summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/convolve_symmetric3.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/convolve_symmetric3.cc')
-rw-r--r--third_party/jpeg-xl/lib/jxl/convolve_symmetric3.cc194
1 files changed, 194 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/convolve_symmetric3.cc b/third_party/jpeg-xl/lib/jxl/convolve_symmetric3.cc
new file mode 100644
index 0000000000..06b59dfb60
--- /dev/null
+++ b/third_party/jpeg-xl/lib/jxl/convolve_symmetric3.cc
@@ -0,0 +1,194 @@
+// Copyright (c) the JPEG XL Project Authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "lib/jxl/convolve.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "lib/jxl/convolve_symmetric3.cc"
+#include <hwy/foreach_target.h>
+#include <hwy/highway.h>
+
+#include "lib/jxl/convolve-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace jxl {
+namespace HWY_NAMESPACE {
+
+// These templates are not found via ADL.
+using hwy::HWY_NAMESPACE::Add;
+using hwy::HWY_NAMESPACE::Mul;
+using hwy::HWY_NAMESPACE::MulAdd;
+using hwy::HWY_NAMESPACE::Vec;
+
+template <class WrapY, class V>
+static V WeightedSum(const ImageF& in, const WrapY wrap_y, const size_t ix,
+ const int64_t iy, const size_t ysize, const V wx0,
+ const V wx1, const V wx2) {
+ const HWY_FULL(float) d;
+ const float* JXL_RESTRICT center = in.ConstRow(wrap_y(iy, ysize)) + ix;
+ const auto in_m2 = LoadU(d, center - 2);
+ const auto in_p2 = LoadU(d, center + 2);
+ const auto in_m1 = LoadU(d, center - 1);
+ const auto in_p1 = LoadU(d, center + 1);
+ const auto in_00 = Load(d, center);
+ const auto sum_2 = Mul(wx2, Add(in_m2, in_p2));
+ const auto sum_1 = Mul(wx1, Add(in_m1, in_p1));
+ const auto sum_0 = Mul(wx0, in_00);
+ return Add(sum_2, Add(sum_1, sum_0));
+}
+
+// 3x3 convolution by symmetric kernel with a single scan through the input.
+class Symmetric3Strategy {
+ using D = HWY_CAPPED(float, 16);
+ using V = Vec<D>;
+
+ public:
+ static constexpr int64_t kRadius = 1;
+
+ // Only accesses pixels in [0, xsize).
+ template <size_t kSizeModN, class WrapRow>
+ static JXL_MAYBE_INLINE void ConvolveRow(
+ const float* const JXL_RESTRICT row_m, const size_t xsize,
+ const int64_t stride, const WrapRow& wrap_row,
+ const WeightsSymmetric3& weights, float* const JXL_RESTRICT row_out) {
+ const D d;
+ // t, m, b = top, middle, bottom row;
+ const float* const JXL_RESTRICT row_t = wrap_row(row_m - stride, stride);
+ const float* const JXL_RESTRICT row_b = wrap_row(row_m + stride, stride);
+
+ // Must load in advance - compiler doesn't understand LoadDup128 and
+ // schedules them too late.
+ const V w0 = LoadDup128(d, weights.c);
+ const V w1 = LoadDup128(d, weights.r);
+ const V w2 = LoadDup128(d, weights.d);
+
+ // l, c, r = left, center, right. Leftmost vector: need FirstL1.
+ {
+ const V tc = LoadU(d, row_t + 0);
+ const V mc = LoadU(d, row_m + 0);
+ const V bc = LoadU(d, row_b + 0);
+ const V tl = Neighbors::FirstL1(tc);
+ const V tr = LoadU(d, row_t + 0 + 1);
+ const V ml = Neighbors::FirstL1(mc);
+ const V mr = LoadU(d, row_m + 0 + 1);
+ const V bl = Neighbors::FirstL1(bc);
+ const V br = LoadU(d, row_b + 0 + 1);
+ const V conv =
+ WeightedSum(tl, tc, tr, ml, mc, mr, bl, bc, br, w0, w1, w2);
+ Store(conv, d, row_out + 0);
+ }
+
+ // Loop as long as we can load enough new values:
+ const size_t N = Lanes(d);
+ size_t x = N;
+ for (; x + N + kRadius <= xsize; x += N) {
+ const auto conv = ConvolveValid(row_t, row_m, row_b, x, w0, w1, w2);
+ Store(conv, d, row_out + x);
+ }
+
+ // For final (partial) vector:
+ const V tc = LoadU(d, row_t + x);
+ const V mc = LoadU(d, row_m + x);
+ const V bc = LoadU(d, row_b + x);
+
+ V tr, mr, br;
+#if HWY_TARGET == HWY_SCALAR
+ tr = tc; // Single-lane => mirrored right neighbor = center value.
