summaryrefslogtreecommitdiffstats
path: root/media/libvpx/libvpx/vpx_dsp/arm/fdct_neon.h
diff options
context:
space:
mode:
Diffstat (limited to 'media/libvpx/libvpx/vpx_dsp/arm/fdct_neon.h')
-rw-r--r--media/libvpx/libvpx/vpx_dsp/arm/fdct_neon.h542
1 files changed, 542 insertions, 0 deletions
diff --git a/media/libvpx/libvpx/vpx_dsp/arm/fdct_neon.h b/media/libvpx/libvpx/vpx_dsp/arm/fdct_neon.h
new file mode 100644
index 0000000000..16f5c5fc0e
--- /dev/null
+++ b/media/libvpx/libvpx/vpx_dsp/arm/fdct_neon.h
@@ -0,0 +1,542 @@
+/*
+ * Copyright (c) 2022 The WebM project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#ifndef VPX_VPX_DSP_ARM_FDCT_NEON_H_
+#define VPX_VPX_DSP_ARM_FDCT_NEON_H_
+
+#include <arm_neon.h>
+
+// fdct_round_shift((a +/- b) * c)
+// Variant that performs fast vqrdmulh_s16 operation on half vector
+// can be slightly less accurate, adequate for pass1
+static INLINE void butterfly_one_coeff_s16_fast_half(const int16x4_t a,
+ const int16x4_t b,
+ const tran_coef_t constant,
+ int16x4_t *add,
+ int16x4_t *sub) {
+ int16x4_t c = vdup_n_s16(2 * constant);
+ *add = vqrdmulh_s16(vadd_s16(a, b), c);
+ *sub = vqrdmulh_s16(vsub_s16(a, b), c);
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Variant that performs fast vqrdmulh_s16 operation on full vector
+// can be slightly less accurate, adequate for pass1
+static INLINE void butterfly_one_coeff_s16_fast(const int16x8_t a,
+ const int16x8_t b,
+ const tran_coef_t constant,
+ int16x8_t *add,
+ int16x8_t *sub) {
+ int16x8_t c = vdupq_n_s16(2 * constant);
+ *add = vqrdmulhq_s16(vaddq_s16(a, b), c);
+ *sub = vqrdmulhq_s16(vsubq_s16(a, b), c);
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Variant that performs fast vqrdmulhq_s32 operation on full vector
+// more accurate does 32-bit processing, takes 16-bit input values,
+// returns full 32-bit values, high/low
+static INLINE void butterfly_one_coeff_s16_s32_fast(
+ const int16x8_t a, const int16x8_t b, const tran_coef_t constant,
+ int32x4_t *add_lo, int32x4_t *add_hi, int32x4_t *sub_lo,
+ int32x4_t *sub_hi) {
+ int32x4_t c = vdupq_n_s32(constant << 17);
+ const int16x4_t a_lo = vget_low_s16(a);
+ const int16x4_t a_hi = vget_high_s16(a);
+ const int16x4_t b_lo = vget_low_s16(b);
+ const int16x4_t b_hi = vget_high_s16(b);
+ *add_lo = vqrdmulhq_s32(vaddl_s16(a_lo, b_lo), c);
+ *add_hi = vqrdmulhq_s32(vaddl_s16(a_hi, b_hi), c);
+ *sub_lo = vqrdmulhq_s32(vsubl_s16(a_lo, b_lo), c);
+ *sub_hi = vqrdmulhq_s32(vsubl_s16(a_hi, b_hi), c);
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Variant that performs fast vqrdmulhq_s32 operation on full vector
+// more accurate does 32-bit processing, takes 16-bit input values,
+// returns full 32-bit values, high/low
+static INLINE void butterfly_one_coeff_s16_s32_fast_narrow(
+ const int16x8_t a, const int16x8_t b, const tran_coef_t constant,
+ int16x8_t *add, int16x8_t *sub) {
+ int32x4_t add_lo, add_hi, sub_lo, sub_hi;
+ butterfly_one_coeff_s16_s32_fast(a, b, constant, &add_lo, &add_hi, &sub_lo,
+ &sub_hi);
+ *add = vcombine_s16(vmovn_s32(add_lo), vmovn_s32(add_hi));
+ *sub = vcombine_s16(vmovn_s32(sub_lo), vmovn_s32(sub_hi));
