summaryrefslogtreecommitdiffstats
path: root/third_party/googletest/googlemock/include/gmock/gmock-actions.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/googletest/googlemock/include/gmock/gmock-actions.h')
-rw-r--r--third_party/googletest/googlemock/include/gmock/gmock-actions.h2321
1 files changed, 2321 insertions, 0 deletions
diff --git a/third_party/googletest/googlemock/include/gmock/gmock-actions.h b/third_party/googletest/googlemock/include/gmock/gmock-actions.h
new file mode 100644
index 0000000000..fab9993384
--- /dev/null
+++ b/third_party/googletest/googlemock/include/gmock/gmock-actions.h
@@ -0,0 +1,2321 @@
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// The ACTION* family of macros can be used in a namespace scope to
+// define custom actions easily. The syntax:
+//
+// ACTION(name) { statements; }
+//
+// will define an action with the given name that executes the
+// statements. The value returned by the statements will be used as
+// the return value of the action. Inside the statements, you can
+// refer to the K-th (0-based) argument of the mock function by
+// 'argK', and refer to its type by 'argK_type'. For example:
+//
+// ACTION(IncrementArg1) {
+// arg1_type temp = arg1;
+// return ++(*temp);
+// }
+//
+// allows you to write
+//
+// ...WillOnce(IncrementArg1());
+//
+// You can also refer to the entire argument tuple and its type by
+// 'args' and 'args_type', and refer to the mock function type and its
+// return type by 'function_type' and 'return_type'.
+//
+// Note that you don't need to specify the types of the mock function
+// arguments. However rest assured that your code is still type-safe:
+// you'll get a compiler error if *arg1 doesn't support the ++
+// operator, or if the type of ++(*arg1) isn't compatible with the
+// mock function's return type, for example.
+//
+// Sometimes you'll want to parameterize the action. For that you can use
+// another macro:
+//
+// ACTION_P(name, param_name) { statements; }
+//
+// For example:
+//
+// ACTION_P(Add, n) { return arg0 + n; }
+//
+// will allow you to write:
+//
+// ...WillOnce(Add(5));
+//
+// Note that you don't need to provide the type of the parameter
+// either. If you need to reference the type of a parameter named
+// 'foo', you can write 'foo_type'. For example, in the body of
+// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
+// of 'n'.
+//
+// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
+// multi-parameter actions.
+//
+// For the purpose of typing, you can view
+//
+// ACTION_Pk(Foo, p1, ..., pk) { ... }
+//
+// as shorthand for
+//
+// template <typename p1_type, ..., typename pk_type>
+// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
+//
+// In particular, you can provide the template type arguments
+// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
+// although usually you can rely on the compiler to infer the types
+// for you automatically. You can assign the result of expression
+// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
+// pk_type>. This can be useful when composing actions.
+//
+// You can also overload actions with different numbers of parameters:
+//
+// ACTION_P(Plus, a) { ... }
+// ACTION_P2(Plus, a, b) { ... }
+//
+// While it's tempting to always use the ACTION* macros when defining
+// a new action, you should also consider implementing ActionInterface
+// or using MakePolymorphicAction() instead, especially if you need to
+// use the action a lot. While these approaches require more work,
+// they give you more control on the types of the mock function
+// arguments and the action parameters, which in general leads to
+// better compiler error messages that pay off in the long run. They
+// also allow overloading actions based on parameter types (as opposed
+// to just based on the number of parameters).
+//
+// CAVEAT:
+//
+// ACTION*() can only be used in a namespace scope as templates cannot be
+// declared inside of a local class.
+// Users can, however, define any local functors (e.g. a lambda) that
+// can be used as actions.
+//
+// MORE INFORMATION:
+//
+// To learn more about using these macros, please search for 'ACTION' on
+// https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
+
+// IWYU pragma: private, include "gmock/gmock.h"
+// IWYU pragma: friend gmock/.*
+
+#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
+#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
+
+#ifndef _WIN32_WCE
+#include <errno.h>
+#endif
+
+#include <algorithm>
+#include <exception>
+#include <functional>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+#include "gmock/internal/gmock-internal-utils.h"
+#include "gmock/internal/gmock-port.h"
+#include "gmock/internal/gmock-pp.h"
+
+GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100)
+
+namespace testing {
+
+// To implement an action Foo, define:
+// 1. a class FooAction that implements the ActionInterface interface, and
+// 2. a factory function that creates an Action object from a
+// const FooAction*.
+//
+// The two-level delegation design follows that of Matcher, providing
+// consistency for extension developers. It also eases ownership
+// management as Action objects can now be copied like plain values.
+
+namespace internal {
+
+// BuiltInDefaultValueGetter<T, true>::Get() returns a
+// default-constructed T value. BuiltInDefaultValueGetter<T,
+// false>::Get() crashes with an error.
+//
+// This primary template is used when kDefaultConstructible is true.
+template <typename T, bool kDefaultConstructible>
+struct BuiltInDefaultValueGetter {
+ static T Get() { return T(); }
+};
+template <typename T>
+struct BuiltInDefaultValueGetter<T, false> {
+ static T Get() {
+ Assert(false, __FILE__, __LINE__,
+ "Default action undefined for the function return type.");
+#if defined(__GNUC__) || defined(__clang__)
+ __builtin_unreachable();
+#elif defined(_MSC_VER)
+ __assume(0);
+#else
+ return Invalid<T>();
+ // The above statement will never be reached, but is required in
+ // order for this function to compile.
+#endif
+ }
+};
+
+// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
+// for type T, which is NULL when T is a raw pointer type, 0 when T is
+// a numeric type, false when T is bool, or "" when T is string or
+// std::string. In addition, in C++11 and above, it turns a
+// default-constructed T value if T is default constructible. For any
+// other type T, the built-in default T value is undefined, and the
+// function will abort the process.
+template <typename T>
+class BuiltInDefaultValue {
+ public:
+ // This function returns true if and only if type T has a built-in default
+ // value.
+ static bool Exists() { return ::std::is_default_constructible<T>::value; }
+
+ static T Get() {
+ return BuiltInDefaultValueGetter<
+ T, ::std::is_default_constructible<T>::value>::Get();
+ }
+};
+
+// This partial specialization says that we use the same built-in
+// default value for T and const T.
+template <typename T>
+class BuiltInDefaultValue<const T> {
+ public:
+ static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
+ static T Get() { return BuiltInDefaultValue<T>::Get(); }
+};
+
+// This partial specialization defines the default values for pointer
+// types.
+template <typename T>
+class BuiltInDefaultValue<T*> {
+ public:
+ static bool Exists() { return true; }
+ static T* Get() { return nullptr; }
+};
+
+// The following specializations define the default values for
+// specific types we care about.
+#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
+ template <> \
+ class BuiltInDefaultValue<type> { \
+ public: \
+ static bool Exists() { return true; } \
+ static type Get() { return value; } \
+ }
+
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
+
+// There's no need for a default action for signed wchar_t, as that
+// type is the same as wchar_t for gcc, and invalid for MSVC.
+//
+// There's also no need for a default action for unsigned wchar_t, as
+// that type is the same as unsigned int for gcc, and invalid for
+// MSVC.
+#if GMOCK_WCHAR_T_IS_NATIVE_
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
+#endif
+
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
+
+#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
+
+// Partial implementations of metaprogramming types from the standard library
+// not available in C++11.
+
+template <typename P>
+struct negation
+ // NOLINTNEXTLINE
+ : std::integral_constant<bool, bool(!P::value)> {};
+
+// Base case: with zero predicates the answer is always true.
+template <typename...>
+struct conjunction : std::true_type {};
+
+// With a single predicate, the answer is that predicate.
+template <typename P1>
+struct conjunction<P1> : P1 {};
+
+// With multiple predicates the answer is the first predicate if that is false,
+// and we recurse otherwise.
+template <typename P1, typename... Ps>
+struct conjunction<P1, Ps...>
+ : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
+
+template <typename...>
+struct disjunction : std::false_type {};
+
+template <typename P1>
+struct disjunction<P1> : P1 {};
+
+template <typename P1, typename... Ps>
+struct disjunction<P1, Ps...>
+ // NOLINTNEXTLINE
+ : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
+
+template <typename...>
+using void_t = void;
+
+// Detects whether an expression of type `From` can be implicitly converted to
+// `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
+//
+// An expression e can be implicitly converted to a type T if and only if
+// the declaration T t=e; is well-formed, for some invented temporary
+// variable t ([dcl.init]).
+//
+// [conv]/2 implies we can use function argument passing to detect whether this
+// initialization is valid.
+//
+// Note that this is distinct from is_convertible, which requires this be valid:
+//
+// To test() {
+// return declval<From>();
+// }
+//
+// In particular, is_convertible doesn't give the correct answer when `To` and
+// `From` are the same non-moveable type since `declval<From>` will be an rvalue
+// reference, defeating the guaranteed copy elision that would otherwise make
+// this function work.