+ mr = mc;
+ br = bc;
+#else
+ if (kSizeModN == 0) {
+ // The above loop didn't handle the last vector because it needs an
+ // additional right neighbor (generated via mirroring).
+ auto mirror = SetTableIndices(d, MirrorLanes(N - 1));
+ tr = TableLookupLanes(tc, mirror);
+ mr = TableLookupLanes(mc, mirror);
+ br = TableLookupLanes(bc, mirror);
+ } else {
+ auto mirror = SetTableIndices(d, MirrorLanes((xsize % N) - 1));
+ // Loads last valid value into uppermost lane and mirrors.
+ tr = TableLookupLanes(LoadU(d, row_t + xsize - N), mirror);
+ mr = TableLookupLanes(LoadU(d, row_m + xsize - N), mirror);
+ br = TableLookupLanes(LoadU(d, row_b + xsize - N), mirror);
+ }
+#endif
+
+ const V tl = LoadU(d, row_t + x - 1);
+ const V ml = LoadU(d, row_m + x - 1);
+ const V bl = LoadU(d, row_b + x - 1);
+ const V conv = WeightedSum(tl, tc, tr, ml, mc, mr, bl, bc, br, w0, w1, w2);
+ Store(conv, d, row_out + x);
+ }
+
+ private:
+ // Returns sum{x_i * w_i}.
+ template <class V>
+ static JXL_MAYBE_INLINE V WeightedSum(const V tl, const V tc, const V tr,
+ const V ml, const V mc, const V mr,
+ const V bl, const V bc, const V br,
+ const V w0, const V w1, const V w2) {
+ const V sum_tb = Add(tc, bc);
+
+ // Faster than 5 mul + 4 FMA.
+ const V mul0 = Mul(mc, w0);
+ const V sum_lr = Add(ml, mr);
+
+ const V x1 = Add(sum_tb, sum_lr);
+ const V mul1 = MulAdd(x1, w1, mul0);
+
+ const V sum_t2 = Add(tl, tr);
+ const V sum_b2 = Add(bl, br);
+ const V x2 = Add(sum_t2, sum_b2);
+ const V mul2 = MulAdd(x2, w2, mul1);
+ return mul2;
+ }
+
+ static JXL_MAYBE_INLINE V ConvolveValid(const float* JXL_RESTRICT row_t,
+ const float* JXL_RESTRICT row_m,
+ const float* JXL_RESTRICT row_b,
+ const int64_t x, const V w0,
+ const V w1, const V w2) {
+ const D d;
+ const V tc = LoadU(d, row_t + x);
+ const V mc = LoadU(d, row_m + x);
+ const V bc = LoadU(d, row_b + x);
+ const V tl = LoadU(d, row_t + x - 1);
+ const V tr = LoadU(d, row_t + x + 1);
+ const V ml = LoadU(d, row_m + x - 1);
+ const V mr = LoadU(d, row_m + x + 1);
+ const V bl = LoadU(d, row_b + x - 1);
+ const V br = LoadU(d, row_b + x + 1);
+ return WeightedSum(tl, tc, tr, ml, mc, mr, bl, bc, br, w0, w1, w2);
+ }
+};
+
+void Symmetric3(const ImageF& in, const Rect& rect,
+ const WeightsSymmetric3& weights, ThreadPool* pool,
+ ImageF* out) {
+ using Conv = ConvolveT<Symmetric3Strategy>;
+ if (rect.xsize() >= Conv::MinWidth()) {
+ return Conv::Run(in, rect, weights, pool, out);
+ }
+
+ return SlowSymmetric3(in, rect, weights, pool, out);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace jxl
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace jxl {
+
+HWY_EXPORT(Symmetric3);
+void Symmetric3(const ImageF& in, const Rect& rect,
+ const WeightsSymmetric3& weights, ThreadPool* pool,
+ ImageF* out) {
+ return HWY_DYNAMIC_DISPATCH(Symmetric3)(in, rect, weights, pool, out);
+}
+
+} // namespace jxl
+#endif // HWY_ONCE