summaryrefslogtreecommitdiffstats
path: root/other-licenses/snappy/src/snappy.cc
diff options
context:
space:
mode:
Diffstat (limited to 'other-licenses/snappy/src/snappy.cc')
-rw-r--r--other-licenses/snappy/src/snappy.cc730
1 files changed, 578 insertions, 152 deletions
diff --git a/other-licenses/snappy/src/snappy.cc b/other-licenses/snappy/src/snappy.cc
index 57df3f11fc..08c2a9889f 100644
--- a/other-licenses/snappy/src/snappy.cc
+++ b/other-licenses/snappy/src/snappy.cc
@@ -29,18 +29,6 @@
#include "snappy-internal.h"
#include "snappy-sinksource.h"
#include "snappy.h"
-
-#if !defined(SNAPPY_HAVE_SSSE3)
-// __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD
-// support between SSE2 and AVX (so SSSE3 instructions require AVX support), and
-// defines __AVX__ when AVX support is available.
-#if defined(__SSSE3__) || defined(__AVX__)
-#define SNAPPY_HAVE_SSSE3 1
-#else
-#define SNAPPY_HAVE_SSSE3 0
-#endif
-#endif // !defined(SNAPPY_HAVE_SSSE3)
-
#if !defined(SNAPPY_HAVE_BMI2)
// __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2
// specifically, but it does define __AVX2__ when AVX2 support is available.
@@ -56,16 +44,28 @@
#endif
#endif // !defined(SNAPPY_HAVE_BMI2)
-#if SNAPPY_HAVE_SSSE3
-// Please do not replace with <x86intrin.h>. or with headers that assume more
-// advanced SSE versions without checking with all the OWNERS.
-#include <tmmintrin.h>
+#if !defined(SNAPPY_HAVE_X86_CRC32)
+#if defined(__SSE4_2__)
+#define SNAPPY_HAVE_X86_CRC32 1
+#else
+#define SNAPPY_HAVE_X86_CRC32 0
#endif
+#endif // !defined(SNAPPY_HAVE_X86_CRC32)
-#if SNAPPY_HAVE_BMI2
+#if !defined(SNAPPY_HAVE_NEON_CRC32)
+#if SNAPPY_HAVE_NEON && defined(__ARM_FEATURE_CRC32)
+#define SNAPPY_HAVE_NEON_CRC32 1
+#else
+#define SNAPPY_HAVE_NEON_CRC32 0
+#endif
+#endif // !defined(SNAPPY_HAVE_NEON_CRC32)
+
+#if SNAPPY_HAVE_BMI2 || SNAPPY_HAVE_X86_CRC32
// Please do not replace with <x86intrin.h>. or with headers that assume more
// advanced SSE versions without checking with all the OWNERS.
#include <immintrin.h>
+#elif SNAPPY_HAVE_NEON_CRC32
+#include <arm_acle.h>
#endif
#include <algorithm>
@@ -74,6 +74,7 @@
#include <cstdint>
#include <cstdio>
#include <cstring>
+#include <memory>
#include <string>
#include <utility>
#include <vector>
@@ -91,6 +92,14 @@ using internal::COPY_2_BYTE_OFFSET;
using internal::COPY_4_BYTE_OFFSET;
using internal::kMaximumTagLength;
using internal::LITERAL;
+#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
+using internal::V128;
+using internal::V128_Load;
+using internal::V128_LoadU;
+using internal::V128_Shuffle;
+using internal::V128_StoreU;
+using internal::V128_DupChar;
+#endif
// We translate the information encoded in a tag through a lookup table to a
// format that requires fewer instructions to decode. Effectively we store
@@ -133,21 +142,53 @@ constexpr std::array<int16_t, 256> MakeTable(index_sequence<seq...>) {
return std::array<int16_t, 256>{LengthMinusOffset(seq)...};
}
-// We maximally co-locate the two tables so that only one register needs to be
-// reserved for the table address.
-struct {
- alignas(64) const std::array<int16_t, 256> length_minus_offset;
- uint32_t extract_masks[4]; // Used for extracting offset based on tag type.
-} table = {MakeTable(make_index_sequence<256>{}), {0, 0xFF, 0xFFFF, 0}};
-
-// Any hash function will produce a valid compressed bitstream, but a good
-// hash function reduces the number of collisions and thus yields better
-// compression for compressible input, and more speed for incompressible
-// input. Of course, it doesn't hurt if the hash function is reasonably fast
-// either, as it gets called a lot.
-inline uint32_t HashBytes(uint32_t bytes, uint32_t mask) {
+alignas(64) const std::array<int16_t, 256> kLengthMinusOffset =
+ MakeTable(make_index_sequence<256>{});
+
+// Given a table of uint16_t whose size is mask / 2 + 1, return a pointer to the
+// relevant entry, if any, for the given bytes. Any hash function will do,
+// but a good hash function reduces the number of collisions and thus yields
+// better compression for compressible input.
+//
+// REQUIRES: mask is 2 * (table_size - 1), and table_size is a power of two.
+inline uint16_t* TableEntry(uint16_t* table, uint32_t bytes, uint32_t mask) {
+ // Our choice is quicker-and-dirtier than the typical hash function;
+ // empirically, that seems beneficial. The upper bits of kMagic * bytes are a
+ // higher-quality hash than the lower bits, so when using kMagic * bytes we
+ // also shift right to get a higher-quality end result. There's no similar
+ // issue with a CRC because all of the output bits of a CRC are equally good
+ // "hashes." So, a CPU instruction for CRC, if available, tends to be a good
+ // choice.
+#if SNAPPY_HAVE_NEON_CRC32
+ // We use mask as the second arg to the CRC function, as it's about to
+ // be used anyway; it'd be equally correct to use 0 or some constant.
+ // Mathematically, _mm_crc32_u32 (or similar) is a function of the
+ // xor of its arguments.
