diff options
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/enc_frame.cc')
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/enc_frame.cc | 2197 |
1 files changed, 2197 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/enc_frame.cc b/third_party/jpeg-xl/lib/jxl/enc_frame.cc new file mode 100644 index 0000000000..aae59c49a6 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/enc_frame.cc @@ -0,0 +1,2197 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/enc_frame.h" + +#include <stddef.h> +#include <stdint.h> + +#include <algorithm> +#include <array> +#include <atomic> +#include <cmath> +#include <limits> +#include <numeric> +#include <vector> + +#include "lib/jxl/ac_context.h" +#include "lib/jxl/ac_strategy.h" +#include "lib/jxl/ans_params.h" +#include "lib/jxl/base/bits.h" +#include "lib/jxl/base/common.h" +#include "lib/jxl/base/compiler_specific.h" +#include "lib/jxl/base/data_parallel.h" +#include "lib/jxl/base/override.h" +#include "lib/jxl/base/printf_macros.h" +#include "lib/jxl/base/status.h" +#include "lib/jxl/chroma_from_luma.h" +#include "lib/jxl/coeff_order.h" +#include "lib/jxl/coeff_order_fwd.h" +#include "lib/jxl/color_encoding_internal.h" +#include "lib/jxl/common.h" // kMaxNumPasses +#include "lib/jxl/compressed_dc.h" +#include "lib/jxl/dct_util.h" +#include "lib/jxl/dec_external_image.h" +#include "lib/jxl/enc_ac_strategy.h" +#include "lib/jxl/enc_adaptive_quantization.h" +#include "lib/jxl/enc_ans.h" +#include "lib/jxl/enc_ar_control_field.h" +#include "lib/jxl/enc_aux_out.h" +#include "lib/jxl/enc_bit_writer.h" +#include "lib/jxl/enc_cache.h" +#include "lib/jxl/enc_chroma_from_luma.h" +#include "lib/jxl/enc_coeff_order.h" +#include "lib/jxl/enc_context_map.h" +#include "lib/jxl/enc_entropy_coder.h" +#include "lib/jxl/enc_external_image.h" +#include "lib/jxl/enc_fields.h" +#include "lib/jxl/enc_gaborish.h" +#include "lib/jxl/enc_group.h" +#include "lib/jxl/enc_heuristics.h" +#include "lib/jxl/enc_modular.h" +#include "lib/jxl/enc_noise.h" +#include "lib/jxl/enc_params.h" +#include "lib/jxl/enc_patch_dictionary.h" +#include "lib/jxl/enc_photon_noise.h" +#include "lib/jxl/enc_quant_weights.h" +#include "lib/jxl/enc_splines.h" +#include "lib/jxl/enc_toc.h" +#include "lib/jxl/enc_xyb.h" +#include "lib/jxl/fields.h" +#include "lib/jxl/frame_dimensions.h" +#include "lib/jxl/frame_header.h" +#include "lib/jxl/image.h" +#include "lib/jxl/image_bundle.h" +#include "lib/jxl/image_ops.h" +#include "lib/jxl/jpeg/enc_jpeg_data.h" +#include "lib/jxl/loop_filter.h" +#include "lib/jxl/modular/options.h" +#include "lib/jxl/quant_weights.h" +#include "lib/jxl/quantizer.h" +#include "lib/jxl/splines.h" +#include "lib/jxl/toc.h" + +namespace jxl { + +Status ParamsPostInit(CompressParams* p) { + if (!p->manual_noise.empty() && + p->manual_noise.size() != NoiseParams::kNumNoisePoints) { + return JXL_FAILURE("Invalid number of noise lut entries"); + } + if (!p->manual_xyb_factors.empty() && p->manual_xyb_factors.size() != 3) { + return JXL_FAILURE("Invalid number of XYB quantization factors"); + } + if (!p->modular_mode && p->butteraugli_distance == 0.0) { + p->butteraugli_distance = kMinButteraugliDistance; + } + if (p->original_butteraugli_distance == -1.0) { + p->original_butteraugli_distance = p->butteraugli_distance; + } + if (p->resampling <= 0) { + p->resampling = 1; + // For very low bit rates, using 2x2 resampling gives better results on + // most photographic images, with an adjusted butteraugli score chosen to + // give roughly the same amount of bits per pixel. + if (!p->already_downsampled && p->butteraugli_distance >= 20) { + p->resampling = 2; + p->butteraugli_distance = 6 + ((p->butteraugli_distance - 20) * 0.25); + } + } + if (p->ec_resampling <= 0) { + p->ec_resampling = p->resampling; + } + return true; +} + +namespace { + +template <typename T> +uint32_t GetBitDepth(JxlBitDepth bit_depth, const T& metadata, + JxlPixelFormat format) { + if (bit_depth.type == JXL_BIT_DEPTH_FROM_PIXEL_FORMAT) { + return BitsPerChannel(format.data_type); + } else if (bit_depth.type == JXL_BIT_DEPTH_FROM_CODESTREAM) { + return metadata.bit_depth.bits_per_sample; + } else if (bit_depth.type == JXL_BIT_DEPTH_CUSTOM) { + return bit_depth.bits_per_sample; + } else { + return 0; + } +} + +Status CopyColorChannels(JxlChunkedFrameInputSource input, Rect rect, + const FrameInfo& frame_info, + const ImageMetadata& metadata, ThreadPool* pool, + Image3F* color, ImageF* alpha, + bool* has_interleaved_alpha) { + JxlPixelFormat format = {4, JXL_TYPE_UINT8, JXL_NATIVE_ENDIAN, 0}; + input.get_color_channels_pixel_format(input.opaque, &format); + *has_interleaved_alpha = format.num_channels == 2 || format.num_channels == 4; + size_t bits_per_sample = + GetBitDepth(frame_info.image_bit_depth, metadata, format); + size_t row_offset; + auto buffer = GetColorBuffer(input, rect.x0(), rect.y0(), rect.xsize(), + rect.ysize(), &row_offset); + if (!buffer) { + return JXL_FAILURE("no buffer for color channels given"); + } + size_t color_channels = frame_info.ib_needs_color_transform + ? metadata.color_encoding.Channels() + : 3; + if (format.num_channels < color_channels) { + return JXL_FAILURE("Expected %" PRIuS + " color channels, received only %u channels", + color_channels, format.num_channels); + } + const uint8_t* data = reinterpret_cast<const uint8_t*>(buffer.get()); + for (size_t c = 0; c < color_channels; ++c) { + JXL_RETURN_IF_ERROR(ConvertFromExternalNoSizeCheck( + data, rect.xsize(), rect.ysize(), row_offset, bits_per_sample, format, + c, pool, &color->Plane(c))); + } + if (color_channels == 1) { + CopyImageTo(color->Plane(0), &color->Plane(1)); + CopyImageTo(color->Plane(0), &color->Plane(2)); + } + if (alpha) { + if (*has_interleaved_alpha) { + JXL_RETURN_IF_ERROR(ConvertFromExternalNoSizeCheck( + data, rect.xsize(), rect.ysize(), row_offset, bits_per_sample, format, + format.num_channels - 1, pool, alpha)); + } else { + // if alpha is not passed, but it is expected, then assume + // it is all-opaque + FillImage(1.0f, alpha); + } + } + return true; +} + +Status CopyExtraChannels(JxlChunkedFrameInputSource input, Rect rect, + const FrameInfo& frame_info, + const ImageMetadata& metadata, + bool has_interleaved_alpha, ThreadPool* pool, + std::vector<ImageF>* extra_channels) { + for (size_t ec = 0; ec < metadata.num_extra_channels; ec++) { + if (has_interleaved_alpha && + metadata.extra_channel_info[ec].type == ExtraChannel::kAlpha) { + // Skip this alpha channel, but still request additional alpha channels + // if they exist. + has_interleaved_alpha = false; + continue; + } + JxlPixelFormat ec_format = {1, JXL_TYPE_UINT8, JXL_NATIVE_ENDIAN, 0}; + input.get_extra_channel_pixel_format(input.opaque, ec, &ec_format); + ec_format.num_channels = 1; + size_t row_offset; + auto buffer = + GetExtraChannelBuffer(input, ec, rect.x0(), rect.y0(), rect.xsize(), + rect.ysize(), &row_offset); + if (!buffer) { + return JXL_FAILURE("no buffer for extra channel given"); + } + size_t bits_per_sample = GetBitDepth( + frame_info.image_bit_depth, metadata.extra_channel_info[ec], ec_format); + if (!ConvertFromExternalNoSizeCheck( + reinterpret_cast<const uint8_t*>(buffer.get()), rect.xsize(), + rect.ysize(), row_offset, bits_per_sample, ec_format, 0, pool, + &(*extra_channels)[ec])) { + return JXL_FAILURE("Failed to set buffer for extra channel"); + } + } + return true; +} + +void SetProgressiveMode(const CompressParams& cparams, + ProgressiveSplitter* progressive_splitter) { + constexpr PassDefinition progressive_passes_dc_vlf_lf_full_ac[] = { + {/*num_coefficients=*/2, /*shift=*/0, + /*suitable_for_downsampling_of_at_least=*/4}, + {/*num_coefficients=*/3, /*shift=*/0, + /*suitable_for_downsampling_of_at_least=*/2}, + {/*num_coefficients=*/8, /*shift=*/0, + /*suitable_for_downsampling_of_at_least=*/0}, + }; + constexpr PassDefinition progressive_passes_dc_quant_ac_full_ac[] = { + {/*num_coefficients=*/8, /*shift=*/1, + /*suitable_for_downsampling_of_at_least=*/2}, + {/*num_coefficients=*/8, /*shift=*/0, + /*suitable_for_downsampling_of_at_least=*/0}, + }; + bool progressive_mode = ApplyOverride(cparams.progressive_mode, false); + bool qprogressive_mode = ApplyOverride(cparams.qprogressive_mode, false); + if (cparams.custom_progressive_mode) { + progressive_splitter->SetProgressiveMode(*cparams.custom_progressive_mode); + } else if (qprogressive_mode) { + progressive_splitter->SetProgressiveMode( + ProgressiveMode{progressive_passes_dc_quant_ac_full_ac}); + } else if (progressive_mode) { + progressive_splitter->SetProgressiveMode( + ProgressiveMode{progressive_passes_dc_vlf_lf_full_ac}); + } +} + +uint64_t FrameFlagsFromParams(const CompressParams& cparams) { + uint64_t flags = 0; + + const float dist = cparams.butteraugli_distance; + + // We don't add noise at low butteraugli distances because the original + // noise is stored within the compressed image and adding noise makes things + // worse. + if (ApplyOverride(cparams.noise, dist >= kMinButteraugliForNoise) || + cparams.photon_noise_iso > 0 || + cparams.manual_noise.size() == NoiseParams::kNumNoisePoints) { + flags |= FrameHeader::kNoise; + } + + if (cparams.progressive_dc > 0 && cparams.modular_mode == false) { + flags |= FrameHeader::kUseDcFrame; + } + + return flags; +} + +Status LoopFilterFromParams(const CompressParams& cparams, bool streaming_mode, + FrameHeader* JXL_RESTRICT frame_header) { + LoopFilter* loop_filter = &frame_header->loop_filter; + + // Gaborish defaults to enabled in Hare or slower. + loop_filter->gab = ApplyOverride( + cparams.gaborish, cparams.speed_tier <= SpeedTier::kHare && + frame_header->encoding == FrameEncoding::kVarDCT && + cparams.decoding_speed_tier < 4); + + if (cparams.epf != -1) { + loop_filter->epf_iters = cparams.epf; + } else { + if (frame_header->encoding == FrameEncoding::kModular) { + loop_filter->epf_iters = 0; + } else { + constexpr float kThresholds[3] = {0.7, 1.5, 4.0}; + loop_filter->epf_iters = 0; + if (cparams.decoding_speed_tier < 3) { + for (size_t i = cparams.decoding_speed_tier == 2 ? 