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Variant that performs fast vqrdmulhq_s32 operation on full vector
+// more accurate does 32-bit processing, takes 16-bit input values,
+// returns full 32-bit values, high/low
+static INLINE void butterfly_one_coeff_s16_s32_fast_half(
+ const int16x4_t a, const int16x4_t b, const tran_coef_t constant,
+ int32x4_t *add, int32x4_t *sub) {
+ int32x4_t c = vdupq_n_s32(constant << 17);
+ *add = vqrdmulhq_s32(vaddl_s16(a, b), c);
+ *sub = vqrdmulhq_s32(vsubl_s16(a, b), c);
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Variant that performs fast vqrdmulhq_s32 operation on half vector
+// more accurate does 32-bit processing, takes 16-bit input values,
+// returns narrowed down 16-bit values
+static INLINE void butterfly_one_coeff_s16_s32_fast_narrow_half(
+ const int16x4_t a, const int16x4_t b, const tran_coef_t constant,
+ int16x4_t *add, int16x4_t *sub) {
+ int32x4_t add32, sub32;
+ butterfly_one_coeff_s16_s32_fast_half(a, b, constant, &add32, &sub32);
+ *add = vmovn_s32(add32);
+ *sub = vmovn_s32(sub32);
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Original Variant that performs normal implementation on full vector
+// fully accurate does 32-bit processing, takes 16-bit values
+static INLINE void butterfly_one_coeff_s16_s32(
+ const int16x8_t a, const int16x8_t b, const tran_coef_t constant,
+ int32x4_t *add_lo, int32x4_t *add_hi, int32x4_t *sub_lo,
+ int32x4_t *sub_hi) {
+ const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), constant);
+ const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), constant);
+ const int32x4_t sum0 = vmlal_n_s16(a0, vget_low_s16(b), constant);
+ const int32x4_t sum1 = vmlal_n_s16(a1, vget_high_s16(b), constant);
+ const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), constant);
+ const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), constant);
+ *add_lo = vrshrq_n_s32(sum0, DCT_CONST_BITS);
+ *add_hi = vrshrq_n_s32(sum1, DCT_CONST_BITS);
+ *sub_lo = vrshrq_n_s32(diff0, DCT_CONST_BITS);
+ *sub_hi = vrshrq_n_s32(diff1, DCT_CONST_BITS);
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Original Variant that performs normal implementation on full vector
+// fully accurate does 32-bit processing, takes 16-bit values
+// returns narrowed down 16-bit values
+static INLINE void butterfly_one_coeff_s16_s32_narrow(
+ const int16x8_t a, const int16x8_t b, const tran_coef_t constant,
+ int16x8_t *add, int16x8_t *sub) {
+ int32x4_t add32_lo, add32_hi, sub32_lo, sub32_hi;
+ butterfly_one_coeff_s16_s32(a, b, constant, &add32_lo, &add32_hi, &sub32_lo,
+ &sub32_hi);
+ *add = vcombine_s16(vmovn_s32(add32_lo), vmovn_s32(add32_hi));
+ *sub = vcombine_s16(vmovn_s32(sub32_lo), vmovn_s32(sub32_hi));
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Variant that performs fast vqrdmulhq_s32 operation on full vector
+// more accurate does 32-bit processing, takes and returns 32-bit values,
+// high/low
+static INLINE void butterfly_one_coeff_s32_noround(
+ const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo,
+ const int32x4_t b_hi, const tran_coef_t constant, int32x4_t *add_lo,