+ const uint32_t hash = __crc32cw(bytes, mask);
+#elif SNAPPY_HAVE_X86_CRC32
+ const uint32_t hash = _mm_crc32_u32(bytes, mask);
+#else
constexpr uint32_t kMagic = 0x1e35a7bd;
- return ((kMagic * bytes) >> (32 - kMaxHashTableBits)) & mask;
+ const uint32_t hash = (kMagic * bytes) >> (31 - kMaxHashTableBits);
+#endif
+ return reinterpret_cast<uint16_t*>(reinterpret_cast<uintptr_t>(table) +
+ (hash & mask));
+}
+
+inline uint16_t* TableEntry4ByteMatch(uint16_t* table, uint32_t bytes,
+ uint32_t mask) {
+ constexpr uint32_t kMagic = 2654435761U;
+ const uint32_t hash = (kMagic * bytes) >> (32 - kMaxHashTableBits);
+ return reinterpret_cast<uint16_t*>(reinterpret_cast<uintptr_t>(table) +
+ (hash & mask));
+}
+
+inline uint16_t* TableEntry8ByteMatch(uint16_t* table, uint64_t bytes,
+ uint32_t mask) {
+ constexpr uint64_t kMagic = 58295818150454627ULL;
+ const uint32_t hash = (kMagic * bytes) >> (64 - kMaxHashTableBits);
+ return reinterpret_cast<uint16_t*>(reinterpret_cast<uintptr_t>(table) +
+ (hash & mask));
}
} // namespace
@@ -228,7 +269,7 @@ inline char* IncrementalCopySlow(const char* src, char* op,
return op_limit;
}
-#if SNAPPY_HAVE_SSSE3
+#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
// Computes the bytes for shuffle control mask (please read comments on
// 'pattern_generation_masks' as well) for the given index_offset and
@@ -248,19 +289,19 @@ inline constexpr std::array<char, sizeof...(indexes)> MakePatternMaskBytes(
// Computes the shuffle control mask bytes array for given pattern-sizes and
// returns an array.
template <size_t... pattern_sizes_minus_one>
-inline constexpr std::array<std::array<char, sizeof(__m128i)>,
+inline constexpr std::array<std::array<char, sizeof(V128)>,
sizeof...(pattern_sizes_minus_one)>
MakePatternMaskBytesTable(int index_offset,
index_sequence<pattern_sizes_minus_one...>) {
- return {MakePatternMaskBytes(
- index_offset, pattern_sizes_minus_one + 1,
- make_index_sequence</*indexes=*/sizeof(__m128i)>())...};
+ return {
+ MakePatternMaskBytes(index_offset, pattern_sizes_minus_one + 1,
+ make_index_sequence</*indexes=*/sizeof(V128)>())...};
}
// This is an array of shuffle control masks that can be used as the source
// operand for PSHUFB to permute the contents of the destination XMM register
// into a repeating byte pattern.
-alignas(16) constexpr std::array<std::array<char, sizeof(__m128i)>,
+alignas(16) constexpr std::array<std::array<char, sizeof(V128)>,
16> pattern_generation_masks =
MakePatternMaskBytesTable(
/*index_offset=*/0,
@@ -271,40 +312,40 @@ alignas(16) constexpr std::array<std::array<char, sizeof(__m128i)>,
// Basically, pattern_reshuffle_masks is a continuation of
// pattern_generation_masks. It follows that, pattern_reshuffle_masks is same as
// pattern_generation_masks for offsets 1, 2, 4, 8 and 16.
-alignas(16) constexpr std::array<std::array<char, sizeof(__m128i)>,
+alignas(16) constexpr std::array<std::array<char, sizeof(V128)>,
16> pattern_reshuffle_masks =
MakePatternMaskBytesTable(
/*index_offset=*/16,
/*pattern_sizes_minus_one=*/make_index_sequence<16>());
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
-static inline __m128i LoadPattern(const char* src, const size_t pattern_size) {
- __m128i generation_mask = _mm_load_si128(reinterpret_cast<const __m128i*>(
+static inline V128 LoadPattern(const char* src, const size_t pattern_size) {
+ V128 generation_mask = V128_Load(reinterpret_cast<const V128*>(
pattern_generation_masks[pattern_size - 1].data()));
// Uninitialized bytes are masked out by the shuffle mask.
// TODO: remove annotation and macro defs once MSan is fixed.
SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(src + pattern_size, 16 - pattern_size);
- return _mm_shuffle_epi8(
- _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)), generation_mask);
+ return V128_Shuffle(V128_LoadU(reinterpret_cast<const V128*>(src)),
+ generation_mask);
}
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
-static inline std::pair<__m128i /* pattern */, __m128i /* reshuffle_mask */>
+static inline std::pair<V128 /* pattern */, V128 /* reshuffle_mask */>
LoadPatternAndReshuffleMask(const char* src, const size_t pattern_size) {
- __m128i pattern = LoadPattern(src, pattern_size);
+ V128 pattern = LoadPattern(src, pattern_size);
// This mask will generate the next 16 bytes in-place. Doing so enables us to
- // write data by at most 4 _mm_storeu_si128.
+ // write data by at most 4 V128_StoreU.
//
// For example, suppose pattern is: abcdefabcdefabcd
// Shuffling with this mask will generate: efabcdefabcdefab
// Shuffling again will generate: cdefabcdefabcdef
- __m128i reshuffle_mask = _mm_load_si128(reinterpret_cast<const __m128i*>(
+ V128 reshuffle_mask = V128_Load(reinterpret_cast<const V128*>(
pattern_reshuffle_masks[pattern_size - 1].data()));
return {pattern, reshuffle_mask};
}
-#endif // SNAPPY_HAVE_SSSE3
+#endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
// Fallback for when we need to copy while extending the pattern, for example
// copying 10 bytes from 3 positions back abc -> abcabcabcabca.
@@ -312,33 +353,38 @@ LoadPatternAndReshuffleMask(const char* src, const size_t pattern_size) {
// REQUIRES: [dst - offset, dst + 64) is a valid address range.
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) {
-#if SNAPPY_HAVE_SSSE3
+#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
if (SNAPPY_PREDICT_TRUE(offset <= 16)) {
switch (offset) {
case 0:
return false;
case 1: {
- std::memset(dst, dst[-1], 64);
+ // TODO: Ideally we should memset, move back once the
+ // codegen issues are fixed.
+ V128 pattern = V128_DupChar(dst[-1]);
+ for (int i = 0; i < 4; i++) {
+ V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
+ }
return true;
}
case 2:
case 4:
case 8:
case 16: {
- __m128i pattern = LoadPattern(dst - offset, offset);
+ V128 pattern = LoadPattern(dst - offset, offset);
for (int i = 0; i < 4; i++) {
- _mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16 * i), pattern);
+ V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
}
return true;
}
default: {
auto pattern_and_reshuffle_mask =
LoadPatternAndReshuffleMask(dst - offset, offset);
- __m128i pattern = pattern_and_reshuffle_mask.first;
- __m128i reshuffle_mask = pattern_and_reshuffle_mask.second;
+ V128 pattern = pattern_and_reshuffle_mask.first;
+ V128 reshuffle_mask = pattern_and_reshuffle_mask.second;
for (int i = 0; i < 4; i++) {
- _mm_storeu_si128(reinterpret_cast<__m128i*>(dst + 16 * i), pattern);
- pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
+ V128_StoreU(reinterpret_cast<V128*>(dst + 16 * i), pattern);
+ pattern = V128_Shuffle(pattern, reshuffle_mask);
}
return true;
}
@@ -348,6 +394,7 @@ static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) {
if (SNAPPY_PREDICT_TRUE(offset < 16)) {
if (SNAPPY_PREDICT_FALSE(offset == 0)) return false;
// Extend the pattern to the first 16 bytes.