1 : 0; i < 3; i++) { + if (cparams.butteraugli_distance >= kThresholds[i]) { + loop_filter->epf_iters++; + } + } + } + } + } + // Strength of EPF in modular mode. + if (frame_header->encoding == FrameEncoding::kModular && + !cparams.IsLossless()) { + // TODO(veluca): this formula is nonsense. + loop_filter->epf_sigma_for_modular = cparams.butteraugli_distance; + } + if (frame_header->encoding == FrameEncoding::kModular && + cparams.lossy_palette) { + loop_filter->epf_sigma_for_modular = 1.0f; + } + + return true; +} + +Status MakeFrameHeader(size_t xsize, size_t ysize, + const CompressParams& cparams, + const ProgressiveSplitter& progressive_splitter, + const FrameInfo& frame_info, + const jpeg::JPEGData* jpeg_data, bool streaming_mode, + FrameHeader* JXL_RESTRICT frame_header) { + frame_header->nonserialized_is_preview = frame_info.is_preview; + frame_header->is_last = frame_info.is_last; + frame_header->save_before_color_transform = + frame_info.save_before_color_transform; + frame_header->frame_type = frame_info.frame_type; + frame_header->name = frame_info.name; + + progressive_splitter.InitPasses(&frame_header->passes); + + if (cparams.modular_mode) { + frame_header->encoding = FrameEncoding::kModular; + if (cparams.modular_group_size_shift == -1) { + frame_header->group_size_shift = 1; + // no point using groups when only one group is full and the others are + // less than half full: multithreading will not really help much, while + // compression does suffer + if (xsize <= 400 && ysize <= 400) { + frame_header->group_size_shift = 2; + } + } else { + frame_header->group_size_shift = cparams.modular_group_size_shift; + } + } + + if (jpeg_data) { + // we are transcoding a JPEG, so we don't get to choose + frame_header->encoding = FrameEncoding::kVarDCT; + frame_header->x_qm_scale = 2; + frame_header->b_qm_scale = 2; + JXL_RETURN_IF_ERROR(SetChromaSubsamplingFromJpegData( + *jpeg_data, &frame_header->chroma_subsampling)); + JXL_RETURN_IF_ERROR(SetColorTransformFromJpegData( + *jpeg_data, &frame_header->color_transform)); + } else { + frame_header->color_transform = cparams.color_transform; + if (!cparams.modular_mode && + (frame_header->chroma_subsampling.MaxHShift() != 0 || + frame_header->chroma_subsampling.MaxVShift() != 0)) { + return JXL_FAILURE( + "Chroma subsampling is not supported in VarDCT mode when not " + "recompressing JPEGs"); + } + } + if (frame_header->color_transform != ColorTransform::kYCbCr && + (frame_header->chroma_subsampling.MaxHShift() != 0 || + frame_header->chroma_subsampling.MaxVShift() != 0)) { + return JXL_FAILURE( + "Chroma subsampling is not supported when color transform is not " + "YCbCr"); + } + + frame_header->flags = FrameFlagsFromParams(cparams); + // Non-photon noise is not supported in the Modular encoder for now. + if (frame_header->encoding != FrameEncoding::kVarDCT && + cparams.photon_noise_iso == 0 && cparams.manual_noise.empty()) { + frame_header->UpdateFlag(false, FrameHeader::Flags::kNoise); + } + + JXL_RETURN_IF_ERROR( + LoopFilterFromParams(cparams, streaming_mode, frame_header)); + + frame_header->dc_level = frame_info.dc_level; + if (frame_header->dc_level > 2) { + // With 3 or more progressive_dc frames, the implementation does not yet + // work, see enc_cache.cc. + return JXL_FAILURE("progressive_dc > 2 is not yet supported"); + } + if (cparams.progressive_dc > 0 && + (cparams.ec_resampling != 1 || cparams.resampling != 1)) { + return JXL_FAILURE("Resampling not supported with DC frames"); + } + if (cparams.resampling != 1 && cparams.resampling != 2 && + cparams.resampling != 4 && cparams.resampling != 8) { + return JXL_FAILURE("Invalid resampling factor"); + } + if (cparams.ec_resampling != 1 && cparams.ec_resampling != 2 && + cparams.ec_resampling != 4 && cparams.ec_resampling != 8) { + return JXL_FAILURE("Invalid ec_resampling factor"); + } + // Resized frames. + if (frame_info.frame_type != FrameType::kDCFrame) { + frame_header->frame_origin = frame_info.origin; + size_t ups = 1; + if (cparams.already_downsampled) ups = cparams.resampling; + + // TODO(lode): this is not correct in case of odd original image sizes in + // combination with cparams.already_downsampled. Likely these values should + // be set to respectively frame_header->default_xsize() and + // frame_header->default_ysize() instead, the original (non downsampled) + // intended decoded image dimensions. But it may be more subtle than that + // if combined with crop. This issue causes custom_size_or_origin to be + // incorrectly set to true in case of already_downsampled with odd output + // image size when no cropping is used. + frame_header->frame_size.xsize = xsize * ups; + frame_header->frame_size.ysize = ysize * ups; + if (frame_info.origin.x0 != 0 || frame_info.origin.y0 != 0 || + frame_header->frame_size.xsize != frame_header->default_xsize() || + frame_header->frame_size.ysize != frame_header->default_ysize()) { + frame_header->custom_size_or_origin = true; + } + } + // Upsampling. + frame_header->upsampling = cparams.resampling; + const std::vector<ExtraChannelInfo>& extra_channels = + frame_header->nonserialized_metadata->m.extra_channel_info; + frame_header->extra_channel_upsampling.clear(); + frame_header->extra_channel_upsampling.resize(extra_channels.size(), + cparams.ec_resampling); + frame_header->save_as_reference = frame_info.save_as_reference; + + // Set blending-related information. + if (frame_info.blend || frame_header->custom_size_or_origin) { + // Set blend_channel to the first alpha channel. These values are only + // encoded in case a blend mode involving alpha is used and there are more + // than one extra channels. + size_t index = 0; + if (frame_info.alpha_channel == -1) { + if (extra_channels.size() > 1) { + for (size_t i = 0; i < extra_channels.size(); i++) { + if (extra_channels[i].type == ExtraChannel::kAlpha) { + index = i; + break; + } + } + } + } else { + index = static_cast<size_t>(frame_info.alpha_channel); + JXL_ASSERT(index == 0 || index < extra_channels.size()); + } + frame_header->blending_info.alpha_channel = index; + frame_header->blending_info.mode = + frame_info.blend ? frame_info.blendmode : BlendMode::kReplace; + frame_header->blending_info.source = frame_info.source; + frame_header->blending_info.clamp = frame_info.clamp; + const auto& extra_channel_info = frame_info.extra_channel_blending_info; + for (size_t i = 0; i < extra_channels.size(); i++) { + if (i < extra_channel_info.size()) { + frame_header->extra_channel_blending_info[i] = extra_channel_info[i]; + } else { + frame_header->extra_channel_blending_info[i].alpha_channel = index; + BlendMode default_blend = frame_info.blendmode; + if (extra_channels[i].type != ExtraChannel::kBlack && i != index) { + // K needs to be blended, spot colors and other stuff gets added + default_blend = BlendMode::kAdd; + } + frame_header->extra_channel_blending_info[i].mode = + frame_info.blend ? default_blend : BlendMode::kReplace; + frame_header->extra_channel_blending_info[i].source = 1; + } + } + } + + frame_header->animation_frame.duration = frame_info.duration; + frame_header->animation_frame.timecode = frame_info.timecode; + + if (jpeg_data) { + frame_header->UpdateFlag(false, FrameHeader::kUseDcFrame); + frame_header->UpdateFlag(true, FrameHeader::kSkipAdaptiveDCSmoothing); + } + + return true; +} + +// Invisible (alpha = 0) pixels tend to be a mess in optimized PNGs. +// Since they have no visual impact whatsoever, we can replace them with +// something that compresses better and reduces artifacts near the edges. This +// does some kind of smooth stuff that seems to work. +// Replace invisible pixels with a weighted average of the pixel to the left, +// the pixel to the topright, and non-invisible neighbours. +// Produces downward-blurry smears, with in the upwards direction only a 1px +// edge duplication but not more. It would probably be better to smear in all +// directions. That requires an alpha-weighed convolution with a large enough +// kernel though, which might be overkill... +void SimplifyInvisible(Image3F* image, const ImageF& alpha, bool lossless) { + for (size_t c = 0; c < 3; ++c) { + for (size_t y = 0; y < image->ysize(); ++y) { + float* JXL_RESTRICT row = image->PlaneRow(c, y); + const float* JXL_RESTRICT prow = + (y > 0 ? image->PlaneRow(c, y - 1) : nullptr); + const float* JXL_RESTRICT nrow = + (y + 1 < image->ysize() ? image->PlaneRow(c, y + 1) : nullptr); + const float* JXL_RESTRICT a = alpha.Row(y); + const float* JXL_RESTRICT pa = (y > 0 ? alpha.Row(y - 1) : nullptr); + const float* JXL_RESTRICT na = + (y + 1 < image->ysize() ? alpha.Row(y + 1) : nullptr); + for (size_t x = 0; x < image->xsize(); ++x) { + if (a[x] == 0) { + if (lossless) { + row[x] = 0; + continue; + } + float d = 0.f; + row[x] = 0; + if (x > 0) { + row[x] += row[x - 1]; + d++; + if (a[x - 1] > 0.f) { + row[x] += row[x - 1]; + d++; + } + } + if (x + 1 < image->xsize()) { + if (y > 0) { + row[x] += prow[x + 1]; + d++; + } + if (a[x + 1] > 0.f) { + row[x] += 2.f * row[x + 1]; + d += 2.f; + } + if (y > 0 && pa[x + 1] > 0.f) { + row[x] += 2.f * prow[x + 1]; + d += 2.f; + } + if (y + 1 < image->ysize() && na[x + 1] > 0.f) { + row[x] += 2.f * nrow[x + 1]; + d += 2.f; + } + } + if (y > 0 && pa[x] > 0.f) { + row[x] += 2.f * prow[x]; + d += 2.f; + } + if (y + 1 < image->ysize() && na[x] > 0.f) { + row[x] += 2.f * nrow[x]; + d += 2.f; + } + if (d > 1.f) row[x] /= d; + } + } + } + } +} + +struct PixelStatsForChromacityAdjustment { + float dx = 0; + float db = 0; + float exposed_blue = 0; + float CalcPlane(const ImageF* JXL_RESTRICT plane, const Rect& rect) const { + float xmax = 0; + float ymax = 0; + for (size_t ty = 1; ty < rect.ysize(); ++ty) { + for (size_t tx = 1; tx < rect.xsize(); ++tx) { + float cur = rect.Row(plane, ty)[tx]; + float prev_row = rect.Row(plane, ty - 1)[tx]; + float prev = rect.Row(plane, ty)[tx - 1]; + xmax = std::max(xmax, std::abs(cur - prev)); + ymax = std::max(ymax, std::abs(cur - prev_row)); + } + } + return std::max(xmax, ymax); + } + void CalcExposedBlue(const ImageF* JXL_RESTRICT plane_y, + const ImageF* JXL_RESTRICT plane_b, const Rect& rect) { + float eb = 0; + float xmax = 0; + float ymax = 0; + for (size_t ty = 1; ty < rect.ysize(); ++ty) { + for (size_t tx = 1; tx < rect.xsize(); ++tx) { + float cur_y = rect.Row(plane_y, ty)[tx]; + float cur_b = rect.Row(plane_b, ty)[tx]; + float exposed_b = cur_b - cur_y * 1.2; + float diff_b = cur_b - cur_y; + float prev_row = rect.Row(plane_b, ty - 1)[tx]; + float prev = rect.Row(plane_b, ty)[tx - 1]; + float diff_prev_row = prev_row - rect.Row(plane_y, ty - 1)[tx]; + float diff_prev = prev - rect.Row(plane_y, ty)[tx - 1]; + xmax = std::max(xmax, std::abs(diff_b - diff_prev)); + ymax = std::max(ymax, std::abs(diff_b - diff_prev_row)); + if (exposed_b >= 0) { + exposed_b *= fabs(cur_b - prev) + fabs(cur_b - prev_row); + eb = std::max(eb, exposed_b); + } + } + } + exposed_blue = eb; + db = std::max(xmax, ymax); + } + void Calc(const Image3F* JXL_RESTRICT opsin, const Rect& rect) { + dx = CalcPlane(&opsin->Plane(0), rect); + CalcExposedBlue(&opsin->Plane(1), &opsin->Plane(2), rect); + } + int HowMuchIsXChannelPixelized() { + if (dx >= 0.03) { + return 2; + } + if (dx >= 0.017) { + return 1; + } + return 0; + } + int HowMuchIsBChannelPixelized() { + int add = exposed_blue >= 0.13 ? 