+ int32x4_t *add_hi, int32x4_t *sub_lo, int32x4_t *sub_hi) {
+ const int32x4_t a1 = vmulq_n_s32(a_lo, constant);
+ const int32x4_t a2 = vmulq_n_s32(a_hi, constant);
+ const int32x4_t a3 = vmulq_n_s32(a_lo, constant);
+ const int32x4_t a4 = vmulq_n_s32(a_hi, constant);
+ *add_lo = vmlaq_n_s32(a1, b_lo, constant);
+ *add_hi = vmlaq_n_s32(a2, b_hi, constant);
+ *sub_lo = vmlsq_n_s32(a3, b_lo, constant);
+ *sub_hi = vmlsq_n_s32(a4, b_hi, constant);
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Variant that performs fast vqrdmulhq_s32 operation on full vector
+// more accurate does 32-bit processing, takes and returns 32-bit values,
+// high/low
+static INLINE void butterfly_one_coeff_s32_fast_half(const int32x4_t a,
+ const int32x4_t b,
+ const tran_coef_t constant,
+ int32x4_t *add,
+ int32x4_t *sub) {
+ const int32x4_t c = vdupq_n_s32(constant << 17);
+ *add = vqrdmulhq_s32(vaddq_s32(a, b), c);
+ *sub = vqrdmulhq_s32(vsubq_s32(a, b), c);
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Variant that performs fast vqrdmulhq_s32 operation on full vector
+// more accurate does 32-bit processing, takes and returns 32-bit values,
+// high/low
+static INLINE void butterfly_one_coeff_s32_fast(
+ const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo,
+ const int32x4_t b_hi, const tran_coef_t constant, int32x4_t *add_lo,
+ int32x4_t *add_hi, int32x4_t *sub_lo, int32x4_t *sub_hi) {
+ const int32x4_t c = vdupq_n_s32(constant << 17);
+ *add_lo = vqrdmulhq_s32(vaddq_s32(a_lo, b_lo), c);
+ *add_hi = vqrdmulhq_s32(vaddq_s32(a_hi, b_hi), c);
+ *sub_lo = vqrdmulhq_s32(vsubq_s32(a_lo, b_lo), c);
+ *sub_hi = vqrdmulhq_s32(vsubq_s32(a_hi, b_hi), c);
+}
+
+// fdct_round_shift((a +/- b) * c)
+// Variant that performs normal implementation on full vector
+// more accurate does 64-bit processing, takes and returns 32-bit values
+// returns narrowed results
+static INLINE void butterfly_one_coeff_s32_s64_narrow(
+ const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo,
+ const int32x4_t b_hi, const tran_coef_t constant, int32x4_t *add_lo,
+ int32x4_t *add_hi, int32x4_t *sub_lo, int32x4_t *sub_hi) {
+ // ac holds the following values:
+ // ac: vget_low_s32(a_lo) * c, vget_high_s32(a_lo) * c,
+ // vget_low_s32(a_hi) * c, vget_high_s32(a_hi) * c
+ int64x2_t ac[4];
+ int64x2_t sum[4];
+ int64x2_t diff[4];
+
+ ac[0] = vmull_n_s32(vget_low_s32(a_lo), constant);
+ ac[1] = vmull_n_s32(vget_high_s32(a_lo), constant);
+ ac[2] = vmull_n_s32(vget_low_s32(a_hi), constant);
+ ac[3] = vmull_n_s32(vget_high_s32(a_hi), constant);
+
+ sum[0] = vmlal_n_s32(ac[0], vget_low_s32(b_lo), constant);
+ sum[1] = vmlal_n_s32(ac[1], vget_high_s32(b_lo), constant);
+ sum[2] = vmlal_n_s32(ac[2], vget_low_s32(b_hi), constant);
+ sum[3] = vmlal_n_s32(ac[3], vget_high_s32(b_hi), constant);
+ *add_lo = vcombine_s32(vrshrn_n_s64(sum[0], DCT_CONST_BITS),
+ vrshrn_n_s64(sum[1], DCT_CONST_BITS));
+ *add_hi = vcombine_s32(vrshrn_n_s64(sum[2], DCT_CONST_BITS),
+ vrshrn_n_s64(sum[3], DCT_CONST_BITS));
+
+ diff[0] = vmlsl_n_s32(ac[0], vget_low_s32(b_lo), constant);