+ // The simpler formulation of `dst[i - offset]` induces undefined behavior.
for (int i = 0; i < 16; i++) dst[i] = (dst - offset)[i];
// Find a multiple of pattern >= 16.
static std::array<uint8_t, 16> pattern_sizes = []() {
@@ -361,7 +408,7 @@ static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) {
}
return true;
}
-#endif // SNAPPY_HAVE_SSSE3
+#endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
// Very rare.
for (int i = 0; i < 4; i++) {
@@ -375,7 +422,7 @@ static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) {
// region of the buffer.
inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
char* const buf_limit) {
-#if SNAPPY_HAVE_SSSE3
+#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
constexpr int big_pattern_size_lower_bound = 16;
#else
constexpr int big_pattern_size_lower_bound = 8;
@@ -425,14 +472,14 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
// Handle the uncommon case where pattern is less than 16 (or 8 in non-SSE)
// bytes.
if (pattern_size < big_pattern_size_lower_bound) {
-#if SNAPPY_HAVE_SSSE3
+#if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
// Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
// to permute the register's contents in-place into a repeating sequence of
// the first "pattern_size" bytes.
// For example, suppose:
// src == "abc"
// op == op + 3
- // After _mm_shuffle_epi8(), "pattern" will have five copies of "abc"
+ // After V128_Shuffle(), "pattern" will have five copies of "abc"
// followed by one byte of slop: abcabcabcabcabca.
//
// The non-SSE fallback implementation suffers from store-forwarding stalls
@@ -444,26 +491,26 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) {
auto pattern_and_reshuffle_mask =
LoadPatternAndReshuffleMask(src, pattern_size);
- __m128i pattern = pattern_and_reshuffle_mask.first;
- __m128i reshuffle_mask = pattern_and_reshuffle_mask.second;
+ V128 pattern = pattern_and_reshuffle_mask.first;
+ V128 reshuffle_mask = pattern_and_reshuffle_mask.second;
// There is at least one, and at most four 16-byte blocks. Writing four
// conditionals instead of a loop allows FDO to layout the code with
// respect to the actual probabilities of each length.
// TODO: Replace with loop with trip count hint.
- _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
+ V128_StoreU(reinterpret_cast<V128*>(op), pattern);
if (op + 16 < op_limit) {
- pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
- _mm_storeu_si128(reinterpret_cast<__m128i*>(op + 16), pattern);
+ pattern = V128_Shuffle(pattern, reshuffle_mask);
+ V128_StoreU(reinterpret_cast<V128*>(op + 16), pattern);
}
if (op + 32 < op_limit) {
- pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
- _mm_storeu_si128(reinterpret_cast<__m128i*>(op + 32), pattern);
+ pattern = V128_Shuffle(pattern, reshuffle_mask);
+ V128_StoreU(reinterpret_cast<V128*>(op + 32), pattern);
}
if (op + 48 < op_limit) {
- pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
- _mm_storeu_si128(reinterpret_cast<__m128i*>(op + 48), pattern);
+ pattern = V128_Shuffle(pattern, reshuffle_mask);
+ V128_StoreU(reinterpret_cast<V128*>(op + 48), pattern);
}
return op_limit;
}
@@ -471,8 +518,8 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
if (SNAPPY_PREDICT_TRUE(op < op_end)) {
auto pattern_and_reshuffle_mask =
LoadPatternAndReshuffleMask(src, pattern_size);
- __m128i pattern = pattern_and_reshuffle_mask.first;
- __m128i reshuffle_mask = pattern_and_reshuffle_mask.second;
+ V128 pattern = pattern_and_reshuffle_mask.first;
+ V128 reshuffle_mask = pattern_and_reshuffle_mask.second;
// This code path is relatively cold however so we save code size
// by avoiding unrolling and vectorizing.
@@ -483,13 +530,13 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
#pragma clang loop unroll(disable)
#endif
do {
- _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
- pattern = _mm_shuffle_epi8(pattern, reshuffle_mask);
+ V128_StoreU(reinterpret_cast<V128*>(op), pattern);
+ pattern = V128_Shuffle(pattern, reshuffle_mask);
op += 16;
} while (SNAPPY_PREDICT_TRUE(op < op_end));
}
return IncrementalCopySlow(op - pattern_size, op, op_limit);
-#else // !SNAPPY_HAVE_SSSE3
+#else // !SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
// If plenty of buffer space remains, expand the pattern to at least 8
// bytes. The way the following loop is written, we need 8 bytes of buffer
// space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10
@@ -506,7 +553,7 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
} else {
return IncrementalCopySlow(src, op, op_limit);
}
-#endif // SNAPPY_HAVE_SSSE3
+#endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE
}
assert(pattern_size >= big_pattern_size_lower_bound);
constexpr bool use_16bytes_chunk = big_pattern_size_lower_bound == 16;
@@ -599,7 +646,19 @@ static inline char* EmitLiteral(char* op, const char* literal, int len) {
LittleEndian::Store32(op, n);
op += count;
}
- std::memcpy(op, literal, len);
+ // When allow_fast_path is true, we can overwrite up to 16 bytes.