1 : 0; + if (db > 0.38) { + return 2 + add; + } + if (db > 0.33) { + return 1 + add; + } + if (db > 0.28) { + return add; + } + return 0; + } +}; + +void ComputeChromacityAdjustments(const CompressParams& cparams, + const Image3F& opsin, const Rect& rect, + FrameHeader* frame_header) { + if (frame_header->encoding != FrameEncoding::kVarDCT || + cparams.max_error_mode) { + return; + } + // 1) Distance based approach for chromacity adjustment: + float x_qm_scale_steps[4] = {1.25f, 7.0f, 15.0f, 24.0f}; + frame_header->x_qm_scale = 2; + for (float x_qm_scale_step : x_qm_scale_steps) { + if (cparams.original_butteraugli_distance > x_qm_scale_step) { + frame_header->x_qm_scale++; + } + } + if (cparams.butteraugli_distance < 0.299f) { + // Favor chromacity preservation for making images appear more + // faithful to original even with extreme (5-10x) zooming. + frame_header->x_qm_scale++; + } + // 2) Pixel-based approach for chromacity adjustment: + // look at the individual pixels and make a guess how difficult + // the image would be based on the worst case pixel. + PixelStatsForChromacityAdjustment pixel_stats; + if (cparams.speed_tier <= SpeedTier::kSquirrel) { + pixel_stats.Calc(&opsin, rect); + } + // For X take the most severe adjustment. + frame_header->x_qm_scale = std::max<int>( + frame_header->x_qm_scale, 2 + pixel_stats.HowMuchIsXChannelPixelized()); + // B only adjusted by pixel-based approach. + frame_header->b_qm_scale = 2 + pixel_stats.HowMuchIsBChannelPixelized(); +} + +void ComputeNoiseParams(const CompressParams& cparams, bool streaming_mode, + bool color_is_jpeg, const Image3F& opsin, + const FrameDimensions& frame_dim, + FrameHeader* frame_header, NoiseParams* noise_params) { + if (cparams.photon_noise_iso > 0) { + *noise_params = SimulatePhotonNoise(frame_dim.xsize, frame_dim.ysize, + cparams.photon_noise_iso); + } else if (cparams.manual_noise.size() == NoiseParams::kNumNoisePoints) { + for (size_t i = 0; i < NoiseParams::kNumNoisePoints; i++) { + noise_params->lut[i] = cparams.manual_noise[i]; + } + } else if (frame_header->encoding == FrameEncoding::kVarDCT && + frame_header->flags & FrameHeader::kNoise && !color_is_jpeg && + !streaming_mode) { + // Don't start at zero amplitude since adding noise is expensive -- it + // significantly slows down decoding, and this is unlikely to + // completely go away even with advanced optimizations. After the + // kNoiseModelingRampUpDistanceRange we have reached the full level, + // i.e. noise is no longer represented by the compressed image, so we + // can add full noise by the noise modeling itself. + static const float kNoiseModelingRampUpDistanceRange = 0.6; + static const float kNoiseLevelAtStartOfRampUp = 0.25; + static const float kNoiseRampupStart = 1.0; + // TODO(user) test and properly select quality_coef with smooth + // filter + float quality_coef = 1.0f; + const float rampup = (cparams.butteraugli_distance - kNoiseRampupStart) / + kNoiseModelingRampUpDistanceRange; + if (rampup < 1.0f) { + quality_coef = kNoiseLevelAtStartOfRampUp + + (1.0f - kNoiseLevelAtStartOfRampUp) * rampup; + } + if (rampup < 0.0f) { + quality_coef = kNoiseRampupStart; + } + if (!GetNoiseParameter(opsin, noise_params, quality_coef)) { + frame_header->flags &= ~FrameHeader::kNoise; + } + } +} + +void DownsampleColorChannels(const CompressParams& cparams, + const FrameHeader& frame_header, + bool color_is_jpeg, Image3F* opsin) { + if (color_is_jpeg || frame_header.upsampling == 1 || + cparams.already_downsampled) { + return; + } + if (frame_header.encoding == FrameEncoding::kVarDCT && + frame_header.upsampling == 2) { + // TODO(lode): use the regular DownsampleImage, or adapt to the custom + // coefficients, if there is are custom upscaling coefficients in + // CustomTransformData + if (cparams.speed_tier <= SpeedTier::kSquirrel) { + // TODO(lode): DownsampleImage2_Iterative is currently too slow to + // be used for squirrel, make it faster, and / or enable it only for + // kitten. + DownsampleImage2_Iterative(opsin); + } else { + DownsampleImage2_Sharper(opsin); + } + } else { + DownsampleImage(opsin, frame_header.upsampling); + } + if (frame_header.encoding == FrameEncoding::kVarDCT) { + PadImageToBlockMultipleInPlace(opsin); + } +} + +template <typename V, typename R> +void FindIndexOfSumMaximum(const V* array, const size_t len, R* idx, V* sum) { + JXL_ASSERT(len > 0); + V maxval = 0; + V val = 0; + R maxidx = 0; + for (size_t i = 0; i < len; ++i) { + val += array[i]; + if (val > maxval) { + maxval = val; + maxidx = i; + } + } + *idx = maxidx; + *sum = maxval; +} + +Status ComputeJPEGTranscodingData(const jpeg::JPEGData& jpeg_data, + const FrameHeader& frame_header, + ThreadPool* pool, + ModularFrameEncoder* enc_modular, + PassesEncoderState* enc_state) { + PassesSharedState& shared = enc_state->shared; + const FrameDimensions& frame_dim = shared.frame_dim; + + const size_t xsize = frame_dim.xsize_padded; + const size_t ysize = frame_dim.ysize_padded; + const size_t xsize_blocks = frame_dim.xsize_blocks; + const size_t ysize_blocks = frame_dim.ysize_blocks; + + // no-op chroma from luma + shared.cmap = ColorCorrelationMap(xsize, ysize, false); + shared.ac_strategy.FillDCT8(); + FillImage(uint8_t(0), &shared.epf_sharpness); + + enc_state->coeffs.clear(); + while (enc_state->coeffs.size() < enc_state->passes.size()) { + enc_state->coeffs.emplace_back(make_unique<ACImageT<int32_t>>( + kGroupDim * kGroupDim, frame_dim.num_groups)); + } + + // convert JPEG quantization table to a Quantizer object + float dcquantization[3]; + std::vector<QuantEncoding> qe(DequantMatrices::kNum, + QuantEncoding::Library(0)); + + auto jpeg_c_map = + JpegOrder(frame_header.color_transform, jpeg_data.components.size() == 1); + + std::vector<int> qt(192); + for (size_t c = 0; c < 3; c++) { + size_t jpeg_c = jpeg_c_map[c]; + const int32_t* quant = + jpeg_data.quant[jpeg_data.components[jpeg_c].quant_idx].values.data(); + + dcquantization[c] = 255 * 8.0f / quant[0]; + for (size_t y = 0; y < 8; y++) { + for (size_t x = 0; x < 8; x++) { + // JPEG XL transposes the DCT, JPEG doesn't. + qt[c * 64 + 8 * x + y] = quant[8 * y + x]; + } + } + } + DequantMatricesSetCustomDC(&shared.matrices, dcquantization); + float dcquantization_r[3] = {1.0f / dcquantization[0], + 1.0f / dcquantization[1], + 1.0f / dcquantization[2]}; + + qe[AcStrategy::Type::DCT] = QuantEncoding::RAW(qt); + DequantMatricesSetCustom(&shared.matrices, qe, enc_modular); + + // Ensure that InvGlobalScale() is 1. + shared.quantizer = Quantizer(&shared.matrices, 1, kGlobalScaleDenom); + // Recompute MulDC() and InvMulDC(). + shared.quantizer.RecomputeFromGlobalScale(); + + // Per-block dequant scaling should be 1. + FillImage(static_cast<int32_t>(shared.quantizer.InvGlobalScale()), + &shared.raw_quant_field); + + std::vector<int32_t> scaled_qtable(192); + for (size_t c = 0; c < 3; c++) { + for (size_t i = 0; i < 64; i++) { + scaled_qtable[64 * c + i] = + (1 << kCFLFixedPointPrecision) * qt[64 + i] / qt[64 * c + i]; + } + } + + auto jpeg_row = [&](size_t c, size_t y) { + return jpeg_data.components[jpeg_c_map[c]].coeffs.data() + + jpeg_data.components[jpeg_c_map[c]].width_in_blocks * kDCTBlockSize * + y; + }; + + bool DCzero = (frame_header.color_transform == ColorTransform::kYCbCr); + // Compute chroma-from-luma for AC (doesn't seem to be useful for DC) + if (frame_header.chroma_subsampling.Is444() && + enc_state->cparams.force_cfl_jpeg_recompression && + jpeg_data.components.size() == 3) { + for (size_t c : {0, 2}) { + ImageSB* map = (c == 0 ? &shared.cmap.ytox_map : &shared.cmap.ytob_map); + const float kScale = kDefaultColorFactor; + const int kOffset = 127; + const float kBase = + c == 0 ? shared.cmap.YtoXRatio(0) : shared.cmap.YtoBRatio(0); + const float kZeroThresh = + kScale * kZeroBiasDefault[c] * + 0.9999f; // just epsilon less for better rounding + + auto process_row = [&](const uint32_t task, const size_t thread) { + size_t ty = task; + int8_t* JXL_RESTRICT row_out = map->Row(ty); + for (size_t tx = 0; tx < map->xsize(); ++tx) { + const size_t y0 = ty * kColorTileDimInBlocks; + const size_t x0 = tx * kColorTileDimInBlocks; + const size_t y1 = std::min(frame_dim.ysize_blocks, + (ty + 1) * kColorTileDimInBlocks); + const size_t x1 = std::min(frame_dim.xsize_blocks, + (tx + 1) * kColorTileDimInBlocks); + int32_t d_num_zeros[257] = {0}; + // TODO(veluca): this needs SIMD + fixed point adaptation, and/or + // conversion to the new CfL algorithm. + for (size_t y = y0; y < y1; ++y) { + const int16_t* JXL_RESTRICT row_m = jpeg_row(1, y); + const int16_t* JXL_RESTRICT row_s = jpeg_row(c, y); + for (size_t x = x0; x < x1; ++x) { + for (size_t coeffpos = 1; coeffpos < kDCTBlockSize; coeffpos++) { + const float scaled_m = row_m[x * kDCTBlockSize + coeffpos] * + scaled_qtable[64 * c + coeffpos] * + (1.0f / (1 << kCFLFixedPointPrecision)); + const float scaled_s = + kScale * row_s[x * kDCTBlockSize + coeffpos] + + (kOffset - kBase * kScale) * scaled_m; + if (std::abs(scaled_m) > 1e-8f) { + float