+ diff[1] = vmlsl_n_s32(ac[1], vget_high_s32(b_lo), constant);
+ diff[2] = vmlsl_n_s32(ac[2], vget_low_s32(b_hi), constant);
+ diff[3] = vmlsl_n_s32(ac[3], vget_high_s32(b_hi), constant);
+ *sub_lo = vcombine_s32(vrshrn_n_s64(diff[0], DCT_CONST_BITS),
+ vrshrn_n_s64(diff[1], DCT_CONST_BITS));
+ *sub_hi = vcombine_s32(vrshrn_n_s64(diff[2], DCT_CONST_BITS),
+ vrshrn_n_s64(diff[3], DCT_CONST_BITS));
+}
+
+// fdct_round_shift(a * c1 +/- b * c2)
+// Variant that performs normal implementation on half vector
+// more accurate does 64-bit processing, takes and returns 32-bit values
+// returns narrowed results
+static INLINE void butterfly_two_coeff_s32_s64_narrow_half(
+ const int32x4_t a, const int32x4_t b, const tran_coef_t constant1,
+ const tran_coef_t constant2, int32x4_t *add, int32x4_t *sub) {
+ const int32x2_t a_lo = vget_low_s32(a);
+ const int32x2_t a_hi = vget_high_s32(a);
+ const int32x2_t b_lo = vget_low_s32(b);
+ const int32x2_t b_hi = vget_high_s32(b);
+
+ const int64x2_t axc0_64_lo = vmull_n_s32(a_lo, constant1);
+ const int64x2_t axc0_64_hi = vmull_n_s32(a_hi, constant1);
+ const int64x2_t axc1_64_lo = vmull_n_s32(a_lo, constant2);
+ const int64x2_t axc1_64_hi = vmull_n_s32(a_hi, constant2);
+
+ const int64x2_t sum_lo = vmlal_n_s32(axc0_64_lo, b_lo, constant2);
+ const int64x2_t sum_hi = vmlal_n_s32(axc0_64_hi, b_hi, constant2);
+ const int64x2_t diff_lo = vmlsl_n_s32(axc1_64_lo, b_lo, constant1);
+ const int64x2_t diff_hi = vmlsl_n_s32(axc1_64_hi, b_hi, constant1);
+
+ *add = vcombine_s32(vrshrn_n_s64(sum_lo, DCT_CONST_BITS),
+ vrshrn_n_s64(sum_hi, DCT_CONST_BITS));
+ *sub = vcombine_s32(vrshrn_n_s64(diff_lo, DCT_CONST_BITS),
+ vrshrn_n_s64(diff_hi, DCT_CONST_BITS));
+}
+
+// fdct_round_shift(a * c1 +/- b * c2)
+// Variant that performs normal implementation on full vector
+// more accurate does 64-bit processing, takes and returns 64-bit values
+// returns results without rounding
+static INLINE void butterfly_two_coeff_s32_s64_noround(
+ const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo,
+ const int32x4_t b_hi, const tran_coef_t constant1,
+ const tran_coef_t constant2, int64x2_t *add_lo /*[2]*/,
+ int64x2_t *add_hi /*[2]*/, int64x2_t *sub_lo /*[2]*/,
+ int64x2_t *sub_hi /*[2]*/) {
+ // ac1/ac2 hold the following values:
+ // ac1: vget_low_s32(a_lo) * c1, vget_high_s32(a_lo) * c1,
+ // vget_low_s32(a_hi) * c1, vget_high_s32(a_hi) * c1
+ // ac2: vget_low_s32(a_lo) * c2, vget_high_s32(a_lo) * c2,
+ // vget_low_s32(a_hi) * c2, vget_high_s32(a_hi) * c2
+ int64x2_t ac1[4];
+ int64x2_t ac2[4];
+
+ ac1[0] = vmull_n_s32(vget_low_s32(a_lo), constant1);
+ ac1[1] = vmull_n_s32(vget_high_s32(a_lo), constant1);
+ ac1[2] = vmull_n_s32(vget_low_s32(a_hi), constant1);
+ ac1[3] = vmull_n_s32(vget_high_s32(a_hi), constant1);
+ ac2[0] = vmull_n_s32(vget_low_s32(a_lo), constant2);
+ ac2[1] = vmull_n_s32(vget_high_s32(a_lo), constant2);
+ ac2[2] = vmull_n_s32(vget_low_s32(a_hi), constant2);
+ ac2[3] = vmull_n_s32(vget_high_s32(a_hi), constant2);
+
+ add_lo[0] = vmlal_n_s32(ac1[0], vget_low_s32(b_lo), constant2);
+ add_lo[1] = vmlal_n_s32(ac1[1], vget_high_s32(b_lo), constant2);