+ if (allow_fast_path) {
+ char* destination = op;
+ const char* source = literal;
+ const char* end = destination + len;
+ do {
+ std::memcpy(destination, source, 16);
+ destination += 16;
+ source += 16;
+ } while (destination < end);
+ } else {
+ std::memcpy(op, literal, len);
+ }
return op + len;
}
@@ -734,7 +793,7 @@ char* CompressFragment(const char* input, size_t input_size, char* op,
const char* ip = input;
assert(input_size <= kBlockSize);
assert((table_size & (table_size - 1)) == 0); // table must be power of two
- const uint32_t mask = table_size - 1;
+ const uint32_t mask = 2 * (table_size - 1);
const char* ip_end = input + input_size;
const char* base_ip = ip;
@@ -785,11 +844,11 @@ char* CompressFragment(const char* input, size_t input_size, char* op,
// loaded in preload.
uint32_t dword = i == 0 ? preload : static_cast<uint32_t>(data);
assert(dword == LittleEndian::Load32(ip + i));
- uint32_t hash = HashBytes(dword, mask);
- candidate = base_ip + table[hash];
+ uint16_t* table_entry = TableEntry(table, dword, mask);
+ candidate = base_ip + *table_entry;
assert(candidate >= base_ip);
assert(candidate < ip + i);
- table[hash] = delta + i;
+ *table_entry = delta + i;
if (SNAPPY_PREDICT_FALSE(LittleEndian::Load32(candidate) == dword)) {
*op = LITERAL | (i << 2);
UnalignedCopy128(next_emit, op + 1);
@@ -806,7 +865,7 @@ char* CompressFragment(const char* input, size_t input_size, char* op,
}
while (true) {
assert(static_cast<uint32_t>(data) == LittleEndian::Load32(ip));
- uint32_t hash = HashBytes(data, mask);
+ uint16_t* table_entry = TableEntry(table, data, mask);
uint32_t bytes_between_hash_lookups = skip >> 5;
skip += bytes_between_hash_lookups;
const char* next_ip = ip + bytes_between_hash_lookups;
@@ -814,11 +873,11 @@ char* CompressFragment(const char* input, size_t input_size, char* op,
ip = next_emit;
goto emit_remainder;
}
- candidate = base_ip + table[hash];
+ candidate = base_ip + *table_entry;
assert(candidate >= base_ip);
assert(candidate < ip);
- table[hash] = ip - base_ip;
+ *table_entry = ip - base_ip;
if (SNAPPY_PREDICT_FALSE(static_cast<uint32_t>(data) ==
LittleEndian::Load32(candidate))) {
break;
@@ -864,12 +923,13 @@ char* CompressFragment(const char* input, size_t input_size, char* op,
assert((data & 0xFFFFFFFFFF) ==
(LittleEndian::Load64(ip) & 0xFFFFFFFFFF));
// We are now looking for a 4-byte match again. We read
- // table[Hash(ip, shift)] for that. To improve compression,
+ // table[Hash(ip, mask)] for that. To improve compression,
// we also update table[Hash(ip - 1, mask)] and table[Hash(ip, mask)].
- table[HashBytes(LittleEndian::Load32(ip - 1), mask)] = ip - base_ip - 1;
- uint32_t hash = HashBytes(data, mask);
- candidate = base_ip + table[hash];
- table[hash] = ip - base_ip;
+ *TableEntry(table, LittleEndian::Load32(ip - 1), mask) =
+ ip - base_ip - 1;
+ uint16_t* table_entry = TableEntry(table, data, mask);
+ candidate = base_ip + *table_entry;
+ *table_entry = ip - base_ip;
// Measurements on the benchmarks have shown the following probabilities
// for the loop to exit (ie. avg. number of iterations is reciprocal).
// BM_Flat/6 txt1 p = 0.3-0.4
@@ -895,12 +955,180 @@ emit_remainder:
return op;
}
+
+char* CompressFragmentDoubleHash(const char* input, size_t input_size, char* op,
+ uint16_t* table, const int table_size,
+ uint16_t* table2, const int table_size2) {
+ (void)table_size2;
+ assert(table_size == table_size2);
+ // "ip" is the input pointer, and "op" is the output pointer.
+ const char* ip = input;
+ assert(input_size <= kBlockSize);
+ assert((table_size & (table_size - 1)) == 0); // table must be power of two
+ const uint32_t mask = 2 * (table_size - 1);
+ const char* ip_end = input + input_size;
+ const char* base_ip = ip;
+
+ const size_t kInputMarginBytes = 15;
+ if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) {
+ const char* ip_limit = input + input_size - kInputMarginBytes;
+
+ for (;;) {
+ const char* next_emit = ip++;
+ uint64_t data = LittleEndian::Load64(ip);
+ uint32_t skip = 512;
+
+ const char* candidate;
+ uint32_t candidate_length;
+ while (true) {
+ assert(static_cast<uint32_t>(data) == LittleEndian::Load32(ip));
+ uint16_t* table_entry2 = TableEntry8ByteMatch(table2, data, mask);
+ uint32_t bytes_between_hash_lookups = skip >> 9;
+ skip++;
+ const char* next_ip = ip + bytes_between_hash_lookups;
+ if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) {
+ ip = next_emit;
+ goto emit_remainder;
+ }
+ candidate = base_ip + *table_entry2;
+ assert(candidate >= base_ip);
+ assert(candidate < ip);
+
+ *table_entry2 = ip - base_ip;
+ if (SNAPPY_PREDICT_FALSE(static_cast<uint32_t>(data) ==
+ LittleEndian::Load32(candidate))) {
+ candidate_length =
+ FindMatchLengthPlain(candidate + 4, ip + 4, ip_end) + 4;
+ break;
+ }
+
+ uint16_t* table_entry = TableEntry4ByteMatch(table, data, mask);
+ candidate = base_ip + *table_entry;
+ assert(candidate >= base_ip);
+ assert(candidate < ip);
+
+ *table_entry = ip - base_ip;
+ if (SNAPPY_PREDICT_FALSE(static_cast<uint32_t>(data) ==
+ LittleEndian::Load32(candidate))) {
+ candidate_length =
+ FindMatchLengthPlain(candidate + 4, ip + 4, ip_end) + 4;
+ table_entry2 =
+ TableEntry8ByteMatch(table2, LittleEndian::Load64(ip + 1), mask);
+ auto candidate2 = base_ip + *table_entry2;
+ size_t candidate_length2 =
+ FindMatchLengthPlain(candidate2, ip + 1, ip_end);
+ if (candidate_length2 > candidate_length) {
+ *table_entry2 = ip - base_ip;
+ candidate = candidate2;
+ candidate_length = candidate_length2;
+ ++ip;
+ }
+ break;
+ }
+ data = LittleEndian::Load64(next_ip);
+ ip = next_ip;
+ }
+ // Backtrack to the point it matches fully.
+ while (ip > next_emit && candidate > base_ip &&
+ *(ip - 1) == *(candidate - 1)) {
+ --ip;
+ --candidate;
+ ++candidate_length;
+ }
+ *TableEntry8ByteMatch(table2, LittleEndian::Load64(ip + 1), mask) =
+ ip - base_ip + 1;
+ *TableEntry8ByteMatch(table2, LittleEndian::Load64(ip + 2), mask) =
+ ip - base_ip + 2;
+ *TableEntry4ByteMatch(table, LittleEndian::Load32(ip + 1), mask) =
+ ip - base_ip + 1;
+ // Step 2: A 4-byte or 8-byte match has been found.