from, to; + if (scaled_m > 0) { + from = (scaled_s - kZeroThresh) / scaled_m; + to = (scaled_s + kZeroThresh) / scaled_m; + } else { + from = (scaled_s + kZeroThresh) / scaled_m; + to = (scaled_s - kZeroThresh) / scaled_m; + } + if (from < 0.0f) { + from = 0.0f; + } + if (to > 255.0f) { + to = 255.0f; + } + // Instead of clamping the both values + // we just check that range is sane. + if (from <= to) { + d_num_zeros[static_cast<int>(std::ceil(from))]++; + d_num_zeros[static_cast<int>(std::floor(to + 1))]--; + } + } + } + } + } + int best = 0; + int32_t best_sum = 0; + FindIndexOfSumMaximum(d_num_zeros, 256, &best, &best_sum); + int32_t offset_sum = 0; + for (int i = 0; i < 256; ++i) { + if (i <= kOffset) { + offset_sum += d_num_zeros[i]; + } + } + row_out[tx] = 0; + if (best_sum > offset_sum + 1) { + row_out[tx] = best - kOffset; + } + } + }; + + JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, map->ysize(), ThreadPool::NoInit, + process_row, "FindCorrelation")); + } + } + + Image3F dc = Image3F(xsize_blocks, ysize_blocks); + if (!frame_header.chroma_subsampling.Is444()) { + ZeroFillImage(&dc); + for (auto& coeff : enc_state->coeffs) { + coeff->ZeroFill(); + } + } + // JPEG DC is from -1024 to 1023. + std::vector<size_t> dc_counts[3] = {}; + dc_counts[0].resize(2048); + dc_counts[1].resize(2048); + dc_counts[2].resize(2048); + size_t total_dc[3] = {}; + for (size_t c : {1, 0, 2}) { + if (jpeg_data.components.size() == 1 && c != 1) { + for (auto& coeff : enc_state->coeffs) { + coeff->ZeroFillPlane(c); + } + ZeroFillImage(&dc.Plane(c)); + // Ensure no division by 0. + dc_counts[c][1024] = 1; + total_dc[c] = 1; + continue; + } + size_t hshift = frame_header.chroma_subsampling.HShift(c); + size_t vshift = frame_header.chroma_subsampling.VShift(c); + ImageSB& map = (c == 0 ? shared.cmap.ytox_map : shared.cmap.ytob_map); + for (size_t group_index = 0; group_index < frame_dim.num_groups; + group_index++) { + const size_t gx = group_index % frame_dim.xsize_groups; + const size_t gy = group_index / frame_dim.xsize_groups; + int32_t* coeffs[kMaxNumPasses]; + for (size_t i = 0; i < enc_state->coeffs.size(); i++) { + coeffs[i] = enc_state->coeffs[i]->PlaneRow(c, group_index, 0).ptr32; + } + int32_t block[64]; + for (size_t by = gy * kGroupDimInBlocks; + by < ysize_blocks && by < (gy + 1) * kGroupDimInBlocks; ++by) { + if ((by >> vshift) << vshift != by) continue; + const int16_t* JXL_RESTRICT inputjpeg = jpeg_row(c, by >> vshift); + const int16_t* JXL_RESTRICT inputjpegY = jpeg_row(1, by); + float* JXL_RESTRICT fdc = dc.PlaneRow(c, by >> vshift); + const int8_t* JXL_RESTRICT cm = + map.ConstRow(by / kColorTileDimInBlocks); + for (size_t bx = gx * kGroupDimInBlocks; + bx < xsize_blocks && bx < (gx + 1) * kGroupDimInBlocks; ++bx) { + if ((bx >> hshift) << hshift != bx) continue; + size_t base = (bx >> hshift) * kDCTBlockSize; + int idc; + if (DCzero) { + idc = inputjpeg[base]; + } else { + idc = inputjpeg[base] + 1024 / qt[c * 64]; + } + dc_counts[c][std::min(static_cast<uint32_t>(idc + 1024), + uint32_t(2047))]++; + total_dc[c]++; + fdc[bx >> hshift] = idc * dcquantization_r[c]; + if (c == 1 || !enc_state->cparams.force_cfl_jpeg_recompression || + !frame_header.chroma_subsampling.Is444()) { + for (size_t y = 0; y < 8; y++) { + for (size_t x = 0; x < 8; x++) { + block[y * 8 + x] = inputjpeg[base + x * 8 + y]; + } + } + } else { + const int32_t scale = + shared.cmap.RatioJPEG(cm[bx / kColorTileDimInBlocks]); + + for (size_t y = 0; y < 8; y++) { + for (size_t x = 0; x < 8; x++) { + int Y = inputjpegY[kDCTBlockSize * bx + x * 8 + y]; + int QChroma = inputjpeg[kDCTBlockSize * bx + x * 8 + y]; + // Fixed-point multiply of CfL scale with quant table ratio + // first, and Y value second. + int coeff_scale = (scale * scaled_qtable[64 * c + y * 8 + x] + + (1 << (kCFLFixedPointPrecision - 1))) >> + kCFLFixedPointPrecision; + int cfl_factor = + (Y * coeff_scale + (1 << (kCFLFixedPointPrecision - 1))) >> + kCFLFixedPointPrecision; + int QCR = QChroma - cfl_factor; + block[y * 8 + x] = QCR; + } + } + } + enc_state->progressive_splitter.SplitACCoefficients( + block, AcStrategy::FromRawStrategy(AcStrategy::Type::DCT), bx, by, + coeffs); + for (size_t i = 0; i < enc_state->coeffs.size(); i++) { + coeffs[i] += kDCTBlockSize; + } + } + } + } + } + + auto& dct = enc_state->shared.block_ctx_map.dc_thresholds; + auto& num_dc_ctxs = enc_state->shared.block_ctx_map.num_dc_ctxs; + num_dc_ctxs = 1; + for (size_t i = 0; i < 3; i++) { + dct[i].clear(); + int num_thresholds = (CeilLog2Nonzero(total_dc[i]) - 12) / 2; + // up to 3 buckets per channel: + // dark/medium/bright, yellow/unsat/blue, green/unsat/red + num_thresholds = std::min(std::max(num_thresholds, 0), 2); + size_t cumsum = 0; + size_t cut = total_dc[i] / (num_thresholds + 1); + for (int j = 0; j < 2048; j++) { + cumsum += dc_counts[i][j]; + if (cumsum > cut) { + dct[i].push_back(j - 1025); + cut = total_dc[i] * (dct[i].size() + 1) / (num_thresholds + 1); + } + } + num_dc_ctxs *= dct[i].size() + 1; + } + + auto& ctx_map = enc_state->shared.block_ctx_map.ctx_map; + ctx_map.clear(); + ctx_map.resize(3 * kNumOrders * num_dc_ctxs, 0); + + int lbuckets = (dct[1].size() + 1); + for (size_t i = 0; i < num_dc_ctxs; i++) { + // up to 9 contexts for luma + ctx_map[i] = i / lbuckets; + // up to 3 contexts for chroma + ctx_map[kNumOrders * num_dc_ctxs + i] = + ctx_map[2 * kNumOrders * num_dc_ctxs + i] = + num_dc_ctxs / lbuckets + (i % lbuckets); + } + enc_state->shared.block_ctx_map.num_ctxs = + *std::max_element(ctx_map.begin(), ctx_map.end()) + 1; + + // disable DC frame for now + auto compute_dc_coeffs = [&](const uint32_t group_index, + size_t /* thread */) { + const Rect r = enc_state->shared.frame_dim.DCGroupRect(group_index); + enc_modular->AddVarDCTDC(frame_header, dc, r, group_index, + /*nl_dc=*/false, enc_state, + /*jpeg_transcode=*/true); + enc_modular->AddACMetadata(r, group_index, /*jpeg_transcode=*/true, + enc_state); + }; + JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, shared.frame_dim.num_dc_groups, + ThreadPool::NoInit, compute_dc_coeffs, + "Compute DC coeffs")); + + return true; +} + +Status ComputeVarDCTEncodingData(const FrameHeader& frame_header, + const Image3F* linear, + Image3F* JXL_RESTRICT opsin, const Rect& rect, + const JxlCmsInterface& cms, ThreadPool* pool, + ModularFrameEncoder* enc_modular, + PassesEncoderState* enc_state, + AuxOut* aux_out) { + JXL_ASSERT((rect.xsize() % kBlockDim) == 0 && + (rect.ysize() % kBlockDim) == 0); + JXL_RETURN_IF_ERROR(LossyFrameHeuristics(frame_header, enc_state, enc_modular, + linear, opsin, rect, cms, pool, + aux_out)); + + JXL_RETURN_IF_ERROR(InitializePassesEncoder( + frame_header, *opsin, rect, cms, pool, enc_state, enc_modular, aux_out)); + return true; +} + +void ComputeAllCoeffOrders(PassesEncoderState& enc_state, + const FrameDimensions& frame_dim) { + auto used_orders_info = ComputeUsedOrders( + enc_state.cparams.speed_tier, enc_state.shared.ac_strategy, + Rect(enc_state.shared.raw_quant_field)); + enc_state.used_orders.resize(enc_state.progressive_splitter.GetNumPasses()); + for (size_t i = 0; i < enc_state.progressive_splitter.GetNumPasses(); i++) { + ComputeCoeffOrder( + enc_state.cparams.speed_tier, *enc_state.coeffs[i], + enc_state.shared.ac_strategy, frame_dim, enc_state.used_orders[i], + enc_state.used_acs, used_orders_info.first, used_orders_info.second, + &enc_state.shared.coeff_orders[i * enc_state.shared.coeff_order_size]); + } + enc_state.used_acs |= used_orders_info.first; +} + +// Working area for TokenizeCoefficients (per-group!) +struct EncCache { + // Allocates memory when first called. + void InitOnce() { + if (num_nzeroes.xsize() == 0) { + num_nzeroes = Image3I(kGroupDimInBlocks, kGroupDimInBlocks); + } + } + // TokenizeCoefficients + Image3I num_nzeroes; +}; + +Status TokenizeAllCoefficients(const FrameHeader& frame_header, + ThreadPool* pool, + PassesEncoderState* enc_state) { + PassesSharedState& shared = enc_state->shared; + std::vector<EncCache> group_caches; + const auto tokenize_group_init = [&](const size_t num_threads) { + group_caches.resize(num_threads); + return true; + }; + const auto tokenize_group = [&](const uint32_t group_index, + const size_t thread) { + // Tokenize coefficients. + const Rect rect = shared.frame_dim.BlockGroupRect(group_index); + for (size_t idx_pass = 0; idx_pass < enc_state->passes.size(); idx_pass++) { + JXL_ASSERT(enc_state->coeffs[idx_pass]->Type() == ACType::k32); + const int32_t* JXL_RESTRICT ac_rows[3] = { + enc_state->coeffs[idx_pass]->PlaneRow(0, group_index, 0).ptr32, + enc_state->coeffs[idx_pass]->PlaneRow(1, group_index, 0).ptr32, + enc_state->coeffs[idx_pass]->PlaneRow(2, group_index, 0).ptr32, + }; + // Ensure group cache is initialized. + group_caches[thread].InitOnce(); + TokenizeCoefficients( + &shared.coeff_orders[idx_pass * shared.coeff_order_size], rect, + ac_rows, shared.ac_strategy, frame_header.chroma_subsampling, + &group_caches[thread].num_nzeroes, + &enc_state->passes[idx_pass].ac_tokens[group_index], shared.quant_dc, + shared.raw_quant_field, shared.block_ctx_map); + } + }; + return RunOnPool(pool, 0, shared.frame_dim.num_groups, tokenize_group_init, + tokenize_group, "TokenizeGroup"); +} + +Status EncodeGlobalDCInfo(const PassesSharedState& shared, BitWriter* writer, + AuxOut* aux_out) { + // Encode quantizer DC and global scale. + QuantizerParams params = shared.quantizer.GetParams(); + JXL_RETURN_IF_ERROR( + WriteQuantizerParams(params, writer, kLayerQuant, aux_out)); + EncodeBlockCtxMap(shared.block_ctx_map, writer, aux_out); + ColorCorrelationMapEncodeDC(shared.cmap, writer, kLayerDC, aux_out); + return true; +} + +// In streaming mode, this function only performs the histogram clustering and +// saves the histogram bitstreams in enc_state, the actual AC global bitstream +// is written in OutputAcGlobal() function after all the groups are processed. +Status EncodeGlobalACInfo(PassesEncoderState* enc_state, BitWriter* writer, + ModularFrameEncoder* enc_modular, AuxOut* aux_out) { + PassesSharedState& shared = enc_state->shared; + JXL_RETURN_IF_ERROR(DequantMatricesEncode(shared.matrices, writer, + kLayerQuant, aux_out, enc_modular)); + size_t