+//
+// REQUIRES: `From` is not cv void.
+template <typename From, typename To>
+struct is_implicitly_convertible {
+ private:
+ // A function that accepts a parameter of type T. This can be called with type
+ // U successfully only if U is implicitly convertible to T.
+ template <typename T>
+ static void Accept(T);
+
+ // A function that creates a value of type T.
+ template <typename T>
+ static T Make();
+
+ // An overload be selected when implicit conversion from T to To is possible.
+ template <typename T, typename = decltype(Accept<To>(Make<T>()))>
+ static std::true_type TestImplicitConversion(int);
+
+ // A fallback overload selected in all other cases.
+ template <typename T>
+ static std::false_type TestImplicitConversion(...);
+
+ public:
+ using type = decltype(TestImplicitConversion<From>(0));
+ static constexpr bool value = type::value;
+};
+
+// Like std::invoke_result_t from C++17, but works only for objects with call
+// operators (not e.g. member function pointers, which we don't need specific
+// support for in OnceAction because std::function deals with them).
+template <typename F, typename... Args>
+using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
+
+template <typename Void, typename R, typename F, typename... Args>
+struct is_callable_r_impl : std::false_type {};
+
+// Specialize the struct for those template arguments where call_result_t is
+// well-formed. When it's not, the generic template above is chosen, resulting
+// in std::false_type.
+template <typename R, typename F, typename... Args>
+struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
+ : std::conditional<
+ std::is_void<R>::value, //
+ std::true_type, //
+ is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
+
+// Like std::is_invocable_r from C++17, but works only for objects with call
+// operators. See the note on call_result_t.
+template <typename R, typename F, typename... Args>
+using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
+
+// Like std::as_const from C++17.
+template <typename T>
+typename std::add_const<T>::type& as_const(T& t) {
+ return t;
+}
+
+} // namespace internal
+
+// Specialized for function types below.
+template <typename F>
+class OnceAction;
+
+// An action that can only be used once.
+//
+// This is accepted by WillOnce, which doesn't require the underlying action to
+// be copy-constructible (only move-constructible), and promises to invoke it as
+// an rvalue reference. This allows the action to work with move-only types like
+// std::move_only_function in a type-safe manner.
+//
+// For example:
+//
+// // Assume we have some API that needs to accept a unique pointer to some
+// // non-copyable object Foo.
+// void AcceptUniquePointer(std::unique_ptr<Foo> foo);
+//
+// // We can define an action that provides a Foo to that API. Because It
+// // has to give away its unique pointer, it must not be called more than
+// // once, so its call operator is &&-qualified.
+// struct ProvideFoo {
+// std::unique_ptr<Foo> foo;
+//
+// void operator()() && {
+// AcceptUniquePointer(std::move(Foo));
+// }
+// };
+//
+// // This action can be used with WillOnce.
+// EXPECT_CALL(mock, Call)
+// .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
+//
+// // But a call to WillRepeatedly will fail to compile. This is correct,
+// // since the action cannot correctly be used repeatedly.
+// EXPECT_CALL(mock, Call)
+// .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
+//
+// A less-contrived example would be an action that returns an arbitrary type,
+// whose &&-qualified call operator is capable of dealing with move-only types.
+template <typename Result, typename... Args>
+class OnceAction<Result(Args...)> final {
+ private:
+ // True iff we can use the given callable type (or lvalue reference) directly
+ // via StdFunctionAdaptor.
+ template <typename Callable>
+ using IsDirectlyCompatible = internal::conjunction<
+ // It must be possible to capture the callable in StdFunctionAdaptor.
+ std::is_constructible<typename std::decay<Callable>::type, Callable>,
+ // The callable must be compatible with our signature.
+ internal::is_callable_r<Result, typename std::decay<Callable>::type,
+ Args...>>;
+
+ // True iff we can use the given callable type via StdFunctionAdaptor once we
+ // ignore incoming arguments.
+ template <typename Callable>
+ using IsCompatibleAfterIgnoringArguments = internal::conjunction<
+ // It must be possible to capture the callable in a lambda.
+ std::is_constructible<typename std::decay<Callable>::type, Callable>,
+ // The callable must be invocable with zero arguments, returning something
+ // convertible to Result.
+ internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
+
+ public:
+ // Construct from a callable that is directly compatible with our mocked
+ // signature: it accepts our function type's arguments and returns something
+ // convertible to our result type.
+ template <typename Callable,
+ typename std::enable_if<
+ internal::conjunction<
+ // Teach clang on macOS that we're not talking about a
+ // copy/move constructor here. Otherwise it gets confused
+ // when checking the is_constructible requirement of our
+ // traits above.
+ internal::negation<std::is_same<
+ OnceAction, typename std::decay<Callable>::type>>,
+ IsDirectlyCompatible<Callable>> //
+ ::value,
+ int>::type = 0>
+ OnceAction(Callable&& callable) // NOLINT
+ : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
+ {}, std::forward<Callable>(callable))) {}
+
+ // As above, but for a callable that ignores the mocked function's arguments.
+ template <typename Callable,
+ typename std::enable_if<
+ internal::conjunction<
+ // Teach clang on macOS that we're not talking about a
+ // copy/move constructor here. Otherwise it gets confused
+ // when checking the is_constructible requirement of our
+ // traits above.
+ internal::negation<std::is_same<
+ OnceAction, typename std::decay<Callable>::type>>,
+ // Exclude callables for which the overload above works.
+ // We'd rather provide the arguments if possible.
+ internal::negation<IsDirectlyCompatible<Callable>>,
+ IsCompatibleAfterIgnoringArguments<Callable>>::value,
+ int>::type = 0>
+ OnceAction(Callable&& callable) // NOLINT
+ // Call the constructor above with a callable
+ // that ignores the input arguments.
+ : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
+ std::forward<Callable>(callable)}) {}
+
+ // We are naturally copyable because we store only an std::function, but
+ // semantically we should not be copyable.
+ OnceAction(const OnceAction&) = delete;
+ OnceAction& operator=(const OnceAction&) = delete;
+ OnceAction(OnceAction&&) = default;
+
+ // Invoke the underlying action callable with which we were constructed,
+ // handing it the supplied arguments.
+ Result Call(Args... args) && {
+ return function_(std::forward<Args>(args)...);
+ }
+
+ private:
+ // An adaptor that wraps a callable that is compatible with our signature and
+ // being invoked as an rvalue reference so that it can be used as an
+ // StdFunctionAdaptor. This throws away type safety, but that's fine because
+ // this is only used by WillOnce, which we know calls at most once.
+ //
+ // Once we have something like std::move_only_function from C++23, we can do
+ // away with this.
+ template <typename Callable>
+ class StdFunctionAdaptor final {
+ public:
+ // A tag indicating that the (otherwise universal) constructor is accepting
+ // the callable itself, instead of e.g. stealing calls for the move
+ // constructor.
+ struct CallableTag final {};
+
+ template <typename F>
+ explicit StdFunctionAdaptor(CallableTag, F&& callable)
+ : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
+
+ // Rather than explicitly returning Result, we return whatever the wrapped
+ // callable returns. This allows for compatibility with existing uses like
+ // the following, when the mocked function returns void:
+ //
+ // EXPECT_CALL(mock_fn_, Call)
+ // .WillOnce([&] {
+ // [...]
+ // return 0;
+ // });
+ //
+ // Such a callable can be turned into std::function<void()>. If we use an
+ // explicit return type of Result here then it *doesn't* work with
+ // std::function, because we'll get a "void function should not return a
+ // value" error.
+ //
+ // We need not worry about incompatible result types because the SFINAE on
+ // OnceAction already checks this for us. std::is_invocable_r_v itself makes
+ // the same allowance for void result types.
+ template <typename... ArgRefs>
+ internal::call_result_t<Callable, ArgRefs...> operator()(
+ ArgRefs&&... args) const {
+ return std::move(*callable_)(std::forward<ArgRefs>(args)...);
+ }
+
+ private:
+ // We must put the callable on the heap so that we are copyable, which
+ // std::function needs.
+ std::shared_ptr<Callable> callable_;
+ };
+
+ // An adaptor that makes a callable that accepts zero arguments callable with
+ // our mocked arguments.
+ template <typename Callable>
+ struct IgnoreIncomingArguments {
+ internal::call_result_t<Callable> operator()(Args&&...) {
+ return std::move(callable)();
+ }
+
+ Callable callable;
+ };
+
+ std::function<Result(Args...)> function_;
+};
+
+// When an unexpected function call is encountered, Google Mock will
+// let it return a default value if the user has specified one for its
+// return type, or if the return type has a built-in default value;
+// otherwise Google Mock won't know what value to return and will have
+// to abort the process.
+//
+// The DefaultValue<T> class allows a user to specify the
+// default value for a type T that is both copyable and publicly
+// destructible (i.e. anything that can be used as a function return
+// type). The usage is:
+//
+// // Sets the default value for type T to be foo.