+ add_hi[0] = vmlal_n_s32(ac1[2], vget_low_s32(b_hi), constant2);
+ add_hi[1] = vmlal_n_s32(ac1[3], vget_high_s32(b_hi), constant2);
+
+ sub_lo[0] = vmlsl_n_s32(ac2[0], vget_low_s32(b_lo), constant1);
+ sub_lo[1] = vmlsl_n_s32(ac2[1], vget_high_s32(b_lo), constant1);
+ sub_hi[0] = vmlsl_n_s32(ac2[2], vget_low_s32(b_hi), constant1);
+ sub_hi[1] = vmlsl_n_s32(ac2[3], vget_high_s32(b_hi), constant1);
+}
+
+// fdct_round_shift(a * c1 +/- b * c2)
+// Variant that performs normal implementation on full vector
+// more accurate does 64-bit processing, takes and returns 32-bit values
+// returns narrowed results
+static INLINE void butterfly_two_coeff_s32_s64_narrow(
+ const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo,
+ const int32x4_t b_hi, const tran_coef_t constant1,
+ const tran_coef_t constant2, int32x4_t *add_lo, int32x4_t *add_hi,
+ int32x4_t *sub_lo, int32x4_t *sub_hi) {
+ // ac1/ac2 hold the following values:
+ // ac1: vget_low_s32(a_lo) * c1, vget_high_s32(a_lo) * c1,
+ // vget_low_s32(a_hi) * c1, vget_high_s32(a_hi) * c1
+ // ac2: vget_low_s32(a_lo) * c2, vget_high_s32(a_lo) * c2,
+ // vget_low_s32(a_hi) * c2, vget_high_s32(a_hi) * c2
+ int64x2_t ac1[4];
+ int64x2_t ac2[4];
+ int64x2_t sum[4];
+ int64x2_t diff[4];
+
+ ac1[0] = vmull_n_s32(vget_low_s32(a_lo), constant1);
+ ac1[1] = vmull_n_s32(vget_high_s32(a_lo), constant1);
+ ac1[2] = vmull_n_s32(vget_low_s32(a_hi), constant1);
+ ac1[3] = vmull_n_s32(vget_high_s32(a_hi), constant1);
+ ac2[0] = vmull_n_s32(vget_low_s32(a_lo), constant2);
+ ac2[1] = vmull_n_s32(vget_high_s32(a_lo), constant2);
+ ac2[2] = vmull_n_s32(vget_low_s32(a_hi), constant2);
+ ac2[3] = vmull_n_s32(vget_high_s32(a_hi), constant2);
+
+ sum[0] = vmlal_n_s32(ac1[0], vget_low_s32(b_lo), constant2);
+ sum[1] = vmlal_n_s32(ac1[1], vget_high_s32(b_lo), constant2);
+ sum[2] = vmlal_n_s32(ac1[2], vget_low_s32(b_hi), constant2);
+ sum[3] = vmlal_n_s32(ac1[3], vget_high_s32(b_hi), constant2);
+ *add_lo = vcombine_s32(vrshrn_n_s64(sum[0], DCT_CONST_BITS),
+ vrshrn_n_s64(sum[1], DCT_CONST_BITS));
+ *add_hi = vcombine_s32(vrshrn_n_s64(sum[2], DCT_CONST_BITS),
+ vrshrn_n_s64(sum[3], DCT_CONST_BITS));
+
+ diff[0] = vmlsl_n_s32(ac2[0], vget_low_s32(b_lo), constant1);
+ diff[1] = vmlsl_n_s32(ac2[1], vget_high_s32(b_lo), constant1);
+ diff[2] = vmlsl_n_s32(ac2[2], vget_low_s32(b_hi), constant1);
+ diff[3] = vmlsl_n_s32(ac2[3], vget_high_s32(b_hi), constant1);
+ *sub_lo = vcombine_s32(vrshrn_n_s64(diff[0], DCT_CONST_BITS),
+ vrshrn_n_s64(diff[1], DCT_CONST_BITS));
+ *sub_hi = vcombine_s32(vrshrn_n_s64(diff[2], DCT_CONST_BITS),
+ vrshrn_n_s64(diff[3], DCT_CONST_BITS));
+}
+
+// fdct_round_shift(a * c1 +/- b * c2)
+// Original Variant that performs normal implementation on full vector
+// more accurate does 32-bit processing, takes and returns 32-bit values
+// returns narrowed results
+static INLINE void butterfly_two_coeff_s16_s32_noround(
+ const int16x4_t a_lo, const int16x4_t a_hi, const int16x4_t b_lo,
+ const int16x4_t b_hi, const tran_coef_t constant1,
+ const tran_coef_t constant2, int32x4_t *add_lo, int32x4_t *add_hi,
+ int32x4_t *sub_lo, int32x4_t *sub_hi) {