num_histo_bits = CeilLog2Nonzero(shared.frame_dim.num_groups); + if (!enc_state->streaming_mode && num_histo_bits != 0) { + BitWriter::Allotment allotment(writer, num_histo_bits); + writer->Write(num_histo_bits, shared.num_histograms - 1); + allotment.ReclaimAndCharge(writer, kLayerAC, aux_out); + } + + for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses(); i++) { + // Encode coefficient orders. + if (!enc_state->streaming_mode) { + size_t order_bits = 0; + JXL_RETURN_IF_ERROR(U32Coder::CanEncode( + kOrderEnc, enc_state->used_orders[i], &order_bits)); + BitWriter::Allotment allotment(writer, order_bits); + JXL_CHECK(U32Coder::Write(kOrderEnc, enc_state->used_orders[i], writer)); + allotment.ReclaimAndCharge(writer, kLayerOrder, aux_out); + EncodeCoeffOrders(enc_state->used_orders[i], + &shared.coeff_orders[i * shared.coeff_order_size], + writer, kLayerOrder, aux_out); + } + + // Encode histograms. + HistogramParams hist_params(enc_state->cparams.speed_tier, + shared.block_ctx_map.NumACContexts()); + if (enc_state->cparams.speed_tier > SpeedTier::kTortoise) { + hist_params.lz77_method = HistogramParams::LZ77Method::kNone; + } + if (enc_state->cparams.decoding_speed_tier >= 1) { + hist_params.max_histograms = 6; + } + size_t num_histogram_groups = shared.num_histograms; + if (enc_state->streaming_mode) { + size_t prev_num_histograms = + enc_state->passes[i].codes.encoding_info.size(); + if (enc_state->initialize_global_state) { + prev_num_histograms += kNumFixedHistograms; + hist_params.add_fixed_histograms = true; + } + size_t remaining_histograms = kClustersLimit - prev_num_histograms; + // Heuristic to assign budget of new histograms to DC groups. + // TODO(szabadka) Tune this together with the DC group ordering. + size_t max_histograms = remaining_histograms < 20 + ? std::min<size_t>(remaining_histograms, 4) + : remaining_histograms / 4; + hist_params.max_histograms = + std::min(max_histograms, hist_params.max_histograms); + num_histogram_groups = 1; + } + hist_params.streaming_mode = enc_state->streaming_mode; + hist_params.initialize_global_state = enc_state->initialize_global_state; + BuildAndEncodeHistograms( + hist_params, + num_histogram_groups * shared.block_ctx_map.NumACContexts(), + enc_state->passes[i].ac_tokens, &enc_state->passes[i].codes, + &enc_state->passes[i].context_map, writer, kLayerAC, aux_out); + } + + return true; +} + +Status EncodeGroups(const FrameHeader& frame_header, + PassesEncoderState* enc_state, + ModularFrameEncoder* enc_modular, ThreadPool* pool, + std::vector<BitWriter>* group_codes, AuxOut* aux_out) { + const PassesSharedState& shared = enc_state->shared; + const FrameDimensions& frame_dim = shared.frame_dim; + const size_t num_groups = frame_dim.num_groups; + const size_t num_passes = enc_state->progressive_splitter.GetNumPasses(); + const size_t global_ac_index = frame_dim.num_dc_groups + 1; + const bool is_small_image = frame_dim.num_groups == 1 && num_passes == 1; + + group_codes->resize( + NumTocEntries(num_groups, frame_dim.num_dc_groups, num_passes)); + + const auto get_output = [&](const size_t index) { + return &(*group_codes)[is_small_image ? 0 : index]; + }; + auto ac_group_code = [&](size_t pass, size_t group) { + return get_output(AcGroupIndex(pass, group, frame_dim.num_groups, + frame_dim.num_dc_groups)); + }; + + if (enc_state->initialize_global_state) { + if (frame_header.flags & FrameHeader::kPatches) { + PatchDictionaryEncoder::Encode(shared.image_features.patches, + get_output(0), kLayerDictionary, aux_out); + } + if (frame_header.flags & FrameHeader::kSplines) { + EncodeSplines(shared.image_features.splines, get_output(0), kLayerSplines, + HistogramParams(), aux_out); + } + if (frame_header.flags & FrameHeader::kNoise) { + EncodeNoise(shared.image_features.noise_params, get_output(0), + kLayerNoise, aux_out); + } + + JXL_RETURN_IF_ERROR(DequantMatricesEncodeDC(shared.matrices, get_output(0), + kLayerQuant, aux_out)); + if (frame_header.encoding == FrameEncoding::kVarDCT) { + JXL_RETURN_IF_ERROR(EncodeGlobalDCInfo(shared, get_output(0), aux_out)); + } + JXL_RETURN_IF_ERROR(enc_modular->EncodeGlobalInfo(enc_state->streaming_mode, + get_output(0), aux_out)); + JXL_RETURN_IF_ERROR(enc_modular->EncodeStream(get_output(0), aux_out, + kLayerModularGlobal, + ModularStreamId::Global())); + } + + std::vector<std::unique_ptr<AuxOut>> aux_outs; + auto resize_aux_outs = [&aux_outs, + aux_out](const size_t num_threads) -> Status { + if (aux_out == nullptr) { + aux_outs.resize(num_threads); + } else { + while (aux_outs.size() > num_threads) { + aux_out->Assimilate(*aux_outs.back()); + aux_outs.pop_back(); + } + while (num_threads > aux_outs.size()) { + aux_outs.emplace_back(jxl::make_unique<AuxOut>()); + } + } + return true; + }; + + const auto process_dc_group = [&](const uint32_t group_index, + const size_t thread) { + AuxOut* my_aux_out = aux_outs[thread].get(); + BitWriter* output = get_output(group_index + 1); + int modular_group_index = group_index; + if (enc_state->streaming_mode) { + JXL_ASSERT(group_index == 0); + modular_group_index = enc_state->dc_group_index; + } + if (frame_header.encoding == FrameEncoding::kVarDCT && + !(frame_header.flags & FrameHeader::kUseDcFrame)) { + BitWriter::Allotment allotment(output, 2); + output->Write(2, enc_modular->extra_dc_precision[modular_group_index]); + allotment.ReclaimAndCharge(output, kLayerDC, my_aux_out); + JXL_CHECK(enc_modular->EncodeStream( + output, my_aux_out, kLayerDC, + ModularStreamId::VarDCTDC(modular_group_index))); + } + JXL_CHECK(enc_modular->EncodeStream( + output, my_aux_out, kLayerModularDcGroup, + ModularStreamId::ModularDC(modular_group_index))); + if (frame_header.encoding == FrameEncoding::kVarDCT) { + const Rect& rect = enc_state->shared.frame_dim.DCGroupRect(group_index); + size_t nb_bits = CeilLog2Nonzero(rect.xsize() * rect.ysize()); + if (nb_bits != 0) { + BitWriter::Allotment allotment(output, nb_bits); + output->Write(nb_bits, + enc_modular->ac_metadata_size[modular_group_index] - 1); + allotment.ReclaimAndCharge(output, kLayerControlFields, my_aux_out); + } + JXL_CHECK(enc_modular->EncodeStream( + output, my_aux_out, kLayerControlFields, + ModularStreamId::ACMetadata(modular_group_index))); + } + }; + JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, frame_dim.num_dc_groups, + resize_aux_outs, process_dc_group, + "EncodeDCGroup")); + + if (frame_header.encoding == FrameEncoding::kVarDCT) { + JXL_RETURN_IF_ERROR(EncodeGlobalACInfo( + enc_state, get_output(global_ac_index), enc_modular, aux_out)); + } + + std::atomic<int> num_errors{0}; + const auto process_group = [&](const uint32_t group_index, + const size_t thread) { + AuxOut* my_aux_out = aux_outs[thread].get(); + + for (size_t i = 0; i < num_passes; i++) { + if (frame_header.encoding == FrameEncoding::kVarDCT) { + if (!EncodeGroupTokenizedCoefficients( + group_index, i, enc_state->histogram_idx[group_index], + *enc_state, ac_group_code(i, group_index), my_aux_out)) { + num_errors.fetch_add(1, std::memory_order_relaxed); + return; + } + } + // Write all modular encoded data (color?, alpha, depth, extra channels) + if (!enc_modular->EncodeStream( + ac_group_code(i, group_index), my_aux_out, kLayerModularAcGroup, + ModularStreamId::ModularAC(group_index, i))) { + num_errors.fetch_add(1, std::memory_order_relaxed); + return; + } + } + }; + JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, num_groups, resize_aux_outs, + process_group, "EncodeGroupCoefficients")); + + // Resizing aux_outs to 0 also Assimilates the array. + static_cast<void>(resize_aux_outs(0)); + JXL_RETURN_IF_ERROR(num_errors.load(std::memory_order_relaxed) == 0); + + for (BitWriter& bw : *group_codes) { + BitWriter::Allotment allotment(&bw, 8); + bw.ZeroPadToByte(); // end of group. + allotment.ReclaimAndCharge(&bw, kLayerAC, aux_out); + } + return true; +} + +Status ComputeEncodingData( + const CompressParams& cparams, const FrameInfo& frame_info, + const CodecMetadata* metadata, JxlEncoderChunkedFrameAdapter& frame_data, + const jpeg::JPEGData* jpeg_data, size_t x0, size_t y0, size_t xsize, + size_t ysize, const JxlCmsInterface& cms, ThreadPool* pool, + FrameHeader& mutable_frame_header, ModularFrameEncoder& enc_modular, + PassesEncoderState& enc_state, std::vector<BitWriter>* group_codes, + AuxOut* aux_out) { + JXL_ASSERT(x0 + xsize <= frame_data.xsize); + JXL_ASSERT(y0 + ysize <= frame_data.ysize); + const FrameHeader& frame_header = mutable_frame_header; + PassesSharedState& shared = enc_state.shared; + shared.metadata = metadata; + if (enc_state.streaming_mode) { + shared.frame_dim.Set(xsize, ysize, /*group_size_shift=*/1, + /*maxhshift=*/0, /*maxvshift=*/0, + /*modular_mode=*/false, /*upsampling=*/1); + } else { + shared.frame_dim = frame_header.ToFrameDimensions(); + } + + shared.image_features.patches.SetPassesSharedState(&shared); + const FrameDimensions& frame_dim = shared.frame_dim; + shared.ac_strategy = + AcStrategyImage(frame_dim.xsize_blocks, frame_dim.ysize_blocks); + shared.raw_quant_field = + ImageI(frame_dim.xsize_blocks, frame_dim.ysize_blocks); + shared.epf_sharpness = ImageB(frame_dim.xsize_blocks, frame_dim.ysize_blocks); + shared.cmap = ColorCorrelationMap(frame_dim.xsize, frame_dim.ysize); + shared.coeff_order_size = kCoeffOrderMaxSize; + if (frame_header.encoding == FrameEncoding::kVarDCT) { + shared.coeff_orders.resize(frame_header.passes.num_passes * + kCoeffOrderMaxSize); + } + + shared.quant_dc = ImageB(frame_dim.xsize_blocks, frame_dim.ysize_blocks); + shared.dc_storage = Image3F(frame_dim.xsize_blocks, frame_dim.ysize_blocks); + shared.dc = &shared.dc_storage; + + const size_t num_extra_channels = metadata->m.num_extra_channels; + const ExtraChannelInfo* alpha_eci = metadata->m.Find(ExtraChannel::kAlpha); + const ExtraChannelInfo* black_eci = metadata->m.Find(ExtraChannel::kBlack); + const size_t alpha_idx = alpha_eci - metadata->m.extra_channel_info.data(); + const size_t black_idx = black_eci - metadata->m.extra_channel_info.data(); + const ColorEncoding c_enc = metadata->m.color_encoding; + + // Make