+// DefaultValue<T>::Set(foo);
+template <typename T>
+class DefaultValue {
+ public:
+ // Sets the default value for type T; requires T to be
+ // copy-constructable and have a public destructor.
+ static void Set(T x) {
+ delete producer_;
+ producer_ = new FixedValueProducer(x);
+ }
+
+ // Provides a factory function to be called to generate the default value.
+ // This method can be used even if T is only move-constructible, but it is not
+ // limited to that case.
+ typedef T (*FactoryFunction)();
+ static void SetFactory(FactoryFunction factory) {
+ delete producer_;
+ producer_ = new FactoryValueProducer(factory);
+ }
+
+ // Unsets the default value for type T.
+ static void Clear() {
+ delete producer_;
+ producer_ = nullptr;
+ }
+
+ // Returns true if and only if the user has set the default value for type T.
+ static bool IsSet() { return producer_ != nullptr; }
+
+ // Returns true if T has a default return value set by the user or there
+ // exists a built-in default value.
+ static bool Exists() {
+ return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
+ }
+
+ // Returns the default value for type T if the user has set one;
+ // otherwise returns the built-in default value. Requires that Exists()
+ // is true, which ensures that the return value is well-defined.
+ static T Get() {
+ return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
+ : producer_->Produce();
+ }
+
+ private:
+ class ValueProducer {
+ public:
+ virtual ~ValueProducer() = default;
+ virtual T Produce() = 0;
+ };
+
+ class FixedValueProducer : public ValueProducer {
+ public:
+ explicit FixedValueProducer(T value) : value_(value) {}
+ T Produce() override { return value_; }
+
+ private:
+ const T value_;
+ FixedValueProducer(const FixedValueProducer&) = delete;
+ FixedValueProducer& operator=(const FixedValueProducer&) = delete;
+ };
+
+ class FactoryValueProducer : public ValueProducer {
+ public:
+ explicit FactoryValueProducer(FactoryFunction factory)
+ : factory_(factory) {}
+ T Produce() override { return factory_(); }
+
+ private:
+ const FactoryFunction factory_;
+ FactoryValueProducer(const FactoryValueProducer&) = delete;
+ FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
+ };
+
+ static ValueProducer* producer_;
+};
+
+// This partial specialization allows a user to set default values for
+// reference types.
+template <typename T>
+class DefaultValue<T&> {
+ public:
+ // Sets the default value for type T&.
+ static void Set(T& x) { // NOLINT
+ address_ = &x;
+ }
+
+ // Unsets the default value for type T&.
+ static void Clear() { address_ = nullptr; }
+
+ // Returns true if and only if the user has set the default value for type T&.
+ static bool IsSet() { return address_ != nullptr; }
+
+ // Returns true if T has a default return value set by the user or there
+ // exists a built-in default value.
+ static bool Exists() {
+ return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
+ }
+
+ // Returns the default value for type T& if the user has set one;
+ // otherwise returns the built-in default value if there is one;
+ // otherwise aborts the process.
+ static T& Get() {
+ return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
+ : *address_;
+ }
+
+ private:
+ static T* address_;
+};
+
+// This specialization allows DefaultValue<void>::Get() to
+// compile.
+template <>
+class DefaultValue<void> {
+ public:
+ static bool Exists() { return true; }
+ static void Get() {}
+};
+
+// Points to the user-set default value for type T.
+template <typename T>
+typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
+
+// Points to the user-set default value for type T&.
+template <typename T>
+T* DefaultValue<T&>::address_ = nullptr;
+
+// Implement this interface to define an action for function type F.
+template <typename F>
+class ActionInterface {
+ public:
+ typedef typename internal::Function<F>::Result Result;
+ typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+ ActionInterface() = default;
+ virtual ~ActionInterface() = default;
+
+ // Performs the action. This method is not const, as in general an
+ // action can have side effects and be stateful. For example, a
+ // get-the-next-element-from-the-collection action will need to
+ // remember the current element.
+ virtual Result Perform(const ArgumentTuple& args) = 0;
+
+ private:
+ ActionInterface(const ActionInterface&) = delete;
+ ActionInterface& operator=(const ActionInterface&) = delete;
+};
+
+template <typename F>
+class Action;
+
+// An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
+// object that represents an action to be taken when a mock function of type
+// R(Args...) is called. The implementation of Action<T> is just a
+// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
+// can view an object implementing ActionInterface<F> as a concrete action
+// (including its current state), and an Action<F> object as a handle to it.
+template <typename R, typename... Args>
+class Action<R(Args...)> {
+ private:
+ using F = R(Args...);
+
+ // Adapter class to allow constructing Action from a legacy ActionInterface.
+ // New code should create Actions from functors instead.
+ struct ActionAdapter {
+ // Adapter must be copyable to satisfy std::function requirements.
+ ::std::shared_ptr<ActionInterface<F>> impl_;
+
+ template <typename... InArgs>
+ typename internal::Function<F>::Result operator()(InArgs&&... args) {
+ return impl_->Perform(
+ ::std::forward_as_tuple(::std::forward<InArgs>(args)...));
+ }
+ };
+
+ template <typename G>
+ using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
+
+ public:
+ typedef typename internal::Function<F>::Result Result;
+ typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+ // Constructs a null Action. Needed for storing Action objects in
+ // STL containers.
+ Action() = default;
+
+ // Construct an Action from a specified callable.
+ // This cannot take std::function directly, because then Action would not be
+ // directly constructible from lambda (it would require two conversions).
+ template <
+ typename G,
+ typename = typename std::enable_if<internal::disjunction<
+ IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
+ G>>::value>::type>
+ Action(G&& fun) { // NOLINT
+ Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
+ }
+
+ // Constructs an Action from its implementation.
+ explicit Action(ActionInterface<F>* impl)
+ : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
+
+ // This constructor allows us to turn an Action<Func> object into an
+ // Action<F>, as long as F's arguments can be implicitly converted
+ // to Func's and Func's return type can be implicitly converted to F's.
+ template <typename Func>
+ Action(const Action<Func>& action) // NOLINT
+ : fun_(action.fun_) {}
+
+ // Returns true if and only if this is the DoDefault() action.
+ bool IsDoDefault() const { return fun_ == nullptr; }
+
+ // Performs the action. Note that this method is const even though
+ // the corresponding method in ActionInterface is not. The reason
+ // is that a const Action<F> means that it cannot be re-bound to
+ // another concrete action, not that the concrete action it binds to
+ // cannot change state. (Think of the difference between a const
+ // pointer and a pointer to const.)
+ Result Perform(ArgumentTuple args) const {
+ if (IsDoDefault()) {
+ internal::IllegalDoDefault(__FILE__, __LINE__);
+ }
+ return internal::Apply(fun_, ::std::move(args));
+ }
+
+ // An action can be used as a OnceAction, since it's obviously safe to call it
+ // once.
+ operator OnceAction<F>() const { // NOLINT
+ // Return a OnceAction-compatible callable that calls Perform with the
+ // arguments it is provided. We could instead just return fun_, but then
+ // we'd need to handle the IsDoDefault() case separately.
+ struct OA {
+ Action<F> action;
+
+ R operator()(Args... args) && {
+ return action.Perform(
+ std::forward_as_tuple(std::forward<Args>(args)...));
+ }
+ };
+
+ return OA{*this};
+ }
+
+ private:
+ template <typename G>
+ friend class Action;
+
+ template <typename G>
+ void Init(G&& g, ::std::true_type) {
+ fun_ = ::std::forward<G>(g);
+ }
+
+ template <typename G>
+ void Init(G&& g, ::std::false_type) {
+ fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
+ }
+
+ template <typename FunctionImpl>
+ struct IgnoreArgs {
+ template <typename... InArgs>
+ Result operator()(const InArgs&...) const {
+ return function_impl();
+ }
+
+ FunctionImpl function_impl;
+ };
+
+ // fun_ is an empty function if and only if this is the DoDefault() action.
+ ::std::function<F> fun_;
+};
+
+// The PolymorphicAction class template makes it easy to implement a
+// polymorphic action (i.e. an action that can be used in mock
+// functions of than one type, e.g. Return()).
+//
+// To define a polymorphic action, a user first provides a COPYABLE
+// implementation class that has a Perform() method template:
+//
+// class FooAction {
+// public:
+// template <typename Result, typename ArgumentTuple>
+// Result Perform(const ArgumentTuple& args) const {
+// // Processes the arguments and returns a result, using
+// // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
+// }
+// ...
+// };
+//
+// Then the user creates the polymorphic action using
+// MakePolymorphicAction(object) where object has type FooAction. See
+// the definition of Return(void) and SetArgumentPointee<N>(value) for
+// complete examples.