+ const int32x4_t a1 = vmull_n_s16(a_lo, constant1);
+ const int32x4_t a2 = vmull_n_s16(a_hi, constant1);
+ const int32x4_t a3 = vmull_n_s16(a_lo, constant2);
+ const int32x4_t a4 = vmull_n_s16(a_hi, constant2);
+ *add_lo = vmlal_n_s16(a1, b_lo, constant2);
+ *add_hi = vmlal_n_s16(a2, b_hi, constant2);
+ *sub_lo = vmlsl_n_s16(a3, b_lo, constant1);
+ *sub_hi = vmlsl_n_s16(a4, b_hi, constant1);
+}
+
+// fdct_round_shift(a * c1 +/- b * c2)
+// Original Variant that performs normal implementation on full vector
+// more accurate does 32-bit processing, takes and returns 32-bit values
+// returns narrowed results
+static INLINE void butterfly_two_coeff_s32_noround(
+ const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo,
+ const int32x4_t b_hi, const tran_coef_t constant1,
+ const tran_coef_t constant2, int32x4_t *add_lo, int32x4_t *add_hi,
+ int32x4_t *sub_lo, int32x4_t *sub_hi) {
+ const int32x4_t a1 = vmulq_n_s32(a_lo, constant1);
+ const int32x4_t a2 = vmulq_n_s32(a_hi, constant1);
+ const int32x4_t a3 = vmulq_n_s32(a_lo, constant2);
+ const int32x4_t a4 = vmulq_n_s32(a_hi, constant2);
+ *add_lo = vmlaq_n_s32(a1, b_lo, constant2);
+ *add_hi = vmlaq_n_s32(a2, b_hi, constant2);
+ *sub_lo = vmlsq_n_s32(a3, b_lo, constant1);
+ *sub_hi = vmlsq_n_s32(a4, b_hi, constant1);
+}
+
+// fdct_round_shift(a * c1 +/- b * c2)
+// Variant that performs normal implementation on half vector
+// more accurate does 32-bit processing, takes and returns 16-bit values
+// returns narrowed results
+static INLINE void butterfly_two_coeff_half(const int16x4_t a,
+ const int16x4_t b,
+ const tran_coef_t constant1,
+ const tran_coef_t constant2,
+ int16x4_t *add, int16x4_t *sub) {
+ const int32x4_t a1 = vmull_n_s16(a, constant1);
+ const int32x4_t a2 = vmull_n_s16(a, constant2);
+ const int32x4_t sum = vmlal_n_s16(a1, b, constant2);
+ const int32x4_t diff = vmlsl_n_s16(a2, b, constant1);
+ *add = vqrshrn_n_s32(sum, DCT_CONST_BITS);
+ *sub = vqrshrn_n_s32(diff, DCT_CONST_BITS);
+}
+
+// fdct_round_shift(a * c1 +/- b * c2)
+// Original Variant that performs normal implementation on full vector
+// more accurate does 32-bit processing, takes and returns 16-bit values
+// returns narrowed results
+static INLINE void butterfly_two_coeff(const int16x8_t a, const int16x8_t b,
+ const tran_coef_t constant1,
+ const tran_coef_t constant2,
+ int16x8_t *add, int16x8_t *sub) {
+ const int32x4_t a1 = vmull_n_s16(vget_low_s16(a), constant1);
+ const int32x4_t a2 = vmull_n_s16(vget_high_s16(a), constant1);
+ const int32x4_t a3 = vmull_n_s16(vget_low_s16(a), constant2);
+ const int32x4_t a4 = vmull_n_s16(vget_high_s16(a), constant2);
+ const int32x4_t sum0 = vmlal_n_s16(a1, vget_low_s16(b), constant2);
+ const int32x4_t sum1 = vmlal_n_s16(a2, vget_high_s16(b), constant2);
+ const int32x4_t diff0 = vmlsl_n_s16(a3, vget_low_s16(b), constant1);
+ const int32x4_t diff1 = vmlsl_n_s16(a4, vget_high_s16(b), constant1);
+ const int16x4_t rounded0 = vqrshrn_n_s32(sum0, DCT_CONST_BITS);
+ const int16x4_t rounded1 = vqrshrn_n_s32(sum1, DCT_CONST_BITS);
+ const int16x4_t rounded2 = vqrshrn_n_s32(diff0, DCT_CONST_BITS);