the image patch bigger than the currently processed group in streaming + // mode so that we can take into account border pixels around the group when + // computing inverse Gaborish and adaptive quantization map. + int max_border = enc_state.streaming_mode ? kBlockDim : 0; + Rect frame_rect(0, 0, frame_data.xsize, frame_data.ysize); + Rect patch_rect = Rect(x0, y0, xsize, ysize).Extend(max_border, frame_rect); + JXL_ASSERT(patch_rect.IsInside(frame_rect)); + + // Allocating a large enough image avoids a copy when padding. + Image3F color(RoundUpToBlockDim(patch_rect.xsize()), + RoundUpToBlockDim(patch_rect.ysize())); + color.ShrinkTo(patch_rect.xsize(), patch_rect.ysize()); + std::vector<ImageF> extra_channels(num_extra_channels); + for (auto& extra_channel : extra_channels) { + extra_channel = jxl::ImageF(patch_rect.xsize(), patch_rect.ysize()); + } + ImageF* alpha = alpha_eci ? &extra_channels[alpha_idx] : nullptr; + ImageF* black = black_eci ? &extra_channels[black_idx] : nullptr; + bool has_interleaved_alpha = false; + JxlChunkedFrameInputSource input = frame_data.GetInputSource(); + if (!frame_data.IsJPEG()) { + JXL_RETURN_IF_ERROR(CopyColorChannels(input, patch_rect, frame_info, + metadata->m, pool, &color, alpha, + &has_interleaved_alpha)); + } + JXL_RETURN_IF_ERROR(CopyExtraChannels(input, patch_rect, frame_info, + metadata->m, has_interleaved_alpha, + pool, &extra_channels)); + + shared.image_features.patches.SetPassesSharedState(&shared); + enc_state.cparams = cparams; + + Image3F linear_storage; + Image3F* linear = nullptr; + + if (!jpeg_data) { + if (frame_header.color_transform == ColorTransform::kXYB && + frame_info.ib_needs_color_transform) { + if (frame_header.encoding == FrameEncoding::kVarDCT && + cparams.speed_tier <= SpeedTier::kKitten) { + linear_storage = Image3F(patch_rect.xsize(), patch_rect.ysize()); + linear = &linear_storage; + } + ToXYB(c_enc, metadata->m.IntensityTarget(), black, pool, &color, cms, + linear); + } else { + // Nothing to do. + // RGB or YCbCr: forward YCbCr is not implemented, this is only used when + // the input is already in YCbCr + // If encoding a special DC or reference frame: input is already in XYB. + } + bool lossless = cparams.IsLossless(); + if (alpha && !alpha_eci->alpha_associated && + frame_header.frame_type == FrameType::kRegularFrame && + !ApplyOverride(cparams.keep_invisible, lossless) && + cparams.ec_resampling == cparams.resampling) { + // simplify invisible pixels + SimplifyInvisible(&color, *alpha, lossless); + if (linear) { + SimplifyInvisible(linear, *alpha, lossless); + } + } + PadImageToBlockMultipleInPlace(&color); + } + + // Rectangle within color that corresponds to the currently processed group in + // streaming mode. + Rect group_rect(x0 - patch_rect.x0(), y0 - patch_rect.y0(), + RoundUpToBlockDim(xsize), RoundUpToBlockDim(ysize)); + + if (enc_state.initialize_global_state && !jpeg_data) { + ComputeChromacityAdjustments(cparams, color, group_rect, + &mutable_frame_header); + } + + ComputeNoiseParams(cparams, enc_state.streaming_mode, !!jpeg_data, color, + frame_dim, &mutable_frame_header, + &shared.image_features.noise_params); + + DownsampleColorChannels(cparams, frame_header, !!jpeg_data, &color); + + if (cparams.ec_resampling != 1 && !cparams.already_downsampled) { + for (ImageF& ec : extra_channels) { + DownsampleImage(&ec, cparams.ec_resampling); + } + } + + if (!enc_state.streaming_mode) { + group_rect = Rect(color); + } + + if (frame_header.encoding == FrameEncoding::kVarDCT) { + enc_state.passes.resize(enc_state.progressive_splitter.GetNumPasses()); + for (PassesEncoderState::PassData& pass : enc_state.passes) { + pass.ac_tokens.resize(shared.frame_dim.num_groups); + } + if (jpeg_data) { + JXL_RETURN_IF_ERROR(ComputeJPEGTranscodingData( + *jpeg_data, frame_header, pool, &enc_modular, &enc_state)); + } else { + JXL_RETURN_IF_ERROR(ComputeVarDCTEncodingData( + frame_header, linear, &color, group_rect, cms, pool, &enc_modular, + &enc_state, aux_out)); + } + ComputeAllCoeffOrders(enc_state, frame_dim); + if (!enc_state.streaming_mode) { + shared.num_histograms = 1; + enc_state.histogram_idx.resize(frame_dim.num_groups); + } + JXL_RETURN_IF_ERROR( + TokenizeAllCoefficients(frame_header, pool, &enc_state)); + } + + if (!enc_state.streaming_mode) { + if (cparams.modular_mode || !extra_channels.empty()) { + JXL_RETURN_IF_ERROR(enc_modular.ComputeEncodingData( + frame_header, metadata->m, &color, extra_channels, &enc_state, cms, + pool, aux_out, /*do_color=*/cparams.modular_mode)); + } + JXL_RETURN_IF_ERROR(enc_modular.ComputeTree(pool)); + JXL_RETURN_IF_ERROR(enc_modular.ComputeTokens(pool)); + + mutable_frame_header.UpdateFlag(shared.image_features.patches.HasAny(), + FrameHeader::kPatches); + mutable_frame_header.UpdateFlag(shared.image_features.splines.HasAny(), + FrameHeader::kSplines); + } + + JXL_RETURN_IF_ERROR(EncodeGroups(frame_header, &enc_state, &enc_modular, pool, + group_codes, aux_out)); + if (enc_state.streaming_mode) { + const size_t group_index = enc_state.dc_group_index; + enc_modular.ClearStreamData(ModularStreamId::VarDCTDC(group_index)); + enc_modular.ClearStreamData(ModularStreamId::ACMetadata(group_index)); + } + return true; +} + +Status PermuteGroups(const CompressParams& cparams, + const FrameDimensions& frame_dim, size_t num_passes, + std::vector<coeff_order_t>* permutation, + std::vector<BitWriter>* group_codes) { + const size_t num_groups = frame_dim.num_groups; + if (!cparams.centerfirst || (num_passes == 1 && num_groups == 1)) { + return true; + } + // Don't permute global DC/AC or DC. + permutation->resize(frame_dim.num_dc_groups + 2); + std::iota(permutation->begin(), permutation->end(), 0); + std::vector<coeff_order_t> ac_group_order(num_groups); + std::iota(ac_group_order.begin(), ac_group_order.end(), 0); + size_t group_dim = frame_dim.group_dim; + + // The center of the image is either given by parameters or chosen + // to be the middle of the image by default if center_x, center_y resp. + // are not provided. + + int64_t imag_cx; + if (cparams.center_x != static_cast<size_t>(-1)) { + JXL_RETURN_IF_ERROR(cparams.center_x < frame_dim.xsize); + imag_cx = cparams.center_x; + } else { + imag_cx = frame_dim.xsize / 2; + } + + int64_t imag_cy; + if (cparams.center_y != static_cast<size_t>(-1)) { + JXL_RETURN_IF_ERROR(cparams.center_y < frame_dim.ysize); + imag_cy = cparams.center_y; + } else { + imag_cy = frame_dim.ysize / 2; + } + + // The center of the group containing the center of the image. + int64_t cx = (imag_cx / group_dim) * group_dim + group_dim / 2; + int64_t cy = (imag_cy / group_dim) * group_dim + group_dim / 2; + // This identifies in what area of the central group the center of the image + // lies in. + double direction = -std::atan2(imag_cy - cy, imag_cx - cx); + // This identifies the side of the central group the center of the image + // lies closest to. This can take values 0, 1, 2, 3 corresponding to left, + // bottom, right, top. + int64_t side = std::fmod((direction + 5 * kPi / 4), 2 * kPi) * 2 / kPi; + auto get_distance_from_center = [&](size_t gid) { + Rect r = frame_dim.GroupRect(gid); + int64_t gcx = r.x0() + group_dim / 2; + int64_t gcy = r.y0() + group_dim / 2; + int64_t dx = gcx - cx; + int64_t dy = gcy - cy; + // The angle is determined by taking atan2 and adding an appropriate + // starting point depending on the side we want to start on. + double angle = std::remainder( + std::atan2(dy, dx) + kPi / 4 + side * (kPi / 2), 2 * kPi); + // Concentric squares in clockwise order. + return std::make_pair(std::max(std::abs(dx), std::abs(dy)), angle); + }; + std::sort(ac_group_order.begin(), ac_group_order.end(), + [&](coeff_order_t a, coeff_order_t b) { + return get_distance_from_center(a) < get_distance_from_center(b); + }); + std::vector<coeff_order_t> inv_ac_group_order(ac_group_order.size(), 0); + for (size_t i = 0; i < ac_group_order.size(); i++) { + inv_ac_group_order[ac_group_order[i]] = i; + } + for (size_t i = 0; i < num_passes; i++) { + size_t pass_start = permutation->size(); + for (coeff_order_t v : inv_ac_group_order) { + permutation->push_back(pass_start + v); + } + } + std::vector<BitWriter> new_group_codes(group_codes->size()); + for (size_t i = 0; i < permutation->size(); i++) { + new_group_codes[(*permutation)[i]] = std::move((*group_codes)[i]); + } + *group_codes = std::move(new_group_codes); + return true; +} + +bool CanDoStreamingEncoding(const CompressParams& cparams, + const FrameInfo& frame_info, + const CodecMetadata& metadata, + const JxlEncoderChunkedFrameAdapter& frame_data) { + if (frame_data.IsJPEG()) { + return false; + } + if (cparams.noise == Override::kOn || cparams.patches == Override::kOn) { + return false; + } + if (cparams.progressive_dc != 0 || frame_info.dc_level != 0) { + return false; + } + if (cparams.resampling != 1 || cparams.ec_resampling != 1) { + return false; + } + if (cparams.max_error_mode) { + return false; + } + if (cparams.color_transform != ColorTransform::kXYB) { + return false; + } + if (cparams.modular_mode) { + return false; + } + if (metadata.m.num_extra_channels > 0) { + return false; + } + if (cparams.buffering == 0) { + return false; + } + if (cparams.buffering == 1 && frame_data.xsize <= 2048 && + frame_data.ysize <= 2048) { + return false; + } + if (frame_data.xsize <= 256 && frame_data.ysize <= 256) { + return false; + } + return true; +} + +void ComputePermutationForStreaming(size_t xsize, size_t ysize, + size_t num_passes, + std::vector<coeff_order_t>& permutation, + std::vector<size_t>& dc_group_order) { + // This is only valid in VarDCT mode, otherwise there can be group shift. + const size_t group_size = 256; + const size_t dc_group_size = group_size * kBlockDim; + const size_t group_xsize = DivCeil(xsize, group_size); + const size_t group_ysize = DivCeil(ysize, group_size); + const size_t dc_group_xsize = DivCeil(xsize, dc_group_size); + const size_t dc_group_ysize = DivCeil(ysize, dc_group_size); + const size_t num_groups = group_xsize * group_ysize; + const size_t num_dc_groups = dc_group_xsize * dc_group_ysize; + const size_t num_sections = 2 + num_dc_groups + num_passes * num_groups; + permutation.resize(num_sections); + size_t new_ix = 0; + // DC Global is first + permutation[0] = new_ix++; + // TODO(szabadka) Change the dc group order to center-first. + for (size_t dc_y = 0; dc_y < dc_group_ysize; ++dc_y) { + for (size_t dc_x = 0; dc_x < dc_group_xsize; ++dc_x) { + size_t dc_ix = dc_y * dc_group_xsize + dc_x; + dc_group_order.push_back(dc_ix); + permutation[1 + dc_ix] = new_ix++; + size_t ac_y0 = dc_y * kBlockDim; + size_t ac_x0 = dc_x * kBlockDim; + size_t ac_y1 = std::min<size_t>(group_ysize, ac_y0 + kBlockDim); + size_t ac_x1 = std::min<size_t>(group_xsize, ac_x0 + kBlockDim); + for (size_t pass = 0; pass < num_passes; ++pass) { + for (size_t ac_y = ac_y0; ac_y < ac_y1; ++ac_y) { + for (size_t ac_x = ac_x0; ac_x < ac_x1; ++ac_x) { + size_t group_ix = ac_y * group_xsize + ac_x; + size_t old_ix = + AcGroupIndex(pass, group_ix, num_groups, num_dc_groups); + permutation[old_ix] = new_ix++; + } + } + } + } + } + // AC Global is last + permutation[1 + num_dc_groups] = new_ix++; + JXL_ASSERT(new_ix == num_sections); +} + +constexpr size_t kGroupSizeOffset[4] = { + static_cast<size_t>(0), + static_cast<size_t>(1024), + static_cast<size_t>(17408), + static_cast<size_t>(4211712), +}; +constexpr size_t kTOCBits[4] = {12, 16, 24, 32}; + +size_t TOCBucket(size_t group_size) { + size_t bucket = 0; + while (bucket < 3 && group_size >= kGroupSizeOffset[bucket + 1]) ++bucket; + return bucket; +} + +size_t TOCSize(const std::vector<size_t>& group_sizes) { + size_t toc_bits = 0; + for (size_t i = 0; i < group_sizes.size(); i++) { + toc_bits += kTOCBits[TOCBucket(group_sizes[i])]; + } + return (toc_bits + 7) / 8; +} + +PaddedBytes EncodeTOC(const std::vector<size_t>& group_sizes, AuxOut* aux_out) { + BitWriter writer; + BitWriter::Allotment allotment(&writer, 32 * group_sizes.size()); + for (size_t i = 0; i < group_sizes.size(); i++) { + JXL_CHECK(U32Coder::Write(kTocDist, group_sizes[i], &writer)); + } + writer.ZeroPadToByte(); // before first group + allotment.ReclaimAndCharge(&writer, kLayerTOC, aux_out); + return std::move(writer).TakeBytes(); +} + +void ComputeGroupDataOffset(size_t frame_header_size, size_t dc_global_size, + size_t num_sections, size_t& min_dc_global_size, + size_t& group_offset) { + size_t max_toc_bits = (num_sections - 1) * 32; + size_t min_toc_bits = (num_sections - 1) * 12; + size_t max_padding = (max_toc_bits - min_toc_bits + 7) / 8; + min_dc_global_size = dc_global_size; + size_t dc_global_bucket = TOCBucket(min_dc_global_size); + while (TOCBucket(min_dc_global_size + max_padding) > dc_global_bucket) { + dc_global_bucket = TOCBucket(min_dc_global_size + max_padding); + min_dc_global_size = kGroupSizeOffset[dc_global_bucket]; + } + JXL_ASSERT(TOCBucket(min_dc_global_size) == dc_global_bucket); + JXL_ASSERT(TOCBucket(min_dc_global_size + max_padding) == dc_global_bucket); + max_toc_bits += kTOCBits[dc_global_bucket]; + size_t max_toc_size = (max_toc_bits + 7) / 8; + group_offset = frame_header_size + max_toc_size + min_dc_global_size; +} + +size_t ComputeDcGlobalPadding(const std::vector<size_t>& group_sizes, + size_t frame_header_size, + size_t group_data_offset, + size_t min_dc_global_size) { + std::vector<size_t> new_group_sizes = group_sizes; + new_group_sizes[0] = min_dc_global_size; + size_t toc_size = TOCSize(new_group_sizes); + size_t actual_offset = frame_header_size + toc_size + group_sizes[0]; + return group_data_offset - actual_offset; +} + +Status OutputGroups(std::vector<BitWriter>&& group_codes, + std::vector<size_t>* group_sizes, + JxlEncoderOutputProcessorWrapper* output_processor) { + JXL_ASSERT(group_codes.size() >= 4); + { + PaddedBytes dc_group = std::move(group_codes[1]).TakeBytes(); + group_sizes->push_back(dc_group.size()); + JXL_RETURN_IF_ERROR(AppendData(*output_processor, dc_group)); + } + for (size_t i = 3; i < group_codes.size(); ++i) { + PaddedBytes ac_group = std::move(group_codes[i]).TakeBytes(); + group_sizes->push_back(ac_group.size()); + JXL_RETURN_IF_ERROR(AppendData(*output_processor, ac_group)); + } + return true; +} + +void RemoveUnusedHistograms(std::vector<uint8_t>& context_map, + EntropyEncodingData& codes) { + std::vector<int> remap(256, -1); + std::vector<uint8_t> inv_remap; + for (size_t i = 0; i < context_map.size(); ++i) { + const uint8_t histo_ix = context_map[i]; + if (remap[histo_ix] == -1) { + remap[histo_ix] = inv_remap.size(); + inv_remap.push_back(histo_ix); + } + context_map[i] = remap[histo_ix]; + } + EntropyEncodingData new_codes; + new_codes.use_prefix_code = codes.use_prefix_code; + new_codes.lz77 = codes.lz77; + for (uint8_t histo_idx : inv_remap) { + new_codes.encoding_info.emplace_back( + std::move(codes.encoding_info[histo_idx])); + new_codes.uint_config.emplace_back(std::move(codes.uint_config[histo_idx])); + new_codes.encoded_histograms.emplace_back( + std::move(codes.encoded_histograms[histo_idx])); + } + codes = std::move(new_codes); +} + +Status OutputAcGlobal(PassesEncoderState& enc_state, + const FrameDimensions& frame_dim, + std::vector<size_t>* group_sizes, + JxlEncoderOutputProcessorWrapper* output_processor, + AuxOut* aux_out) { + JXL_ASSERT(frame_dim.num_groups > 1); + BitWriter writer; + { + size_t num_histo_bits = CeilLog2Nonzero(frame_dim.num_groups); + BitWriter::Allotment allotment(&writer, num_histo_bits + 1); + writer.Write(1, 1); // default dequant matrices + writer.Write(num_histo_bits, frame_dim.num_dc_groups - 1); + allotment.ReclaimAndCharge(&writer, kLayerAC, aux_out); + } + const PassesSharedState& shared = enc_state.shared; + for (size_t i = 0; i < enc_state.progressive_splitter.GetNumPasses(); i++) { + // Encode coefficient orders. + size_t order_bits = 0; + JXL_RETURN_IF_ERROR( + U32Coder::CanEncode(kOrderEnc, enc_state.used_orders[i], &order_bits)); + BitWriter::Allotment allotment(&writer, order_bits); + JXL_CHECK(U32Coder::Write(kOrderEnc, enc_state.used_orders[i], &writer)); + allotment.ReclaimAndCharge(&writer, kLayerOrder, aux_out); + EncodeCoeffOrders(enc_state.used_orders[i], + &shared.coeff_orders[i * shared.coeff_order_size], + &writer, kLayerOrder, aux_out); + // Fix up context map and entropy codes to remove any fix histograms that + // were not selected by clustering. + RemoveUnusedHistograms(enc_state.passes[i].context_map, + enc_state.passes[i].codes); + EncodeHistograms(enc_state.passes[i].context_map, enc_state.passes[i].codes, + &writer, kLayerAC, aux_out); + } + { + BitWriter::Allotment allotment(&writer, 8); + writer.ZeroPadToByte(); // end of group. + allotment.ReclaimAndCharge(&writer, kLayerAC, aux_out); + } + PaddedBytes ac_global = std::move(writer).TakeBytes(); + group_sizes->push_back(ac_global.size()); + JXL_RETURN_IF_ERROR(AppendData(*output_processor, ac_global)); + return true; +} + +Status EncodeFrameStreaming(const CompressParams& cparams, + const FrameInfo& frame_info, + const CodecMetadata* metadata, + JxlEncoderChunkedFrameAdapter& frame_data, + const JxlCmsInterface& cms, ThreadPool* pool, + JxlEncoderOutputProcessorWrapper* output_processor, + AuxOut* aux_out) { + PassesEncoderState enc_state; + SetProgressiveMode(cparams, &enc_state.progressive_splitter); + FrameHeader frame_header(metadata); + std::unique_ptr<jpeg::JPEGData> jpeg_data; + if (frame_data.IsJPEG()) { + jpeg_data = make_unique<jpeg::JPEGData>(frame_data.TakeJPEGData()); + } + JXL_RETURN_IF_ERROR(MakeFrameHeader(frame_data.xsize, frame_data.ysize, + cparams, enc_state.progressive_splitter, + frame_info, jpeg_data.get(), true, + &frame_header)); + const size_t num_passes = enc_state.progressive_splitter.GetNumPasses(); + ModularFrameEncoder enc_modular(frame_header, cparams); + std::vector<coeff_order_t> permutation; + std::vector<size_t> dc_group_order; + ComputePermutationForStreaming(frame_data.xsize, frame_data.ysize, num_passes, + permutation, dc_group_order); + enc_state.shared.num_histograms = dc_group_order.size(); + // This is only valid in VarDCT mode, otherwise there can be group shift. + size_t group_size = 256; + size_t dc_group_size = group_size * kBlockDim; + size_t dc_group_xsize = DivCeil(frame_data.xsize, dc_group_size); + size_t min_dc_global_size = 0; + size_t group_data_offset = 0; + PaddedBytes frame_header_bytes; + PaddedBytes dc_global_bytes; + std::vector<size_t> group_sizes; + size_t start_pos = output_processor->CurrentPosition(); + for (size_t i = 0; i < dc_group_order.size(); ++i) { + size_t dc_ix = dc_group_order[i]; + size_t dc_y = dc_ix / dc_group_xsize; + size_t dc_x = dc_ix % dc_group_xsize; + size_t y0 = dc_y * dc_group_size; + size_t x0 = dc_x * dc_group_size; + size_t ysize = std::min<size_t>(dc_group_size, frame_data.ysize - y0); + size_t xsize = std::min<size_t>(dc_group_size, frame_data.xsize - x0); + size_t group_xsize = DivCeil(xsize, group_size); + size_t group_ysize = DivCeil(ysize, group_size); + JXL_DEBUG_V(2, + "Encoding DC group #%" PRIuS " dc_y = %" PRIuS " dc_x = %" PRIuS + " (x0, y0) = (%" PRIuS ", %" PRIuS ") (xsize, ysize) = (%" PRIuS + ", %" PRIuS ")", + dc_ix, dc_y, dc_x, x0, y0, xsize, ysize); + enc_state.streaming_mode = true; + enc_state.initialize_global_state = (i == 0); + enc_state.dc_group_index = dc_ix; + enc_state.histogram_idx = + std::vector<uint8_t>(group_xsize * group_ysize, i); + std::vector<BitWriter> group_codes; + JXL_RETURN_IF_ERROR(ComputeEncodingData( + cparams, frame_info, metadata, frame_data, jpeg_data.get(), x0, y0, + xsize, ysize, cms, pool, frame_header, enc_modular, enc_state, + &group_codes, aux_out)); + JXL_ASSERT(enc_state.special_frames.empty()); + if (i == 0) { + BitWriter writer; + JXL_RETURN_IF_ERROR(WriteFrameHeader(frame_header, &writer, aux_out)); + BitWriter::Allotment allotment(&writer, 8); + writer.Write(1, 1); // write permutation + EncodePermutation(permutation.data(), /*skip=*/0, permutation.size(), + &writer, kLayerHeader, aux_out); + writer.ZeroPadToByte(); + allotment.ReclaimAndCharge(&writer, kLayerHeader, aux_out); + frame_header_bytes = std::move(writer).TakeBytes(); + dc_global_bytes = std::move(group_codes[0]).TakeBytes(); + ComputeGroupDataOffset(frame_header_bytes.size(), dc_global_bytes.size(), + permutation.size(), min_dc_global_size, + group_data_offset); + JXL_DEBUG_V(2, "Frame