+template <typename Impl>
+class PolymorphicAction {
+ public:
+ explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
+
+ template <typename F>
+ operator Action<F>() const {
+ return Action<F>(new MonomorphicImpl<F>(impl_));
+ }
+
+ private:
+ template <typename F>
+ class MonomorphicImpl : public ActionInterface<F> {
+ public:
+ typedef typename internal::Function<F>::Result Result;
+ typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+ explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
+
+ Result Perform(const ArgumentTuple& args) override {
+ return impl_.template Perform<Result>(args);
+ }
+
+ private:
+ Impl impl_;
+ };
+
+ Impl impl_;
+};
+
+// Creates an Action from its implementation and returns it. The
+// created Action object owns the implementation.
+template <typename F>
+Action<F> MakeAction(ActionInterface<F>* impl) {
+ return Action<F>(impl);
+}
+
+// Creates a polymorphic action from its implementation. This is
+// easier to use than the PolymorphicAction<Impl> constructor as it
+// doesn't require you to explicitly write the template argument, e.g.
+//
+// MakePolymorphicAction(foo);
+// vs
+// PolymorphicAction<TypeOfFoo>(foo);
+template <typename Impl>
+inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
+ return PolymorphicAction<Impl>(impl);
+}
+
+namespace internal {
+
+// Helper struct to specialize ReturnAction to execute a move instead of a copy
+// on return. Useful for move-only types, but could be used on any type.
+template <typename T>
+struct ByMoveWrapper {
+ explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
+ T payload;
+};
+
+// The general implementation of Return(R). Specializations follow below.
+template <typename R>
+class ReturnAction final {
+ public:
+ explicit ReturnAction(R value) : value_(std::move(value)) {}
+
+ template <typename U, typename... Args,
+ typename = typename std::enable_if<conjunction<
+ // See the requirements documented on Return.
+ negation<std::is_same<void, U>>, //
+ negation<std::is_reference<U>>, //
+ std::is_convertible<R, U>, //
+ std::is_move_constructible<U>>::value>::type>
+ operator OnceAction<U(Args...)>() && { // NOLINT
+ return Impl<U>(std::move(value_));
+ }
+
+ template <typename U, typename... Args,
+ typename = typename std::enable_if<conjunction<
+ // See the requirements documented on Return.
+ negation<std::is_same<void, U>>, //
+ negation<std::is_reference<U>>, //
+ std::is_convertible<const R&, U>, //
+ std::is_copy_constructible<U>>::value>::type>
+ operator Action<U(Args...)>() const { // NOLINT
+ return Impl<U>(value_);
+ }
+
+ private:
+ // Implements the Return(x) action for a mock function that returns type U.
+ template <typename U>
+ class Impl final {
+ public:
+ // The constructor used when the return value is allowed to move from the
+ // input value (i.e. we are converting to OnceAction).
+ explicit Impl(R&& input_value)
+ : state_(new State(std::move(input_value))) {}
+
+ // The constructor used when the return value is not allowed to move from
+ // the input value (i.e. we are converting to Action).
+ explicit Impl(const R& input_value) : state_(new State(input_value)) {}
+
+ U operator()() && { return std::move(state_->value); }
+ U operator()() const& { return state_->value; }
+
+ private:
+ // We put our state on the heap so that the compiler-generated copy/move
+ // constructors work correctly even when U is a reference-like type. This is
+ // necessary only because we eagerly create State::value (see the note on
+ // that symbol for details). If we instead had only the input value as a
+ // member then the default constructors would work fine.
+ //
+ // For example, when R is std::string and U is std::string_view, value is a
+ // reference to the string backed by input_value. The copy constructor would
+ // copy both, so that we wind up with a new input_value object (with the
+ // same contents) and a reference to the *old* input_value object rather
+ // than the new one.
+ struct State {
+ explicit State(const R& input_value_in)
+ : input_value(input_value_in),
+ // Make an implicit conversion to Result before initializing the U
+ // object we store, avoiding calling any explicit constructor of U
+ // from R.
+ //
+ // This simulates the language rules: a function with return type U
+ // that does `return R()` requires R to be implicitly convertible to
+ // U, and uses that path for the conversion, even U Result has an
+ // explicit constructor from R.
+ value(ImplicitCast_<U>(internal::as_const(input_value))) {}
+
+ // As above, but for the case where we're moving from the ReturnAction
+ // object because it's being used as a OnceAction.
+ explicit State(R&& input_value_in)
+ : input_value(std::move(input_value_in)),
+ // For the same reason as above we make an implicit conversion to U
+ // before initializing the value.
+ //
+ // Unlike above we provide the input value as an rvalue to the
+ // implicit conversion because this is a OnceAction: it's fine if it
+ // wants to consume the input value.
+ value(ImplicitCast_<U>(std::move(input_value))) {}
+
+ // A copy of the value originally provided by the user. We retain this in
+ // addition to the value of the mock function's result type below in case
+ // the latter is a reference-like type. See the std::string_view example
+ // in the documentation on Return.
+ R input_value;
+
+ // The value we actually return, as the type returned by the mock function
+ // itself.
+ //
+ // We eagerly initialize this here, rather than lazily doing the implicit
+ // conversion automatically each time Perform is called, for historical
+ // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
+ // made the Action<U()> conversion operator eagerly convert the R value to
+ // U, but without keeping the R alive. This broke the use case discussed
+ // in the documentation for Return, making reference-like types such as
+ // std::string_view not safe to use as U where the input type R is a
+ // value-like type such as std::string.
+ //
+ // The example the commit gave was not very clear, nor was the issue
+ // thread (https://github.com/google/googlemock/issues/86), but it seems
+ // the worry was about reference-like input types R that flatten to a
+ // value-like type U when being implicitly converted. An example of this
+ // is std::vector<bool>::reference, which is often a proxy type with an
+ // reference to the underlying vector:
+ //
+ // // Helper method: have the mock function return bools according
+ // // to the supplied script.
+ // void SetActions(MockFunction<bool(size_t)>& mock,
+ // const std::vector<bool>& script) {
+ // for (size_t i = 0; i < script.size(); ++i) {
+ // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
+ // }
+ // }
+ //
+ // TEST(Foo, Bar) {
+ // // Set actions using a temporary vector, whose operator[]
+ // // returns proxy objects that references that will be
+ // // dangling once the call to SetActions finishes and the
+ // // vector is destroyed.
+ // MockFunction<bool(size_t)> mock;
+ // SetActions(mock, {false, true});
+ //
+ // EXPECT_FALSE(mock.AsStdFunction()(0));
+ // EXPECT_TRUE(mock.AsStdFunction()(1));
+ // }
+ //
+ // This eager conversion helps with a simple case like this, but doesn't
+ // fully make these types work in general. For example the following still
+ // uses a dangling reference:
+ //
+ // TEST(Foo, Baz) {
+ // MockFunction<std::vector<std::string>()> mock;
+ //
+ // // Return the same vector twice, and then the empty vector
+ // // thereafter.
+ // auto action = Return(std::initializer_list<std::string>{
+ // "taco", "burrito",
+ // });
+ //
+ // EXPECT_CALL(mock, Call)
+ // .WillOnce(action)
+ // .WillOnce(action)
+ // .WillRepeatedly(Return(std::vector<std::string>{}));
+ //
+ // EXPECT_THAT(mock.AsStdFunction()(),
+ // ElementsAre("taco", "burrito"));
+ // EXPECT_THAT(mock.AsStdFunction()(),
+ // ElementsAre("taco", "burrito"));
+ // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
+ // }
+ //
+ U value;
+ };
+
+ const std::shared_ptr<State> state_;
+ };
+
+ R value_;
+};
+
+// A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
+//
+// This version applies the type system-defeating hack of moving from T even in
+// the const call operator, checking at runtime that it isn't called more than
+// once, since the user has declared their intent to do so by using ByMove.
+template <typename T>
+class ReturnAction<ByMoveWrapper<T>> final {
+ public:
+ explicit ReturnAction(ByMoveWrapper<T> wrapper)
+ : state_(new State(std::move(wrapper.payload))) {}
+
+ T operator()() const {
+ GTEST_CHECK_(!state_->called)
+ << "A ByMove() action must be performed at most once.";
+
+ state_->called = true;
+ return std::move(state_->value);
+ }
+
+ private:
+ // We store our state on the heap so that we are copyable as required by
+ // Action, despite the fact that we are stateful and T may not be copyable.
+ struct State {
+ explicit State(T&& value_in) : value(std::move(value_in)) {}
+
+ T value;
+ bool called = false;
+ };
+
+ const std::shared_ptr<State> state_;
+};
+
+// Implements the ReturnNull() action.
+class ReturnNullAction {
+ public:
+ // Allows ReturnNull() to be used in any pointer-returning function. In C++11
+ // this is enforced by returning nullptr, and in non-C++11 by asserting a
+ // pointer type on compile time.
+ template <typename Result, typename ArgumentTuple>
+ static Result Perform(const ArgumentTuple&) {
+ return nullptr;
+ }
+};
+
+// Implements the Return() action.
+class ReturnVoidAction {
+ public:
+ // Allows Return() to be used in any void-returning function.