+ const int16x4_t rounded3 = vqrshrn_n_s32(diff1, DCT_CONST_BITS);
+ *add = vcombine_s16(rounded0, rounded1);
+ *sub = vcombine_s16(rounded2, rounded3);
+}
+
+// fdct_round_shift(a * c1 +/- b * c2)
+// Original Variant that performs normal implementation on full vector
+// more accurate does 32-bit processing, takes and returns 32-bit values
+// returns narrowed results
+static INLINE void butterfly_two_coeff_s32(
+ const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo,
+ const int32x4_t b_hi, const tran_coef_t constant1,
+ const tran_coef_t constant2, int32x4_t *add_lo, int32x4_t *add_hi,
+ int32x4_t *sub_lo, int32x4_t *sub_hi) {
+ const int32x4_t a1 = vmulq_n_s32(a_lo, constant1);
+ const int32x4_t a2 = vmulq_n_s32(a_hi, constant1);
+ const int32x4_t a3 = vmulq_n_s32(a_lo, constant2);
+ const int32x4_t a4 = vmulq_n_s32(a_hi, constant2);
+ const int32x4_t sum0 = vmlaq_n_s32(a1, b_lo, constant2);
+ const int32x4_t sum1 = vmlaq_n_s32(a2, b_hi, constant2);
+ const int32x4_t diff0 = vmlsq_n_s32(a3, b_lo, constant1);
+ const int32x4_t diff1 = vmlsq_n_s32(a4, b_hi, constant1);
+ *add_lo = vrshrq_n_s32(sum0, DCT_CONST_BITS);
+ *add_hi = vrshrq_n_s32(sum1, DCT_CONST_BITS);
+ *sub_lo = vrshrq_n_s32(diff0, DCT_CONST_BITS);
+ *sub_hi = vrshrq_n_s32(diff1, DCT_CONST_BITS);
+}
+
+// Add 1 if positive, 2 if negative, and shift by 2.
+// In practice, add 1, then add the sign bit, then shift without rounding.
+static INLINE int16x8_t add_round_shift_s16(const int16x8_t a) {
+ const int16x8_t one = vdupq_n_s16(1);
+ const uint16x8_t a_u16 = vreinterpretq_u16_s16(a);
+ const uint16x8_t a_sign_u16 = vshrq_n_u16(a_u16, 15);
+ const int16x8_t a_sign_s16 = vreinterpretq_s16_u16(a_sign_u16);
+ return vshrq_n_s16(vaddq_s16(vaddq_s16(a, a_sign_s16), one), 2);
+}
+
+// Add 1 if positive, 2 if negative, and shift by 2.
+// In practice, add 1, then add the sign bit, then shift and round,
+// return narrowed results
+static INLINE int16x8_t add_round_shift_s32_narrow(const int32x4_t a_lo,
+ const int32x4_t a_hi) {
+ const int32x4_t one = vdupq_n_s32(1);
+ const uint32x4_t a_lo_u32 = vreinterpretq_u32_s32(a_lo);
+ const uint32x4_t a_lo_sign_u32 = vshrq_n_u32(a_lo_u32, 31);
+ const int32x4_t a_lo_sign_s32 = vreinterpretq_s32_u32(a_lo_sign_u32);
+ const int16x4_t b_lo =
+ vshrn_n_s32(vqaddq_s32(vqaddq_s32(a_lo, a_lo_sign_s32), one), 2);
+ const uint32x4_t a_hi_u32 = vreinterpretq_u32_s32(a_hi);
+ const uint32x4_t a_hi_sign_u32 = vshrq_n_u32(a_hi_u32, 31);
+ const int32x4_t a_hi_sign_s32 = vreinterpretq_s32_u32(a_hi_sign_u32);
+ const int16x4_t b_hi =
+ vshrn_n_s32(vqaddq_s32(vqaddq_s32(a_hi, a_hi_sign_s32), one), 2);
+ return vcombine_s16(b_lo, b_hi);
+}
+
+// Add 1 if negative, and shift by 1.
+// In practice, add the sign bit, then shift and round
+static INLINE int32x4_t add_round_shift_half_s32(const int32x4_t a) {
+ const uint32x4_t a_u32 = vreinterpretq_u32_s32(a);
+ const uint32x4_t a_sign_u32 = vshrq_n_u32(a_u32, 31);
+ const int32x4_t a_sign_s32 = vreinterpretq_s32_u32(a_sign_u32);
+ return vshrq_n_s32(vaddq_s32(a, a_sign_s32), 1);
+}
+
+// Add 1 if positive, 2 if negative, and shift by 2.