+ // We'll later see if more than 4 bytes match. But, prior to the match,
+ // input bytes [next_emit, ip) are unmatched. Emit them as
+ // "literal bytes."
+ assert(next_emit + 16 <= ip_end);
+ if (ip - next_emit > 0) {
+ op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit,
+ ip - next_emit);
+ }
+ // Step 3: Call EmitCopy, and then see if another EmitCopy could
+ // be our next move. Repeat until we find no match for the
+ // input immediately after what was consumed by the last EmitCopy call.
+ //
+ // If we exit this loop normally then we need to call EmitLiteral next,
+ // though we don't yet know how big the literal will be. We handle that
+ // by proceeding to the next iteration of the main loop. We also can exit
+ // this loop via goto if we get close to exhausting the input.
+ do {
+ // We have a 4-byte match at ip, and no need to emit any
+ // "literal bytes" prior to ip.
+ const char* base = ip;
+ ip += candidate_length;
+ size_t offset = base - candidate;
+ if (candidate_length < 12) {
+ op =
+ EmitCopy</*len_less_than_12=*/true>(op, offset, candidate_length);
+ } else {
+ op = EmitCopy</*len_less_than_12=*/false>(op, offset,
+ candidate_length);
+ }
+ if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) {
+ goto emit_remainder;
+ }
+ // We are now looking for a 4-byte match again. We read
+ // table[Hash(ip, mask)] for that. To improve compression,
+ // we also update several previous table entries.
+ if (ip - base_ip > 7) {
+ *TableEntry8ByteMatch(table2, LittleEndian::Load64(ip - 7), mask) =
+ ip - base_ip - 7;
+ *TableEntry8ByteMatch(table2, LittleEndian::Load64(ip - 4), mask) =
+ ip - base_ip - 4;
+ }
+ *TableEntry8ByteMatch(table2, LittleEndian::Load64(ip - 3), mask) =
+ ip - base_ip - 3;
+ *TableEntry8ByteMatch(table2, LittleEndian::Load64(ip - 2), mask) =
+ ip - base_ip - 2;
+ *TableEntry4ByteMatch(table, LittleEndian::Load32(ip - 2), mask) =
+ ip - base_ip - 2;
+ *TableEntry4ByteMatch(table, LittleEndian::Load32(ip - 1), mask) =
+ ip - base_ip - 1;
+
+ uint16_t* table_entry =
+ TableEntry8ByteMatch(table2, LittleEndian::Load64(ip), mask);
+ candidate = base_ip + *table_entry;
+ *table_entry = ip - base_ip;
+ if (LittleEndian::Load32(ip) == LittleEndian::Load32(candidate)) {
+ candidate_length =
+ FindMatchLengthPlain(candidate + 4, ip + 4, ip_end) + 4;
+ continue;
+ }
+ table_entry =
+ TableEntry4ByteMatch(table, LittleEndian::Load32(ip), mask);
+ candidate = base_ip + *table_entry;
+ *table_entry = ip - base_ip;
+ if (LittleEndian::Load32(ip) == LittleEndian::Load32(candidate)) {
+ candidate_length =
+ FindMatchLengthPlain(candidate + 4, ip + 4, ip_end) + 4;
+ continue;
+ }
+ break;
+ } while (true);
+ }
+ }
+
+emit_remainder:
+ // Emit the remaining bytes as a literal
+ if (ip < ip_end) {
+ op = EmitLiteral</*allow_fast_path=*/false>(op, ip, ip_end - ip);
+ }
+
+ return op;
+}
} // end namespace internal
-// Called back at avery compression call to trace parameters and sizes.
-static inline void Report(const char *algorithm, size_t compressed_size,
- size_t uncompressed_size) {
+static inline void Report(int token, const char *algorithm, size_t
+compressed_size, size_t uncompressed_size) {
// TODO: Switch to [[maybe_unused]] when we can assume C++17.
+ (void)token;
(void)algorithm;
(void)compressed_size;
(void)uncompressed_size;
@@ -962,7 +1190,7 @@ static inline void Report(const char *algorithm, size_t compressed_size,
// bool TryFastAppend(const char* ip, size_t available, size_t length, T* op);
// };
-static inline uint32_t ExtractLowBytes(uint32_t v, int n) {
+static inline uint32_t ExtractLowBytes(const uint32_t& v, int n) {
assert(n >= 0);
assert(n <= 4);
#if SNAPPY_HAVE_BMI2
@@ -991,30 +1219,87 @@ inline bool Copy64BytesWithPatternExtension(ptrdiff_t dst, size_t offset) {
return offset != 0;
}
-void MemCopy(char* dst, const uint8_t* src, size_t size) {
- std::memcpy(dst, src, size);
+// Copies between size bytes and 64 bytes from src to dest. size cannot exceed
+// 64. More than size bytes, but never exceeding 64, might be copied if doing
+// so gives better performance. [src, src + size) must not overlap with
+// [dst, dst + size), but [src, src + 64) may overlap with [dst, dst + 64).
+void MemCopy64(char* dst, const void* src, size_t size) {
+ // Always copy this many bytes. If that's below size then copy the full 64.
+ constexpr int kShortMemCopy = 32;
+
+ assert(size <= 64);
+ assert(std::less_equal<const void*>()(static_cast<const char*>(src) + size,
+ dst) ||
+ std::less_equal<const void*>()(dst + size, src));
+
+ // We know that src and dst are at least size bytes apart. However, because we
+ // might copy more than size bytes the copy still might overlap past size.
+ // E.g. if src and dst appear consecutively in memory (src + size >= dst).
+ // TODO: Investigate wider copies on other platforms.
+#if defined(__x86_64__) && defined(__AVX__)
+ assert(kShortMemCopy <= 32);
+ __m256i data = _mm256_lddqu_si256(static_cast<const __m256i *>(src));
+ _mm256_storeu_si256(reinterpret_cast<__m256i *>(dst), data);
+ // Profiling shows that nearly all copies are short.
+ if (SNAPPY_PREDICT_FALSE(size > kShortMemCopy)) {
+ data = _mm256_lddqu_si256(static_cast<const __m256i *>(src) + 1);
+ _mm256_storeu_si256(reinterpret_cast<__m256i *>(dst) + 1, data);
+ }
+#else
+ std::memmove(dst, src, kShortMemCopy);
+ // Profiling shows that nearly all copies are short.