+ template <typename Result, typename ArgumentTuple>
+ static void Perform(const ArgumentTuple&) {
+ static_assert(std::is_void<Result>::value, "Result should be void.");
+ }
+};
+
+// Implements the polymorphic ReturnRef(x) action, which can be used
+// in any function that returns a reference to the type of x,
+// regardless of the argument types.
+template <typename T>
+class ReturnRefAction {
+ public:
+ // Constructs a ReturnRefAction object from the reference to be returned.
+ explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
+
+ // This template type conversion operator allows ReturnRef(x) to be
+ // used in ANY function that returns a reference to x's type.
+ template <typename F>
+ operator Action<F>() const {
+ typedef typename Function<F>::Result Result;
+ // Asserts that the function return type is a reference. This
+ // catches the user error of using ReturnRef(x) when Return(x)
+ // should be used, and generates some helpful error message.
+ static_assert(std::is_reference<Result>::value,
+ "use Return instead of ReturnRef to return a value");
+ return Action<F>(new Impl<F>(ref_));
+ }
+
+ private:
+ // Implements the ReturnRef(x) action for a particular function type F.
+ template <typename F>
+ class Impl : public ActionInterface<F> {
+ public:
+ typedef typename Function<F>::Result Result;
+ typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+
+ explicit Impl(T& ref) : ref_(ref) {} // NOLINT
+
+ Result Perform(const ArgumentTuple&) override { return ref_; }
+
+ private:
+ T& ref_;
+ };
+
+ T& ref_;
+};
+
+// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
+// used in any function that returns a reference to the type of x,
+// regardless of the argument types.
+template <typename T>
+class ReturnRefOfCopyAction {
+ public:
+ // Constructs a ReturnRefOfCopyAction object from the reference to
+ // be returned.
+ explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
+
+ // This template type conversion operator allows ReturnRefOfCopy(x) to be
+ // used in ANY function that returns a reference to x's type.
+ template <typename F>
+ operator Action<F>() const {
+ typedef typename Function<F>::Result Result;
+ // Asserts that the function return type is a reference. This
+ // catches the user error of using ReturnRefOfCopy(x) when Return(x)
+ // should be used, and generates some helpful error message.
+ static_assert(std::is_reference<Result>::value,
+ "use Return instead of ReturnRefOfCopy to return a value");
+ return Action<F>(new Impl<F>(value_));
+ }
+
+ private:
+ // Implements the ReturnRefOfCopy(x) action for a particular function type F.
+ template <typename F>
+ class Impl : public ActionInterface<F> {
+ public:
+ typedef typename Function<F>::Result Result;
+ typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+
+ explicit Impl(const T& value) : value_(value) {} // NOLINT
+
+ Result Perform(const ArgumentTuple&) override { return value_; }
+
+ private:
+ T value_;
+ };
+
+ const T value_;
+};
+
+// Implements the polymorphic ReturnRoundRobin(v) action, which can be
+// used in any function that returns the element_type of v.
+template <typename T>
+class ReturnRoundRobinAction {
+ public:
+ explicit ReturnRoundRobinAction(std::vector<T> values) {
+ GTEST_CHECK_(!values.empty())
+ << "ReturnRoundRobin requires at least one element.";
+ state_->values = std::move(values);
+ }
+
+ template <typename... Args>
+ T operator()(Args&&...) const {
+ return state_->Next();
+ }
+
+ private:
+ struct State {
+ T Next() {
+ T ret_val = values[i++];
+ if (i == values.size()) i = 0;
+ return ret_val;
+ }
+
+ std::vector<T> values;
+ size_t i = 0;
+ };
+ std::shared_ptr<State> state_ = std::make_shared<State>();
+};
+
+// Implements the polymorphic DoDefault() action.
+class DoDefaultAction {
+ public:
+ // This template type conversion operator allows DoDefault() to be
+ // used in any function.
+ template <typename F>
+ operator Action<F>() const {
+ return Action<F>();
+ } // NOLINT
+};
+
+// Implements the Assign action to set a given pointer referent to a
+// particular value.
+template <typename T1, typename T2>
+class AssignAction {
+ public:
+ AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
+
+ template <typename Result, typename ArgumentTuple>
+ void Perform(const ArgumentTuple& /* args */) const {
+ *ptr_ = value_;
+ }
+
+ private:
+ T1* const ptr_;
+ const T2 value_;
+};
+
+#ifndef GTEST_OS_WINDOWS_MOBILE
+
+// Implements the SetErrnoAndReturn action to simulate return from
+// various system calls and libc functions.
+template <typename T>
+class SetErrnoAndReturnAction {
+ public:
+ SetErrnoAndReturnAction(int errno_value, T result)
+ : errno_(errno_value), result_(result) {}
+ template <typename Result, typename ArgumentTuple>
+ Result Perform(const ArgumentTuple& /* args */) const {
+ errno = errno_;
+ return result_;
+ }
+
+ private:
+ const int errno_;
+ const T result_;
+};
+
+#endif // !GTEST_OS_WINDOWS_MOBILE
+
+// Implements the SetArgumentPointee<N>(x) action for any function
+// whose N-th argument (0-based) is a pointer to x's type.
+template <size_t N, typename A, typename = void>
+struct SetArgumentPointeeAction {
+ A value;
+
+ template <typename... Args>
+ void operator()(const Args&... args) const {
+ *::std::get<N>(std::tie(args...)) = value;
+ }
+};
+
+// Implements the Invoke(object_ptr, &Class::Method) action.
+template <class Class, typename MethodPtr>
+struct InvokeMethodAction {
+ Class* const obj_ptr;
+ const MethodPtr method_ptr;
+
+ template <typename... Args>
+ auto operator()(Args&&... args) const
+ -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
+ return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
+ }
+};
+
+// Implements the InvokeWithoutArgs(f) action. The template argument
+// FunctionImpl is the implementation type of f, which can be either a
+// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
+// Action<F> as long as f's type is compatible with F.
+template <typename FunctionImpl>
+struct InvokeWithoutArgsAction {
+ FunctionImpl function_impl;
+
+ // Allows InvokeWithoutArgs(f) to be used as any action whose type is
+ // compatible with f.
+ template <typename... Args>
+ auto operator()(const Args&...) -> decltype(function_impl()) {
+ return function_impl();
+ }
+};
+
+// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
+template <class Class, typename MethodPtr>
+struct InvokeMethodWithoutArgsAction {
+ Class* const obj_ptr;
+ const MethodPtr method_ptr;
+
+ using ReturnType =
+ decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
+
+ template <typename... Args>
+ ReturnType operator()(const Args&...) const {
+ return (obj_ptr->*method_ptr)();
+ }
+};
+
+// Implements the IgnoreResult(action) action.
+template <typename A>
+class IgnoreResultAction {
+ public:
+ explicit IgnoreResultAction(const A& action) : action_(action) {}
+
+ template <typename F>
+ operator Action<F>() const {
+ // Assert statement belongs here because this is the best place to verify
+ // conditions on F. It produces the clearest error messages
+ // in most compilers.
+ // Impl really belongs in this scope as a local class but can't
+ // because MSVC produces duplicate symbols in different translation units
+ // in this case. Until MS fixes that bug we put Impl into the class scope
+ // and put the typedef both here (for use in assert statement) and
+ // in the Impl class. But both definitions must be the same.
+ typedef typename internal::Function<F>::Result Result;
+
+ // Asserts at compile time that F returns void.
+ static_assert(std::is_void<Result>::value, "Result type should be void.");
+
+ return Action<F>(new Impl<F>(action_));
+ }
+
+ private:
+ template <typename F>
+ class Impl : public ActionInterface<F> {
+ public:
+ typedef typename internal::Function<F>::Result Result;
+ typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
+
+ explicit Impl(const A& action) : action_(action) {}
+
+ void Perform(const ArgumentTuple& args) override {
+ // Performs the action and ignores its result.
+ action_.Perform(args);
+ }
+
+ private:
+ // Type OriginalFunction is the same as F except that its return
+ // type is IgnoredValue.
+ typedef
+ typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
+
+ const Action<OriginalFunction> action_;
+ };
+
+ const A action_;
+};
+
+template <typename InnerAction, size_t... I>
+struct WithArgsAction {
+ InnerAction inner_action;
+
+ // The signature of the function as seen by the inner action, given an out
+ // action with the given result and argument types.
+ template <typename R, typename... Args>
+ using InnerSignature =
+ R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
+
+ // Rather than a call operator, we must define conversion operators to
+ // particular action types. This is necessary for embedded actions like
+ // DoDefault(), which rely on an action conversion operators rather than
+ // providing a call operator because even with a particular set of arguments
+ // they don't have a fixed return type.
+
+ template <
+ typename R, typename... Args,
+ typename std::enable_if<
+ std::is_convertible<InnerAction,
+ // Unfortunately we can't use the InnerSignature
+ // alias here; MSVC complains about the I
+ // parameter pack not being expanded (error C3520)
+ // despite it being expanded in the type alias.