header size: %" PRIuS, frame_header_bytes.size()); + JXL_DEBUG_V(2, "DC global size: %" PRIuS ", min size for TOC: %" PRIuS, + dc_global_bytes.size(), min_dc_global_size); + JXL_DEBUG_V(2, "Num groups: %" PRIuS " group data offset: %" PRIuS, + permutation.size(), group_data_offset); + group_sizes.push_back(dc_global_bytes.size()); + output_processor->Seek(start_pos + group_data_offset); + } + JXL_RETURN_IF_ERROR( + OutputGroups(std::move(group_codes), &group_sizes, output_processor)); + } + JXL_RETURN_IF_ERROR(OutputAcGlobal(enc_state, + frame_header.ToFrameDimensions(), + &group_sizes, output_processor, aux_out)); + JXL_ASSERT(group_sizes.size() == permutation.size()); + size_t end_pos = output_processor->CurrentPosition(); + output_processor->Seek(start_pos); + size_t padding_size = + ComputeDcGlobalPadding(group_sizes, frame_header_bytes.size(), + group_data_offset, min_dc_global_size); + group_sizes[0] += padding_size; + PaddedBytes toc_bytes = EncodeTOC(group_sizes, aux_out); + std::vector<uint8_t> padding_bytes(padding_size); + JXL_RETURN_IF_ERROR(AppendData(*output_processor, frame_header_bytes)); + JXL_RETURN_IF_ERROR(AppendData(*output_processor, toc_bytes)); + JXL_RETURN_IF_ERROR(AppendData(*output_processor, dc_global_bytes)); + JXL_RETURN_IF_ERROR(AppendData(*output_processor, padding_bytes)); + JXL_DEBUG_V(2, "TOC size: %" PRIuS " padding bytes after DC global: %" PRIuS, + toc_bytes.size(), padding_size); + JXL_ASSERT(output_processor->CurrentPosition() == + start_pos + group_data_offset); + output_processor->Seek(end_pos); + return true; +} + +Status EncodeFrameOneShot(const CompressParams& cparams, + const FrameInfo& frame_info, + const CodecMetadata* metadata, + JxlEncoderChunkedFrameAdapter& frame_data, + const JxlCmsInterface& cms, ThreadPool* pool, + JxlEncoderOutputProcessorWrapper* output_processor, + AuxOut* aux_out) { + PassesEncoderState enc_state; + SetProgressiveMode(cparams, &enc_state.progressive_splitter); + std::vector<BitWriter> group_codes; + FrameHeader frame_header(metadata); + std::unique_ptr<jpeg::JPEGData> jpeg_data; + if (frame_data.IsJPEG()) { + jpeg_data = make_unique<jpeg::JPEGData>(frame_data.TakeJPEGData()); + } + JXL_RETURN_IF_ERROR(MakeFrameHeader(frame_data.xsize, frame_data.ysize, + cparams, enc_state.progressive_splitter, + frame_info, jpeg_data.get(), false, + &frame_header)); + const size_t num_passes = enc_state.progressive_splitter.GetNumPasses(); + ModularFrameEncoder enc_modular(frame_header, cparams); + JXL_RETURN_IF_ERROR(ComputeEncodingData( + cparams, frame_info, metadata, frame_data, jpeg_data.get(), 0, 0, + frame_data.xsize, frame_data.ysize, cms, pool, frame_header, enc_modular, + enc_state, &group_codes, aux_out)); + + BitWriter writer; + writer.AppendByteAligned(enc_state.special_frames); + JXL_RETURN_IF_ERROR(WriteFrameHeader(frame_header, &writer, aux_out)); + + std::vector<coeff_order_t> permutation; + JXL_RETURN_IF_ERROR(PermuteGroups(cparams, enc_state.shared.frame_dim, + num_passes, &permutation, &group_codes)); + + JXL_RETURN_IF_ERROR( + WriteGroupOffsets(group_codes, permutation, &writer, aux_out)); + + writer.AppendByteAligned(group_codes); + PaddedBytes frame_bytes = std::move(writer).TakeBytes(); + JXL_RETURN_IF_ERROR(AppendData(*output_processor, frame_bytes)); + + return true; +} + +} // namespace + +Status EncodeFrame(const CompressParams& cparams_orig, + const FrameInfo& frame_info, const CodecMetadata* metadata, + JxlEncoderChunkedFrameAdapter& frame_data, + const JxlCmsInterface& cms, ThreadPool* pool, + JxlEncoderOutputProcessorWrapper* output_processor, + AuxOut* aux_out) { + CompressParams cparams = cparams_orig; + if (cparams.speed_tier == SpeedTier::kGlacier && !cparams.IsLossless()) { + cparams.speed_tier = SpeedTier::kTortoise; + } + if (cparams.speed_tier == SpeedTier::kGlacier) { + std::vector<CompressParams> all_params; + std::vector<size_t> size; + + CompressParams cparams_attempt = cparams_orig; + cparams_attempt.speed_tier = SpeedTier::kTortoise; + cparams_attempt.options.max_properties = 4; + + for (float x : {0.0f, 80.f}) { + cparams_attempt.channel_colors_percent = x; + for (float y : {0.0f, 95.0f}) { + cparams_attempt.channel_colors_pre_transform_percent = y; + // 70000 ensures that the number of palette colors is representable in + // modular headers. + for (int K : {0, 1 << 10, 70000}) { + cparams_attempt.palette_colors = K; + for (int tree_mode : {-1, (int)ModularOptions::TreeMode::kNoWP, + (int)ModularOptions::TreeMode::kDefault}) { + if (tree_mode == -1) { + // LZ77 only + cparams_attempt.options.nb_repeats = 0; + } else { + cparams_attempt.options.nb_repeats = 1; + cparams_attempt.options.wp_tree_mode = + static_cast<ModularOptions::TreeMode>(tree_mode); + } + for (Predictor pred : {Predictor::Zero, Predictor::Variable}) { + cparams_attempt.options.predictor = pred; + for (int g : {0, -1, 3}) { + cparams_attempt.modular_group_size_shift = g; + for (Override patches : {Override::kDefault, Override::kOff}) { + cparams_attempt.patches = patches; + all_params.push_back(cparams_attempt); + } + } + } + } + } + } + } + + size.resize(all_params.size()); + + std::atomic<int> num_errors{0}; + + JXL_RETURN_IF_ERROR(RunOnPool( + pool, 0, all_params.size(), ThreadPool::NoInit, + [&](size_t task, size_t) { + std::vector<uint8_t> output(64); + uint8_t* next_out = output.data(); + size_t avail_out = output.size(); + JxlEncoderOutputProcessorWrapper local_output; + local_output.SetAvailOut(&next_out, &avail_out); + if (!EncodeFrame(all_params[task], frame_info, metadata, frame_data, + cms, nullptr, &local_output, aux_out)) { + num_errors.fetch_add(1, std::memory_order_relaxed); + return; + } + size[task] = local_output.CurrentPosition(); + }, + "Compress kGlacier")); + JXL_RETURN_IF_ERROR(num_errors.load(std::memory_order_relaxed) == 0); + + size_t best_idx = 0; + for (size_t i = 1; i < all_params.size(); i++) { + if (size[best_idx] > size[i]) { + best_idx = i; + } + } + cparams = all_params[best_idx]; + } + + JXL_RETURN_IF_ERROR(ParamsPostInit(&cparams)); + + if (cparams.butteraugli_distance < 0) { + return JXL_FAILURE("Expected non-negative distance"); + } + + if (cparams.progressive_dc < 0) { + if (cparams.progressive_dc != -1) { + return JXL_FAILURE("Invalid progressive DC setting value (%d)", + cparams.progressive_dc); + } + cparams.progressive_dc = 0; + } + if (cparams.ec_resampling < cparams.resampling) { + cparams.ec_resampling = cparams.resampling; + } + if (cparams.resampling > 1 || frame_info.is_preview) { + cparams.progressive_dc = 0; + } + + if (frame_info.dc_level + cparams.progressive_dc > 4) { + return JXL_FAILURE("Too many levels of progressive DC"); + } + + if (cparams.butteraugli_distance != 0 && + cparams.butteraugli_distance < kMinButteraugliDistance) { + return JXL_FAILURE("Butteraugli distance is too low (%f)", + cparams.butteraugli_distance); + } + + if (frame_data.IsJPEG()) { + cparams.gaborish = Override::kOff; + cparams.epf = 0; + cparams.modular_mode = false; + } + + if (frame_data.xsize == 0 || frame_data.ysize == 0) { + return JXL_FAILURE("Empty image"); + } + + // Assert that this metadata is correctly set up for the compression params, + // this should have been done by enc_file.cc + JXL_ASSERT(metadata->m.xyb_encoded == + (cparams.color_transform == ColorTransform::kXYB)); + + if (frame_data.IsJPEG() && cparams.color_transform == ColorTransform::kXYB) { + return JXL_FAILURE("Can't add JPEG frame to XYB codestream"); + } + + if (CanDoStreamingEncoding(cparams, frame_info, *metadata, frame_data)) { + return EncodeFrameStreaming(cparams, frame_info, metadata, frame_data, cms, + pool, output_processor, aux_out); + } else { + return EncodeFrameOneShot(cparams, frame_info, metadata, frame_data, cms, + pool, output_processor, aux_out); + } +} + +Status EncodeFrame(const CompressParams& cparams_orig, + const FrameInfo& frame_info, const CodecMetadata* metadata, + const ImageBundle& ib, const JxlCmsInterface& cms, + ThreadPool* pool, BitWriter* writer, AuxOut* aux_out) { + JxlEncoderChunkedFrameAdapter frame_data(ib.xsize(), ib.ysize(), + ib.extra_channels().size()); + std::vector<uint8_t> color; + if (ib.IsJPEG()) { + frame_data.SetJPEGData(*ib.jpeg_data); + } else { + uint32_t num_channels = + ib.IsGray() && frame_info.ib_needs_color_transform ? 1 : 3; + size_t stride = ib.xsize() * num_channels * 4; + color.resize(ib.ysize() * stride); + JXL_RETURN_IF_ERROR(ConvertToExternal( + ib, /*bites_per_sample=*/32, /*float_out=*/true, num_channels, + JXL_NATIVE_ENDIAN, stride, pool, color.data(), color.size(), + /*out_callback=*/{}, Orientation::kIdentity)); + JxlPixelFormat format{num_channels, JXL_TYPE_FLOAT, JXL_NATIVE_ENDIAN, 0}; + frame_data.SetFromBuffer(0, color.data(), color.size(), format); + } + for (size_t ec = 0; ec < ib.extra_channels().size(); ++ec) { + JxlPixelFormat ec_format{1, JXL_TYPE_FLOAT, JXL_NATIVE_ENDIAN, 0}; + size_t ec_stride = ib.xsize() * 4; + std::vector<uint8_t> ec_data(ib.ysize() * ec_stride); + const ImageF* channel = &ib.extra_channels()[ec]; + JXL_RETURN_IF_ERROR(ConvertChannelsToExternal( + &channel, 1, + /*bites_per_sample=*/32, + /*float_out=*/true, JXL_NATIVE_ENDIAN, ec_stride, pool, ec_data.data(), + ec_data.size(), /*out_callback=*/{}, Orientation::kIdentity)); + frame_data.SetFromBuffer(1 + ec, ec_data.data(), ec_data.size(), ec_format); + } + FrameInfo fi = frame_info; + fi.origin = ib.origin; + fi.blend = ib.blend; + fi.blendmode = ib.blendmode; + fi.duration = ib.duration; + fi.timecode = ib.timecode; + fi.name = ib.name; + std::vector<uint8_t> output(64); + uint8_t* next_out = output.data(); + size_t avail_out = output.size(); + JxlEncoderOutputProcessorWrapper output_processor; + output_processor.SetAvailOut(&next_out, &avail_out); + JXL_RETURN_IF_ERROR(EncodeFrame(cparams_orig, fi, metadata, frame_data, cms, + pool, &output_processor, aux_out)); + output_processor.SetFinalizedPosition(); + output_processor.CopyOutput(output, next_out, avail_out); + writer->AppendByteAligned(Bytes(output)); + return true; +} + +} // namespace jxl |