+// In practice, add 1, then add the sign bit, then shift without rounding.
+static INLINE int32x4_t add_round_shift_s32(const int32x4_t a) {
+ const int32x4_t one = vdupq_n_s32(1);
+ const uint32x4_t a_u32 = vreinterpretq_u32_s32(a);
+ const uint32x4_t a_sign_u32 = vshrq_n_u32(a_u32, 31);
+ const int32x4_t a_sign_s32 = vreinterpretq_s32_u32(a_sign_u32);
+ return vshrq_n_s32(vaddq_s32(vaddq_s32(a, a_sign_s32), one), 2);
+}
+
+// Add 2 if positive, 1 if negative, and shift by 2.
+// In practice, subtract the sign bit, then shift with rounding.
+static INLINE int16x8_t sub_round_shift_s16(const int16x8_t a) {
+ const uint16x8_t a_u16 = vreinterpretq_u16_s16(a);
+ const uint16x8_t a_sign_u16 = vshrq_n_u16(a_u16, 15);
+ const int16x8_t a_sign_s16 = vreinterpretq_s16_u16(a_sign_u16);
+ return vrshrq_n_s16(vsubq_s16(a, a_sign_s16), 2);
+}
+
+// Add 2 if positive, 1 if negative, and shift by 2.
+// In practice, subtract the sign bit, then shift with rounding.
+static INLINE int32x4_t sub_round_shift_s32(const int32x4_t a) {
+ const uint32x4_t a_u32 = vreinterpretq_u32_s32(a);
+ const uint32x4_t a_sign_u32 = vshrq_n_u32(a_u32, 31);
+ const int32x4_t a_sign_s32 = vreinterpretq_s32_u32(a_sign_u32);
+ return vrshrq_n_s32(vsubq_s32(a, a_sign_s32), 2);
+}
+
+static INLINE int32x4_t add_s64_round_narrow(const int64x2_t *a /*[2]*/,
+ const int64x2_t *b /*[2]*/) {
+ int64x2_t result[2];
+ result[0] = vaddq_s64(a[0], b[0]);
+ result[1] = vaddq_s64(a[1], b[1]);
+ return vcombine_s32(vrshrn_n_s64(result[0], DCT_CONST_BITS),
+ vrshrn_n_s64(result[1], DCT_CONST_BITS));
+}
+
+static INLINE int32x4_t sub_s64_round_narrow(const int64x2_t *a /*[2]*/,
+ const int64x2_t *b /*[2]*/) {
+ int64x2_t result[2];
+ result[0] = vsubq_s64(a[0], b[0]);
+ result[1] = vsubq_s64(a[1], b[1]);
+ return vcombine_s32(vrshrn_n_s64(result[0], DCT_CONST_BITS),
+ vrshrn_n_s64(result[1], DCT_CONST_BITS));
+}
+
+static INLINE int32x4_t add_s32_s64_narrow(const int32x4_t a,
+ const int32x4_t b) {
+ int64x2_t a64[2], b64[2], result[2];
+ a64[0] = vmovl_s32(vget_low_s32(a));
+ a64[1] = vmovl_s32(vget_high_s32(a));
+ b64[0] = vmovl_s32(vget_low_s32(b));
+ b64[1] = vmovl_s32(vget_high_s32(b));
+ result[0] = vaddq_s64(a64[0], b64[0]);
+ result[1] = vaddq_s64(a64[1], b64[1]);
+ return vcombine_s32(vmovn_s64(result[0]), vmovn_s64(result[1]));
+}
+
+static INLINE int32x4_t sub_s32_s64_narrow(const int32x4_t a,
+ const int32x4_t b) {
+ int64x2_t a64[2], b64[2], result[2];
+ a64[0] = vmovl_s32(vget_low_s32(a));
+ a64[1] = vmovl_s32(vget_high_s32(a));
+ b64[0] = vmovl_s32(vget_low_s32(b));
+ b64[1] = vmovl_s32(vget_high_s32(b));
+ result[0] = vsubq_s64(a64[0], b64[0]);
+ result[1] = vsubq_s64(a64[1], b64[1]);
+ return vcombine_s32(vmovn_s64(result[0]), vmovn_s64(result[1]));
+}
+
+#endif // VPX_VPX_DSP_ARM_FDCT_NEON_H_