+ if (SNAPPY_PREDICT_FALSE(size > kShortMemCopy)) {
+ std::memmove(dst + kShortMemCopy,
+ static_cast<const uint8_t*>(src) + kShortMemCopy,
+ 64 - kShortMemCopy);
+ }
+#endif
}
-void MemCopy(ptrdiff_t dst, const uint8_t* src, size_t size) {
+void MemCopy64(ptrdiff_t dst, const void* src, size_t size) {
// TODO: Switch to [[maybe_unused]] when we can assume C++17.
(void)dst;
(void)src;
(void)size;
}
-void MemMove(char* dst, const void* src, size_t size) {
- std::memmove(dst, src, size);
+void ClearDeferred(const void** deferred_src, size_t* deferred_length,
+ uint8_t* safe_source) {
+ *deferred_src = safe_source;
+ *deferred_length = 0;
}
-void MemMove(ptrdiff_t dst, const void* src, size_t size) {
- // TODO: Switch to [[maybe_unused]] when we can assume C++17.
- (void)dst;
- (void)src;
- (void)size;
+void DeferMemCopy(const void** deferred_src, size_t* deferred_length,
+ const void* src, size_t length) {
+ *deferred_src = src;
+ *deferred_length = length;
}
SNAPPY_ATTRIBUTE_ALWAYS_INLINE
-size_t AdvanceToNextTag(const uint8_t** ip_p, size_t* tag) {
+inline size_t AdvanceToNextTagARMOptimized(const uint8_t** ip_p, size_t* tag) {
+ const uint8_t*& ip = *ip_p;
+ // This section is crucial for the throughput of the decompression loop.
+ // The latency of an iteration is fundamentally constrained by the
+ // following data chain on ip.
+ // ip -> c = Load(ip) -> delta1 = (c & 3) -> ip += delta1 or delta2
+ // delta2 = ((c >> 2) + 1) ip++
+ // This is different from X86 optimizations because ARM has conditional add
+ // instruction (csinc) and it removes several register moves.
+ const size_t tag_type = *tag & 3;
+ const bool is_literal = (tag_type == 0);
+ if (is_literal) {
+ size_t next_literal_tag = (*tag >> 2) + 1;
+ *tag = ip[next_literal_tag];
+ ip += next_literal_tag + 1;
+ } else {
+ *tag = ip[tag_type];
+ ip += tag_type + 1;
+ }
+ return tag_type;
+}
+
+SNAPPY_ATTRIBUTE_ALWAYS_INLINE
+inline size_t AdvanceToNextTagX86Optimized(const uint8_t** ip_p, size_t* tag) {
const uint8_t*& ip = *ip_p;
// This section is crucial for the throughput of the decompression loop.
// The latency of an iteration is fundamentally constrained by the
@@ -1026,11 +1311,12 @@ size_t AdvanceToNextTag(const uint8_t** ip_p, size_t* tag) {
size_t literal_len = *tag >> 2;
size_t tag_type = *tag;
bool is_literal;
-#if defined(__GNUC__) && defined(__x86_64__) && defined(__GCC_ASM_FLAG_OUTPUTS__)
+#if defined(__GCC_ASM_FLAG_OUTPUTS__) && defined(__x86_64__)
// TODO clang misses the fact that the (c & 3) already correctly
// sets the zero flag.
asm("and $3, %k[tag_type]\n\t"
- : [tag_type] "+r"(tag_type), "=@ccz"(is_literal));
+ : [tag_type] "+r"(tag_type), "=@ccz"(is_literal)
+ :: "cc");
#else
tag_type &= 3;
is_literal = (tag_type == 0);
@@ -1060,7 +1346,24 @@ size_t AdvanceToNextTag(const uint8_t** ip_p, size_t* tag) {
// Extract the offset for copy-1 and copy-2 returns 0 for literals or copy-4.
inline uint32_t ExtractOffset(uint32_t val, size_t tag_type) {
- return val & table.extract_masks[tag_type];
+ // For x86 non-static storage works better. For ARM static storage is better.
+ // TODO: Once the array is recognized as a register, improve the
+ // readability for x86.
+#if defined(__x86_64__)
+ constexpr uint64_t kExtractMasksCombined = 0x0000FFFF00FF0000ull;
+ uint16_t result;
+ memcpy(&result,
+ reinterpret_cast<const char*>(&kExtractMasksCombined) + 2 * tag_type,
+ sizeof(result));
+ return val & result;
+#elif defined(__aarch64__)
+ constexpr uint64_t kExtractMasksCombined = 0x0000FFFF00FF0000ull;
+ return val & static_cast<uint32_t>(
+ (kExtractMasksCombined >> (tag_type * 16)) & 0xFFFF);
+#else
+ static constexpr uint32_t kExtractMasks[4] = {0, 0xFF, 0xFFFF, 0};
+ return val & kExtractMasks[tag_type];
+#endif
};
// Core decompression loop, when there is enough data available.
@@ -1076,6 +1379,12 @@ template <typename T>
std::pair<const uint8_t*, ptrdiff_t> DecompressBranchless(
const uint8_t* ip, const uint8_t* ip_limit, ptrdiff_t op, T op_base,
ptrdiff_t op_limit_min_slop) {
+ // If deferred_src is invalid point it here.
+ uint8_t safe_source[64];
+ const void* deferred_src;
+ size_t deferred_length;
+ ClearDeferred(&deferred_src, &deferred_length, safe_source);
+
// We unroll the inner loop twice so we need twice the spare room.
op_limit_min_slop -= kSlopBytes;
if (2 * (kSlopBytes + 1) < ip_limit - ip && op < op_limit_min_slop) {
@@ -1084,21 +1393,41 @@ std::pair<const uint8_t*, ptrdiff_t> DecompressBranchless(
// ip points just past the tag and we are touching at maximum kSlopBytes
// in an iteration.
size_t tag = ip[-1];
+#if defined(__clang__) && defined(__aarch64__)
+ // Workaround for https://bugs.llvm.org/show_bug.cgi?id=51317
+ // when loading 1 byte, clang for aarch64 doesn't realize that it(ldrb)
+ // comes with free zero-extension, so clang generates another
+ // 'and xn, xm, 0xff' before it use that as the offset. This 'and' is
+ // redundant and can be removed by adding this dummy asm, which gives
+ // clang a hint that we're doing the zero-extension at the load.
+ asm("" ::"r"(tag));
+#endif
do {
// The throughput is limited by instructions, unrolling the inner loop
// twice reduces the amount of instructions checking limits and also
// leads to reduced mov's.