+ // TupleElement is also an MSVC workaround.
+ // See its definition for details.
+ OnceAction<R(internal::TupleElement<
+ I, std::tuple<Args...>>...)>>::value,
+ int>::type = 0>
+ operator OnceAction<R(Args...)>() && { // NOLINT
+ struct OA {
+ OnceAction<InnerSignature<R, Args...>> inner_action;
+
+ R operator()(Args&&... args) && {
+ return std::move(inner_action)
+ .Call(std::get<I>(
+ std::forward_as_tuple(std::forward<Args>(args)...))...);
+ }
+ };
+
+ return OA{std::move(inner_action)};
+ }
+
+ template <
+ typename R, typename... Args,
+ typename std::enable_if<
+ std::is_convertible<const InnerAction&,
+ // Unfortunately we can't use the InnerSignature
+ // alias here; MSVC complains about the I
+ // parameter pack not being expanded (error C3520)
+ // despite it being expanded in the type alias.
+ // TupleElement is also an MSVC workaround.
+ // See its definition for details.
+ Action<R(internal::TupleElement<
+ I, std::tuple<Args...>>...)>>::value,
+ int>::type = 0>
+ operator Action<R(Args...)>() const { // NOLINT
+ Action<InnerSignature<R, Args...>> converted(inner_action);
+
+ return [converted](Args&&... args) -> R {
+ return converted.Perform(std::forward_as_tuple(
+ std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
+ };
+ }
+};
+
+template <typename... Actions>
+class DoAllAction;
+
+// Base case: only a single action.
+template <typename FinalAction>
+class DoAllAction<FinalAction> {
+ public:
+ struct UserConstructorTag {};
+
+ template <typename T>
+ explicit DoAllAction(UserConstructorTag, T&& action)
+ : final_action_(std::forward<T>(action)) {}
+
+ // Rather than a call operator, we must define conversion operators to
+ // particular action types. This is necessary for embedded actions like
+ // DoDefault(), which rely on an action conversion operators rather than
+ // providing a call operator because even with a particular set of arguments
+ // they don't have a fixed return type.
+
+ template <typename R, typename... Args,
+ typename std::enable_if<
+ std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
+ int>::type = 0>
+ operator OnceAction<R(Args...)>() && { // NOLINT
+ return std::move(final_action_);
+ }
+
+ template <
+ typename R, typename... Args,
+ typename std::enable_if<
+ std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
+ int>::type = 0>
+ operator Action<R(Args...)>() const { // NOLINT
+ return final_action_;
+ }
+
+ private:
+ FinalAction final_action_;
+};
+
+// Recursive case: support N actions by calling the initial action and then
+// calling through to the base class containing N-1 actions.
+template <typename InitialAction, typename... OtherActions>
+class DoAllAction<InitialAction, OtherActions...>
+ : private DoAllAction<OtherActions...> {
+ private:
+ using Base = DoAllAction<OtherActions...>;
+
+ // The type of reference that should be provided to an initial action for a
+ // mocked function parameter of type T.
+ //
+ // There are two quirks here:
+ //
+ // * Unlike most forwarding functions, we pass scalars through by value.
+ // This isn't strictly necessary because an lvalue reference would work
+ // fine too and be consistent with other non-reference types, but it's
+ // perhaps less surprising.
+ //
+ // For example if the mocked function has signature void(int), then it
+ // might seem surprising for the user's initial action to need to be
+ // convertible to Action<void(const int&)>. This is perhaps less
+ // surprising for a non-scalar type where there may be a performance
+ // impact, or it might even be impossible, to pass by value.
+ //
+ // * More surprisingly, `const T&` is often not a const reference type.
+ // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
+ // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
+ // U&. In other words, we may hand over a non-const reference.
+ //
+ // So for example, given some non-scalar type Obj we have the following
+ // mappings:
+ //
+ // T InitialActionArgType<T>
+ // ------- -----------------------
+ // Obj const Obj&
+ // Obj& Obj&
+ // Obj&& Obj&
+ // const Obj const Obj&
+ // const Obj& const Obj&
+ // const Obj&& const Obj&
+ //
+ // In other words, the initial actions get a mutable view of an non-scalar
+ // argument if and only if the mock function itself accepts a non-const
+ // reference type. They are never given an rvalue reference to an
+ // non-scalar type.
+ //
+ // This situation makes sense if you imagine use with a matcher that is
+ // designed to write through a reference. For example, if the caller wants
+ // to fill in a reference argument and then return a canned value:
+ //
+ // EXPECT_CALL(mock, Call)
+ // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
+ //
+ template <typename T>
+ using InitialActionArgType =
+ typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
+
+ public:
+ struct UserConstructorTag {};
+
+ template <typename T, typename... U>
+ explicit DoAllAction(UserConstructorTag, T&& initial_action,
+ U&&... other_actions)
+ : Base({}, std::forward<U>(other_actions)...),
+ initial_action_(std::forward<T>(initial_action)) {}
+
+ template <typename R, typename... Args,
+ typename std::enable_if<
+ conjunction<
+ // Both the initial action and the rest must support
+ // conversion to OnceAction.
+ std::is_convertible<
+ InitialAction,
+ OnceAction<void(InitialActionArgType<Args>...)>>,
+ std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
+ int>::type = 0>
+ operator OnceAction<R(Args...)>() && { // NOLINT
+ // Return an action that first calls the initial action with arguments
+ // filtered through InitialActionArgType, then forwards arguments directly
+ // to the base class to deal with the remaining actions.
+ struct OA {
+ OnceAction<void(InitialActionArgType<Args>...)> initial_action;
+ OnceAction<R(Args...)> remaining_actions;
+
+ R operator()(Args... args) && {
+ std::move(initial_action)
+ .Call(static_cast<InitialActionArgType<Args>>(args)...);
+
+ return std::move(remaining_actions).Call(std::forward<Args>(args)...);
+ }
+ };
+
+ return OA{
+ std::move(initial_action_),
+ std::move(static_cast<Base&>(*this)),
+ };
+ }
+
+ template <
+ typename R, typename... Args,
+ typename std::enable_if<
+ conjunction<
+ // Both the initial action and the rest must support conversion to
+ // Action.
+ std::is_convertible<const InitialAction&,
+ Action<void(InitialActionArgType<Args>...)>>,
+ std::is_convertible<const Base&, Action<R(Args...)>>>::value,
+ int>::type = 0>
+ operator Action<R(Args...)>() const { // NOLINT
+ // Return an action that first calls the initial action with arguments
+ // filtered through InitialActionArgType, then forwards arguments directly
+ // to the base class to deal with the remaining actions.
+ struct OA {
+ Action<void(InitialActionArgType<Args>...)> initial_action;
+ Action<R(Args...)> remaining_actions;
+
+ R operator()(Args... args) const {
+ initial_action.Perform(std::forward_as_tuple(
+ static_cast<InitialActionArgType<Args>>(args)...));
+
+ return remaining_actions.Perform(
+ std::forward_as_tuple(std::forward<Args>(args)...));
+ }
+ };
+
+ return OA{
+ initial_action_,
+ static_cast<const Base&>(*this),
+ };
+ }
+
+ private:
+ InitialAction initial_action_;
+};
+
+template <typename T, typename... Params>
+struct ReturnNewAction {
+ T* operator()() const {
+ return internal::Apply(
+ [](const Params&... unpacked_params) {
+ return new T(unpacked_params...);
+ },
+ params);
+ }
+ std::tuple<Params...> params;
+};
+
+template <size_t k>
+struct ReturnArgAction {
+ template <typename... Args,
+ typename = typename std::enable_if<(k < sizeof...(Args))>::type>
+ auto operator()(Args&&... args) const -> decltype(std::get<k>(
+ std::forward_as_tuple(std::forward<Args>(args)...))) {
+ return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
+ }
+};
+
+template <size_t k, typename Ptr>
+struct SaveArgAction {
+ Ptr pointer;
+
+ template <typename... Args>
+ void operator()(const Args&... args) const {
+ *pointer = std::get<k>(std::tie(args...));
+ }
+};
+
+template <size_t k, typename Ptr>
+struct SaveArgPointeeAction {
+ Ptr pointer;
+
+ template <typename... Args>
+ void operator()(const Args&... args) const {
+ *pointer = *std::get<k>(std::tie(args...));
+ }
+};
+
+template <size_t k, typename T>
+struct SetArgRefereeAction {
+ T value;
+
+ template <typename... Args>
+ void operator()(Args&&... args) const {
+ using argk_type =
+ typename ::std::tuple_element<k, std::tuple<Args...>>::type;
+ static_assert(std::is_lvalue_reference<argk_type>::value,
+ "Argument must be a reference type.");
+ std::get<k>(std::tie(args...)) = value;
+ }
+};
+
+template <size_t k, typename I1, typename I2>
+struct SetArrayArgumentAction {
+ I1 first;
+ I2 last;
+
+ template <typename... Args>
+ void operator()(const Args&... args) const {
+ auto value = std::get<k>(std::tie(args...));
+ for (auto it = first; it != last; ++it, (void)++value) {
+ *value = *it;
+ }
+ }
+};
+
+template <size_t k>
+struct DeleteArgAction {
+ template <typename... Args>
+ void operator()(const Args&... args) const {
+ delete std::get<k>(std::tie(args...));
+ }
+};
+
+template <typename Ptr>
+struct ReturnPointeeAction {
+ Ptr pointer;
+ template <typename... Args>
+ auto operator()(const Args&...) const -> decltype(*pointer) {
+ return *pointer;
+ }
+};
+
+#if GTEST_HAS_EXCEPTIONS
+template <typename T>
+struct ThrowAction {
+ T exception;
+ // We use a conversion operator to adapt to any return type.
