summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/mathutils.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/aom_dsp/mathutils.h')
-rw-r--r--third_party/aom/aom_dsp/mathutils.h145
1 files changed, 145 insertions, 0 deletions
diff --git a/third_party/aom/aom_dsp/mathutils.h b/third_party/aom/aom_dsp/mathutils.h
new file mode 100644
index 0000000000..cbb6cf491f
--- /dev/null
+++ b/third_party/aom/aom_dsp/mathutils.h
@@ -0,0 +1,145 @@
+/*
+ * Copyright (c) 2017, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#ifndef AOM_AOM_DSP_MATHUTILS_H_
+#define AOM_AOM_DSP_MATHUTILS_H_
+
+#include <assert.h>
+#include <math.h>
+#include <string.h>
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_mem/aom_mem.h"
+
+static const double TINY_NEAR_ZERO = 1.0E-16;
+
+// Solves Ax = b, where x and b are column vectors of size nx1 and A is nxn
+static INLINE int linsolve(int n, double *A, int stride, double *b, double *x) {
+ int i, j, k;
+ double c;
+ // Forward elimination
+ for (k = 0; k < n - 1; k++) {
+ // Bring the largest magnitude to the diagonal position
+ for (i = n - 1; i > k; i--) {
+ if (fabs(A[(i - 1) * stride + k]) < fabs(A[i * stride + k])) {
+ for (j = 0; j < n; j++) {
+ c = A[i * stride + j];
+ A[i * stride + j] = A[(i - 1) * stride + j];
+ A[(i - 1) * stride + j] = c;
+ }
+ c = b[i];
+ b[i] = b[i - 1];
+ b[i - 1] = c;
+ }
+ }
+ for (i = k; i < n - 1; i++) {
+ if (fabs(A[k * stride + k]) < TINY_NEAR_ZERO) return 0;
+ c = A[(i + 1) * stride + k] / A[k * stride + k];
+ for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j];
+ b[i + 1] -= c * b[k];
+ }
+ }
+ // Backward substitution
+ for (i = n - 1; i >= 0; i--) {
+ if (fabs(A[i * stride + i]) < TINY_NEAR_ZERO) return 0;
+ c = 0;
+ for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j];
+ x[i] = (b[i] - c) / A[i * stride + i];
+ }
+
+ return 1;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Least-squares
+// Solves for n-dim x in a least squares sense to minimize |Ax - b|^2
+// The solution is simply x = (A'A)^-1 A'b or simply the solution for
+// the system: A'A x = A'b
+//
+// This process is split into three steps in order to avoid needing to
+// explicitly allocate the A matrix, which may be very large if there
+// are many equations to solve.
+//
+// The process for using this is (in pseudocode):
+//
+// Allocate mat (size n*n), y (size n), a (size n), x (size n)
+// least_squares_init(mat, y, n)
+// for each equation a . x = b {
+// least_squares_accumulate(mat, y, a, b, n)
+// }
+// least_squares_solve(mat, y, x, n)
+//
+// where:
+// * mat, y are accumulators for the values A'A and A'b respectively,
+// * a, b are the coefficients of each individual equation,
+// * x is the result vector
+// * and n is the problem size
+static INLINE void least_squares_init(double *mat, double *y, int n) {
+ memset(mat, 0, n * n * sizeof(double));
+ memset(y, 0, n * sizeof(double));
+}
+
+// Round the given positive value to nearest integer
+static AOM_FORCE_INLINE int iroundpf(float x) {
+ assert(x >= 0.0);
+ return (int)(x + 0.5f);
+}
+
+static INLINE void least_squares_accumulate(double *mat, double *y,
+ const double *a, double b, int n) {
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < n; j++) {
+ mat[i * n + j] += a[i] * a[j];
+ }
+ }
+ for (int i = 0; i < n; i++) {
+ y[i] += a[i] * b;
+ }
+}
+
+static INLINE int least_squares_solve(double *mat, double *y, double *x,
+ int n) {
+ return linsolve(n, mat, n, y, x);
+}
+
+// Matrix multiply
+static INLINE void multiply_mat(const double *m1, const double *m2, double *res,
+ const int m1_rows, const int inner_dim,
+ const int m2_cols) {
+ double sum;
+
+ int row, col, inner;
+ for (row = 0; row < m1_rows; ++row) {
+ for (col = 0; col < m2_cols; ++col) {
+ sum = 0;
+ for (inner = 0; inner < inner_dim; ++inner)
+ sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col];
+ *(res++) = sum;
+ }
+ }
+}
+
+static AOM_INLINE float approx_exp(float y) {
+#define A ((1 << 23) / 0.69314718056f) // (1 << 23) / ln(2)
+#define B \
+ 127 // Offset for the exponent according to IEEE floating point standard.
+#define C 60801 // Magic number controls the accuracy of approximation
+ union {
+ float as_float;
+ int32_t as_int32;
+ } container;
+ container.as_int32 = ((int32_t)(y * A)) + ((B << 23) - C);
+ return container.as_float;
+#undef A
+#undef B
+#undef C
+}
+#endif // AOM_AOM_DSP_MATHUTILS_H_