+
+ SNAPPY_PREFETCH(ip + 128);
for (int i = 0; i < 2; i++) {
const uint8_t* old_ip = ip;
assert(tag == ip[-1]);
// For literals tag_type = 0, hence we will always obtain 0 from
// ExtractLowBytes. For literals offset will thus be kLiteralOffset.
- ptrdiff_t len_min_offset = table.length_minus_offset[tag];
- size_t tag_type = AdvanceToNextTag(&ip, &tag);
- uint32_t next = LittleEndian::Load32(old_ip);
- size_t len = len_min_offset & 0xFF;
- len_min_offset -= ExtractOffset(next, tag_type);
- if (SNAPPY_PREDICT_FALSE(len_min_offset > 0)) {
+ ptrdiff_t len_minus_offset = kLengthMinusOffset[tag];
+ uint32_t next;
+#if defined(__aarch64__)
+ size_t tag_type = AdvanceToNextTagARMOptimized(&ip, &tag);
+ // We never need more than 16 bits. Doing a Load16 allows the compiler
+ // to elide the masking operation in ExtractOffset.
+ next = LittleEndian::Load16(old_ip);
+#else
+ size_t tag_type = AdvanceToNextTagX86Optimized(&ip, &tag);
+ next = LittleEndian::Load32(old_ip);
+#endif
+ size_t len = len_minus_offset & 0xFF;
+ ptrdiff_t extracted = ExtractOffset(next, tag_type);
+ ptrdiff_t len_min_offset = len_minus_offset - extracted;
+ if (SNAPPY_PREDICT_FALSE(len_minus_offset > extracted)) {
if (SNAPPY_PREDICT_FALSE(len & 0x80)) {
// Exceptional case (long literal or copy 4).
// Actually doing the copy here is negatively impacting the main
@@ -1110,39 +1439,29 @@ std::pair<const uint8_t*, ptrdiff_t> DecompressBranchless(
}
// Only copy-1 or copy-2 tags can get here.
assert(tag_type == 1 || tag_type == 2);
- std::ptrdiff_t delta = op + len_min_offset - len;
+ std::ptrdiff_t delta = (op + deferred_length) + len_min_offset - len;
// Guard against copies before the buffer start.
+ // Execute any deferred MemCopy since we write to dst here.
+ MemCopy64(op_base + op, deferred_src, deferred_length);
+ op += deferred_length;
+ ClearDeferred(&deferred_src, &deferred_length, safe_source);
if (SNAPPY_PREDICT_FALSE(delta < 0 ||
!Copy64BytesWithPatternExtension(
op_base + op, len - len_min_offset))) {
goto break_loop;
}
+ // We aren't deferring this copy so add length right away.
op += len;
continue;
}
- std::ptrdiff_t delta = op + len_min_offset - len;
+ std::ptrdiff_t delta = (op + deferred_length) + len_min_offset - len;
if (SNAPPY_PREDICT_FALSE(delta < 0)) {
-#if defined(__GNUC__) && defined(__x86_64__)
- // TODO
- // When validating, both code path reduced to `op += len`. Ie. this
- // becomes effectively
- //
- // if (delta < 0) if (tag_type != 0) goto break_loop;
- // op += len;
- //
- // The compiler interchanges the predictable and almost always false
- // first if-statement with the completely unpredictable second
- // if-statement, putting an unpredictable branch on every iteration.
- // This empty asm is worth almost 2x, which I think qualifies for an
- // award for the most load-bearing empty statement.
- asm("");
-#endif
-
// Due to the spurious offset in literals have this will trigger
// at the start of a block when op is still smaller than 256.
if (tag_type != 0) goto break_loop;
- MemCopy(op_base + op, old_ip, 64);
- op += len;
+ MemCopy64(op_base + op, deferred_src, deferred_length);
+ op += deferred_length;
+ DeferMemCopy(&deferred_src, &deferred_length, old_ip, len);
continue;
}
@@ -1150,14 +1469,23 @@ std::pair<const uint8_t*, ptrdiff_t> DecompressBranchless(
// we need to copy from ip instead of from the stream.
const void* from =
tag_type ? reinterpret_cast<void*>(op_base + delta) : old_ip;
- MemMove(op_base + op, from, 64);
- op += len;
+ MemCopy64(op_base + op, deferred_src, deferred_length);
+ op += deferred_length;
+ DeferMemCopy(&deferred_src, &deferred_length, from, len);
}
- } while (ip < ip_limit_min_slop && op < op_limit_min_slop);
+ } while (ip < ip_limit_min_slop &&
+ static_cast<ptrdiff_t>(op + deferred_length) < op_limit_min_slop);
exit:
ip--;
assert(ip <= ip_limit);
}
+ // If we deferred a copy then we can perform. If we are up to date then we
+ // might not have enough slop bytes and could run past the end.
+ if (deferred_length) {
+ MemCopy64(op_base + op, deferred_src, deferred_length);
+ op += deferred_length;
+ ClearDeferred(&deferred_src, &deferred_length, safe_source);
+ }
return {ip, op};
}
@@ -1325,7 +1653,7 @@ class SnappyDecompressor {
if (!writer->AppendFromSelf(copy_offset, length, &op)) goto exit;
} else {
- const ptrdiff_t entry = table.length_minus_offset[c];
+ const ptrdiff_t entry = kLengthMinusOffset[c];
preload = LittleEndian::Load32(ip);
const uint32_t trailer = ExtractLowBytes(preload, c & 3);
const uint32_t length = entry & 0xff;
@@ -1448,7 +1776,8 @@ template <typename Writer>
static bool InternalUncompressAllTags(SnappyDecompressor* decompressor,
Writer* writer, uint32_t compressed_len,
uint32_t uncompressed_len) {
- Report("snappy_uncompress", compressed_len, uncompressed_len);
+ int token = 0;
+ Report(token, "snappy_uncompress", compressed_len, uncompressed_len);
writer->SetExpectedLength(uncompressed_len);
@@ -1463,7 +1792,9 @@ bool GetUncompressedLength(Source* source, uint32_t* result) {
return decompressor.ReadUncompressedLength(result);
}
-size_t Compress(Source* reader, Sink* writer) {
+size_t Compress(Source* reader, Sink* writer, CompressionOptions options) {
+ assert(options.level == 1 || options.level == 2);
+ int token = 0;
size_t written = 0;
size_t N = reader->Available();
const size_t uncompressed_size = N;
@@ -1510,17 +1841,23 @@ size_t Compress(Source* reader, Sink* writer) {
uint16_t* table = wmem.GetHashTable(num_to_read, &table_size);
// Compress input_fragment and append to dest
- const int max_output = MaxCompressedLength(num_to_read);
-
- // Need a scratch buffer for the output, in case the byte sink doesn't
- // have room for us directly.