+ template <typename R, typename... Args>
+ operator Action<R(Args...)>() const { // NOLINT
+ T copy = exception;
+ return [copy](Args...) -> R { throw copy; };
+ }
+};
+struct RethrowAction {
+ std::exception_ptr exception;
+ template <typename R, typename... Args>
+ operator Action<R(Args...)>() const { // NOLINT
+ return [ex = exception](Args...) -> R { std::rethrow_exception(ex); };
+ }
+};
+#endif // GTEST_HAS_EXCEPTIONS
+
+} // namespace internal
+
+// An Unused object can be implicitly constructed from ANY value.
+// This is handy when defining actions that ignore some or all of the
+// mock function arguments. For example, given
+//
+// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
+// MOCK_METHOD3(Bar, double(int index, double x, double y));
+//
+// instead of
+//
+// double DistanceToOriginWithLabel(const string& label, double x, double y) {
+// return sqrt(x*x + y*y);
+// }
+// double DistanceToOriginWithIndex(int index, double x, double y) {
+// return sqrt(x*x + y*y);
+// }
+// ...
+// EXPECT_CALL(mock, Foo("abc", _, _))
+// .WillOnce(Invoke(DistanceToOriginWithLabel));
+// EXPECT_CALL(mock, Bar(5, _, _))
+// .WillOnce(Invoke(DistanceToOriginWithIndex));
+//
+// you could write
+//
+// // We can declare any uninteresting argument as Unused.
+// double DistanceToOrigin(Unused, double x, double y) {
+// return sqrt(x*x + y*y);
+// }
+// ...
+// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
+// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
+typedef internal::IgnoredValue Unused;
+
+// Creates an action that does actions a1, a2, ..., sequentially in
+// each invocation. All but the last action will have a readonly view of the
+// arguments.
+template <typename... Action>
+internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
+ Action&&... action) {
+ return internal::DoAllAction<typename std::decay<Action>::type...>(
+ {}, std::forward<Action>(action)...);
+}
+
+// WithArg<k>(an_action) creates an action that passes the k-th
+// (0-based) argument of the mock function to an_action and performs
+// it. It adapts an action accepting one argument to one that accepts
+// multiple arguments. For convenience, we also provide
+// WithArgs<k>(an_action) (defined below) as a synonym.
+template <size_t k, typename InnerAction>
+internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
+ InnerAction&& action) {
+ return {std::forward<InnerAction>(action)};
+}
+
+// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
+// the selected arguments of the mock function to an_action and
+// performs it. It serves as an adaptor between actions with
+// different argument lists.
+template <size_t k, size_t... ks, typename InnerAction>
+internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
+WithArgs(InnerAction&& action) {
+ return {std::forward<InnerAction>(action)};
+}
+
+// WithoutArgs(inner_action) can be used in a mock function with a
+// non-empty argument list to perform inner_action, which takes no
+// argument. In other words, it adapts an action accepting no
+// argument to one that accepts (and ignores) arguments.
+template <typename InnerAction>
+internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
+ InnerAction&& action) {
+ return {std::forward<InnerAction>(action)};
+}
+
+// Creates an action that returns a value.
+//
+// The returned type can be used with a mock function returning a non-void,
+// non-reference type U as follows:
+//
+// * If R is convertible to U and U is move-constructible, then the action can
+// be used with WillOnce.
+//
+// * If const R& is convertible to U and U is copy-constructible, then the
+// action can be used with both WillOnce and WillRepeatedly.
+//
+// The mock expectation contains the R value from which the U return value is
+// constructed (a move/copy of the argument to Return). This means that the R
+// value will survive at least until the mock object's expectations are cleared
+// or the mock object is destroyed, meaning that U can safely be a
+// reference-like type such as std::string_view:
+//
+// // The mock function returns a view of a copy of the string fed to
+// // Return. The view is valid even after the action is performed.
+// MockFunction<std::string_view()> mock;
+// EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
+// const std::string_view result = mock.AsStdFunction()();
+// EXPECT_EQ("taco", result);
+//
+template <typename R>
+internal::ReturnAction<R> Return(R value) {
+ return internal::ReturnAction<R>(std::move(value));
+}
+
+// Creates an action that returns NULL.
+inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
+ return MakePolymorphicAction(internal::ReturnNullAction());
+}
+
+// Creates an action that returns from a void function.
+inline PolymorphicAction<internal::ReturnVoidAction> Return() {
+ return MakePolymorphicAction(internal::ReturnVoidAction());
+}
+
+// Creates an action that returns the reference to a variable.
+template <typename R>
+inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
+ return internal::ReturnRefAction<R>(x);
+}
+
+// Prevent using ReturnRef on reference to temporary.
+template <typename R, R* = nullptr>
+internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
+
+// Creates an action that returns the reference to a copy of the
+// argument. The copy is created when the action is constructed and
+// lives as long as the action.
+template <typename R>
+inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
+ return internal::ReturnRefOfCopyAction<R>(x);
+}
+
+// DEPRECATED: use Return(x) directly with WillOnce.
+//
+// Modifies the parent action (a Return() action) to perform a move of the
+// argument instead of a copy.
+// Return(ByMove()) actions can only be executed once and will assert this
+// invariant.
+template <typename R>
+internal::ByMoveWrapper<R> ByMove(R x) {
+ return internal::ByMoveWrapper<R>(std::move(x));
+}
+
+// Creates an action that returns an element of `vals`. Calling this action will
+// repeatedly return the next value from `vals` until it reaches the end and
+// will restart from the beginning.
+template <typename T>
+internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
+ return internal::ReturnRoundRobinAction<T>(std::move(vals));
+}
+
+// Creates an action that returns an element of `vals`. Calling this action will
+// repeatedly return the next value from `vals` until it reaches the end and
+// will restart from the beginning.
+template <typename T>
+internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
+ std::initializer_list<T> vals) {
+ return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
+}
+
+// Creates an action that does the default action for the give mock function.
+inline internal::DoDefaultAction DoDefault() {
+ return internal::DoDefaultAction();
+}
+
+// Creates an action that sets the variable pointed by the N-th
+// (0-based) function argument to 'value'.
+template <size_t N, typename T>
+internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
+ return {std::move(value)};
+}
+
+// The following version is DEPRECATED.
+template <size_t N, typename T>
+internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
+ return {std::move(value)};
+}
+
+// Creates an action that sets a pointer referent to a given value.
+template <typename T1, typename T2>
+PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
+ return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
+}
+
+#ifndef GTEST_OS_WINDOWS_MOBILE
+
+// Creates an action that sets errno and returns the appropriate error.
+template <typename T>
+PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
+ int errval, T result) {
+ return MakePolymorphicAction(
+ internal::SetErrnoAndReturnAction<T>(errval, result));
+}
+
+#endif // !GTEST_OS_WINDOWS_MOBILE
+
+// Various overloads for Invoke().
+
+// Legacy function.
+// Actions can now be implicitly constructed from callables. No need to create
+// wrapper objects.
+// This function exists for backwards compatibility.
+template <typename FunctionImpl>
+typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
+ return std::forward<FunctionImpl>(function_impl);
+}
+
+// Creates an action that invokes the given method on the given object
+// with the mock function's arguments.
+template <class Class, typename MethodPtr>
+internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
+ MethodPtr method_ptr) {
+ return {obj_ptr, method_ptr};
+}
+
+// Creates an action that invokes 'function_impl' with no argument.
+template <typename FunctionImpl>
+internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
+InvokeWithoutArgs(FunctionImpl function_impl) {
+ return {std::move(function_impl)};
+}
+
+// Creates an action that invokes the given method on the given object
+// with no argument.
+template <class Class, typename MethodPtr>
+internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
+ Class* obj_ptr, MethodPtr method_ptr) {
+ return {obj_ptr, method_ptr};
+}
+
+// Creates an action that performs an_action and throws away its
+// result. In other words, it changes the return type of an_action to
+// void. an_action MUST NOT return void, or the code won't compile.
