_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh,
+ int bsize, int best_mode_index) {
+ if (rd_thresh > 0) {
+ const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES;
+ int mode;
+ for (mode = 0; mode < top_mode; ++mode) {
+ const BLOCK_SIZE min_size = VPXMAX(bsize - 1, BLOCK_4X4);
+ const BLOCK_SIZE max_size = VPXMIN(bsize + 2, BLOCK_64X64);
+ BLOCK_SIZE bs;
+ for (bs = min_size; bs <= max_size; ++bs) {
+ int *const fact = &factor_buf[bs][mode];
+ if (mode == best_mode_index) {
+ *fact -= (*fact >> 4);
+ } else {
+ *fact = VPXMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT);
+ }
+ }
+ }
+ }
+}
+
+int vp9_get_intra_cost_penalty(const VP9_COMP *const cpi, BLOCK_SIZE bsize,
+ int qindex, int qdelta) {
+ // Reduce the intra cost penalty for small blocks (<=16x16).
+ int reduction_fac =
+ (bsize <= BLOCK_16X16) ? ((bsize <= BLOCK_8X8) ? 4 : 2) : 0;
+
+ if (cpi->noise_estimate.enabled && cpi->noise_estimate.level == kHigh)
+ // Don't reduce intra cost penalty if estimated noise level is high.
+ reduction_fac = 0;
+
+ // Always use VPX_BITS_8 as input here because the penalty is applied
+ // to rate not distortion so we want a consistent penalty for all bit
+ // depths. If the actual bit depth were passed in here then the value
+ // retured by vp9_dc_quant() would scale with the bit depth and we would
+ // then need to apply inverse scaling to correct back to a bit depth
+ // independent rate penalty.
+ return (20 * vp9_dc_quant(qindex, qdelta, VPX_BITS_8)) >> reduction_fac;
+}