+ int max_output = MaxCompressedLength(num_to_read);
// Since we encode kBlockSize regions followed by a region
// which is <= kBlockSize in length, a previously allocated
// scratch_output[] region is big enough for this iteration.
+ // Need a scratch buffer for the output, in case the byte sink doesn't
+ // have room for us directly.
char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput());
- char* end = internal::CompressFragment(fragment, fragment_size, dest, table,
- table_size);
+ char* end = nullptr;
+ if (options.level == 1) {
+ end = internal::CompressFragment(fragment, fragment_size, dest, table,
+ table_size);
+ } else if (options.level == 2) {
+ end = internal::CompressFragmentDoubleHash(
+ fragment, fragment_size, dest, table, table_size >> 1,
+ table + (table_size >> 1), table_size >> 1);
+ }
writer->Append(dest, end - dest);
written += (end - dest);
@@ -1528,8 +1865,7 @@ size_t Compress(Source* reader, Sink* writer) {
reader->Skip(pending_advance);
}
- Report("snappy_compress", written, uncompressed_size);
-
+ Report(token, "snappy_compress", written, uncompressed_size);
return written;
}
@@ -1537,6 +1873,67 @@ size_t Compress(Source* reader, Sink* writer) {
// IOVec interfaces
// -----------------------------------------------------------------------
+// A `Source` implementation that yields the contents of an `iovec` array. Note
+// that `total_size` is the total number of bytes to be read from the elements
+// of `iov` (_not_ the total number of elements in `iov`).
+class SnappyIOVecReader : public Source {
+ public:
+ SnappyIOVecReader(const struct iovec* iov, size_t total_size)
+ : curr_iov_(iov),
+ curr_pos_(total_size > 0 ? reinterpret_cast<const char*>(iov->iov_base)
+ : nullptr),
+ curr_size_remaining_(total_size > 0 ? iov->iov_len : 0),
+ total_size_remaining_(total_size) {
+ // Skip empty leading `iovec`s.
+ if (total_size > 0 && curr_size_remaining_ == 0) Advance();
+ }
+
+ ~SnappyIOVecReader() override = default;
+
+ size_t Available() const override { return total_size_remaining_; }
+
+ const char* Peek(size_t* len) override {
+ *len = curr_size_remaining_;
+ return curr_pos_;
+ }
+
+ void Skip(size_t n) override {
+ while (n >= curr_size_remaining_ && n > 0) {
+ n -= curr_size_remaining_;
+ Advance();
+ }
+ curr_size_remaining_ -= n;
+ total_size_remaining_ -= n;
+ curr_pos_ += n;
+ }
+
+ private:
+ // Advances to the next nonempty `iovec` and updates related variables.
+ void Advance() {
+ do {
+ assert(total_size_remaining_ >= curr_size_remaining_);
+ total_size_remaining_ -= curr_size_remaining_;
+ if (total_size_remaining_ == 0) {
+ curr_pos_ = nullptr;
+ curr_size_remaining_ = 0;
+ return;
+ }
+ ++curr_iov_;
+ curr_pos_ = reinterpret_cast<const char*>(curr_iov_->iov_base);
+ curr_size_remaining_ = curr_iov_->iov_len;
+ } while (curr_size_remaining_ == 0);
+ }
+
+ // The `iovec` currently being read.
+ const struct iovec* curr_iov_;
+ // The location in `curr_iov_` currently being read.
+ const char* curr_pos_;
+ // The amount of unread data in `curr_iov_`.
+ size_t curr_size_remaining_;
+ // The amount of unread data in the entire input array.
+ size_t total_size_remaining_;
+};
+
// A type that writes to an iovec.
// Note that this is not a "ByteSink", but a type that matches the
// Writer template argument to SnappyDecompressor::DecompressAllTags().
@@ -1902,24 +2299,54 @@ bool IsValidCompressed(Source* compressed) {
}
void RawCompress(const char* input, size_t input_length, char* compressed,
- size_t* compressed_length) {
+ size_t* compressed_length, CompressionOptions options) {
ByteArraySource reader(input, input_length);
UncheckedByteArraySink writer(compressed);
- Compress(&reader, &writer);
+ Compress(&reader, &writer, options);
// Compute how many bytes were added
*compressed_length = (writer.CurrentDestination() - compressed);
}
-size_t Compress(const char* input, size_t input_length,
- std::string* compressed) {
+void RawCompressFromIOVec(const struct iovec* iov, size_t uncompressed_length,
+ char* compressed, size_t* compressed_length,
+ CompressionOptions options) {
+ SnappyIOVecReader reader(iov, uncompressed_length);
+ UncheckedByteArraySink writer(compressed);
+ Compress(&reader, &writer, options);
+
+ // Compute how many bytes were added.
+ *compressed_length = writer.CurrentDestination() - compressed;
+}
+
+size_t Compress(const char* input, size_t input_length, std::string* compressed,
+ CompressionOptions options) {
// Pre-grow the buffer to the max length of the compressed output
STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length));
size_t compressed_length;
RawCompress(input, input_length, string_as_array(compressed),
- &compressed_length);
- compressed->resize(compressed_length);
+ &compressed_length, options);
+ compressed->erase(compressed_length);
+ return compressed_length;
+}
+
+size_t CompressFromIOVec(const struct iovec* iov, size_t iov_cnt,
+ std::string* compressed, CompressionOptions options) {
+ // Compute the number of bytes to be compressed.
+ size_t uncompressed_length = 0;
+ for (size_t i = 0; i < iov_cnt; ++i) {
+ uncompressed_length += iov[i].iov_len;
+ }
+
+ // Pre-grow the buffer to the max length of the compressed output.
+ STLStringResizeUninitialized(compressed, MaxCompressedLength(
+ uncompressed_length));
+
+ size_t compressed_length;
+ RawCompressFromIOVec(iov, uncompressed_length, string_as_array(compressed),
+ &compressed_length, options);
+ compressed->erase(compressed_length);
return compressed_length;
}
@@ -2108,7 +2535,6 @@ bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset,
class SnappySinkAllocator {
public:
explicit SnappySinkAllocator(Sink* dest) : dest_(dest) {}
- ~SnappySinkAllocator() {}
char* Allocate(int size) {
Datablock block(new char[size], size);