+template <typename A>
+inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
+ return internal::IgnoreResultAction<A>(an_action);
+}
+
+// Creates a reference wrapper for the given L-value. If necessary,
+// you can explicitly specify the type of the reference. For example,
+// suppose 'derived' is an object of type Derived, ByRef(derived)
+// would wrap a Derived&. If you want to wrap a const Base& instead,
+// where Base is a base class of Derived, just write:
+//
+// ByRef<const Base>(derived)
+//
+// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
+// However, it may still be used for consistency with ByMove().
+template <typename T>
+inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
+ return ::std::reference_wrapper<T>(l_value);
+}
+
+// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
+// instance of type T, constructed on the heap with constructor arguments
+// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
+template <typename T, typename... Params>
+internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
+ Params&&... params) {
+ return {std::forward_as_tuple(std::forward<Params>(params)...)};
+}
+
+// Action ReturnArg<k>() returns the k-th argument of the mock function.
+template <size_t k>
+internal::ReturnArgAction<k> ReturnArg() {
+ return {};
+}
+
+// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
+// mock function to *pointer.
+template <size_t k, typename Ptr>
+internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
+ return {pointer};
+}
+
+// Action SaveArgPointee<k>(pointer) saves the value pointed to
+// by the k-th (0-based) argument of the mock function to *pointer.
+template <size_t k, typename Ptr>
+internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
+ return {pointer};
+}
+
+// Action SetArgReferee<k>(value) assigns 'value' to the variable
+// referenced by the k-th (0-based) argument of the mock function.
+template <size_t k, typename T>
+internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
+ T&& value) {
+ return {std::forward<T>(value)};
+}
+
+// Action SetArrayArgument<k>(first, last) copies the elements in
+// source range [first, last) to the array pointed to by the k-th
+// (0-based) argument, which can be either a pointer or an
+// iterator. The action does not take ownership of the elements in the
+// source range.
+template <size_t k, typename I1, typename I2>
+internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
+ I2 last) {
+ return {first, last};
+}
+
+// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
+// function.
+template <size_t k>
+internal::DeleteArgAction<k> DeleteArg() {
+ return {};
+}
+
+// This action returns the value pointed to by 'pointer'.
+template <typename Ptr>
+internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
+ return {pointer};
+}
+
+#if GTEST_HAS_EXCEPTIONS
+// Action Throw(exception) can be used in a mock function of any type
+// to throw the given exception. Any copyable value can be thrown,
+// except for std::exception_ptr, which is likely a mistake if
+// thrown directly.
+template <typename T>
+typename std::enable_if<
+ !std::is_base_of<std::exception_ptr, typename std::decay<T>::type>::value,
+ internal::ThrowAction<typename std::decay<T>::type>>::type
+Throw(T&& exception) {
+ return {std::forward<T>(exception)};
+}
+// Action Rethrow(exception_ptr) can be used in a mock function of any type
+// to rethrow any exception_ptr. Note that the same object is thrown each time.
+inline internal::RethrowAction Rethrow(std::exception_ptr exception) {
+ return {std::move(exception)};
+}
+#endif // GTEST_HAS_EXCEPTIONS
+
+namespace internal {
+
+// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
+// defines an action that can be used in a mock function. Typically,
+// these actions only care about a subset of the arguments of the mock
+// function. For example, if such an action only uses the second
+// argument, it can be used in any mock function that takes >= 2
+// arguments where the type of the second argument is compatible.
+//
+// Therefore, the action implementation must be prepared to take more
+// arguments than it needs. The ExcessiveArg type is used to
+// represent those excessive arguments. In order to keep the compiler
+// error messages tractable, we define it in the testing namespace
+// instead of testing::internal. However, this is an INTERNAL TYPE
+// and subject to change without notice, so a user MUST NOT USE THIS
+// TYPE DIRECTLY.
+struct ExcessiveArg {};
+
+// Builds an implementation of an Action<> for some particular signature, using
+// a class defined by an ACTION* macro.
+template <typename F, typename Impl>
+struct ActionImpl;
+
+template <typename Impl>
+struct ImplBase {
+ struct Holder {
+ // Allows each copy of the Action<> to get to the Impl.
+ explicit operator const Impl&() const { return *ptr; }
+ std::shared_ptr<Impl> ptr;
+ };
+ using type = typename std::conditional<std::is_constructible<Impl>::value,
+ Impl, Holder>::type;
+};
+
+template <typename R, typename... Args, typename Impl>
+struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
+ using Base = typename ImplBase<Impl>::type;
+ using function_type = R(Args...);
+ using args_type = std::tuple<Args...>;
+
+ ActionImpl() = default; // Only defined if appropriate for Base.
+ explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
+
+ R operator()(Args&&... arg) const {
+ static constexpr size_t kMaxArgs =
+ sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
+ return Apply(MakeIndexSequence<kMaxArgs>{},
+ MakeIndexSequence<10 - kMaxArgs>{},
+ args_type{std::forward<Args>(arg)...});
+ }
+
+ template <std::size_t... arg_id, std::size_t... excess_id>
+ R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
+ const args_type& args) const {
+ // Impl need not be specific to the signature of action being implemented;
+ // only the implementing function body needs to have all of the specific
+ // types instantiated. Up to 10 of the args that are provided by the
+ // args_type get passed, followed by a dummy of unspecified type for the
+ // remainder up to 10 explicit args.
+ static constexpr ExcessiveArg kExcessArg{};
+ return static_cast<const Impl&>(*this)
+ .template gmock_PerformImpl<
+ /*function_type=*/function_type, /*return_type=*/R,
+ /*args_type=*/args_type,
+ /*argN_type=*/
+ typename std::tuple_element<arg_id, args_type>::type...>(
+ /*args=*/args, std::get<arg_id>(args)...,
+ ((void)excess_id, kExcessArg)...);
+ }
+};
+
+// Stores a default-constructed Impl as part of the Action<>'s
+// std::function<>. The Impl should be trivial to copy.
+template <typename F, typename Impl>
+::testing::Action<F> MakeAction() {
+ return ::testing::Action<F>(ActionImpl<F, Impl>());
+}
+
+// Stores just the one given instance of Impl.
+template <typename F, typename Impl>
+::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
+ return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
+}
+
+#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
+ , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
+#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
+ const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
+ GMOCK_INTERNAL_ARG_UNUSED, , 10)
+
+#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
+#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
+ const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
+
+#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
+#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
+ GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
+
+#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
+#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
+
+#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
+#define GMOCK_ACTION_TYPE_PARAMS_(params) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
+
+#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
+ , param##_type gmock_p##i
+#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
+
+#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
+ , std::forward<param##_type>(gmock_p##i)
+#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
+
+#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
+ , param(::std::forward<param##_type>(gmock_p##i))
+#define GMOCK_ACTION_INIT_PARAMS_(params) \
+ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
+
+#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
+#define GMOCK_ACTION_FIELD_PARAMS_(params) \
+ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
+
+#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ class full_name { \
+ public: \
+ explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
+ : impl_(std::make_shared<gmock_Impl>( \
+ GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \
+ full_name(const full_name&) = default; \
+ full_name(full_name&&) noexcept = default; \
+ template <typename F> \
+ operator ::testing::Action<F>() const { \
+ return ::testing::internal::MakeAction<F>(impl_); \
+ } \
+ \
+ private: \
+ class gmock_Impl { \
+ public: \
+ explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
+ : GMOCK_ACTION_INIT_PARAMS_(params) {} \
+ template <typename function_type, typename return_type, \
+ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
+ GMOCK_ACTION_FIELD_PARAMS_(params) \
+ }; \
+ std::shared_ptr<const gmock_Impl> impl_; \
+ }; \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
+ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
+ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
+ return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
+ GMOCK_ACTION_GVALUE_PARAMS_(params)); \
+ } \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ template <typename function_type, typename return_type, typename args_type, \
+ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type \
+ full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
+ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
+
+} // namespace internal
+
+// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
+#define ACTION(name) \
+ class name##Action { \
+ public: \
+ explicit name##Action() noexcept {} \
+ name##Action(const name##Action&) noexcept {} \
+ template <typename F> \
+ operator ::testing::Action<F>() const { \
+ return ::testing::internal::MakeAction<F, gmock_Impl>(); \
+ } \
+ \
+ private: \
+ class gmock_Impl { \
+ public: \
+ template <typename function_type, typename return_type, \
+ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
+ }; \
+ }; \
+ inline name##Action name() GTEST_MUST_USE_RESULT_; \
+ inline name##Action name() { return name##Action(); } \
+ template <typename function_type, typename return_type, typename args_type, \
+ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type name##Action::gmock_Impl::gmock_PerformImpl( \
+ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
+
+#define ACTION_P(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
+
+#define ACTION_P2(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
+
+#define ACTION_P3(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
+
+#define ACTION_P4(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
+
+#define ACTION_P5(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
+
+#define ACTION_P6(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
+
+#define ACTION_P7(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
+
+#define ACTION_P8(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
+
+#define ACTION_P9(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
+
+#define ACTION_P10(name, ...) \
+ GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
+
+} // namespace testing
+
+GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100
+
+#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_