summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/enc_modular.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/enc_modular.cc')
-rw-r--r--third_party/jpeg-xl/lib/jxl/enc_modular.cc248
1 files changed, 121 insertions, 127 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/enc_modular.cc b/third_party/jpeg-xl/lib/jxl/enc_modular.cc
index dbd62d4a01..35fac3c827 100644
--- a/third_party/jpeg-xl/lib/jxl/enc_modular.cc
+++ b/third_party/jpeg-xl/lib/jxl/enc_modular.cc
@@ -300,13 +300,12 @@ bool do_transform(Image& image, const Transform& tr,
bool maybe_do_transform(Image& image, const Transform& tr,
const CompressParams& cparams,
- const weighted::Header& wp_header,
+ const weighted::Header& wp_header, float cost_before,
jxl::ThreadPool* pool = nullptr,
bool force_jxlart = false) {
if (force_jxlart || cparams.speed_tier >= SpeedTier::kSquirrel) {
return do_transform(image, tr, wp_header, pool, force_jxlart);
}
- float cost_before = EstimateCost(image);
bool did_it = do_transform(image, tr, wp_header, pool);
if (did_it) {
float cost_after = EstimateCost(image);
@@ -321,6 +320,110 @@ bool maybe_do_transform(Image& image, const Transform& tr,
return did_it;
}
+void try_palettes(Image& gi, int& max_bitdepth, int& maxval,
+ const CompressParams& cparams_, float channel_colors_percent,
+ jxl::ThreadPool* pool = nullptr) {
+ float cost_before = 0.f;
+ size_t did_palette = 0;
+ float nb_pixels = gi.channel[0].w * gi.channel[0].h;
+ int nb_chans = gi.channel.size() - gi.nb_meta_channels;
+ // arbitrary estimate: 4.8 bpp for 8-bit RGB
+ float arbitrary_bpp_estimate = 0.2f * gi.bitdepth * nb_chans;
+
+ if (cparams_.palette_colors != 0 || cparams_.lossy_palette) {
+ // when not estimating, assume some arbitrary bpp
+ cost_before = cparams_.speed_tier <= SpeedTier::kSquirrel
+ ? EstimateCost(gi)
+ : nb_pixels * arbitrary_bpp_estimate;
+ // all-channel palette (e.g. RGBA)
+ if (nb_chans > 1) {
+ Transform maybe_palette(TransformId::kPalette);
+ maybe_palette.begin_c = gi.nb_meta_channels;
+ maybe_palette.num_c = nb_chans;
+ // Heuristic choice of max colors for a palette:
+ // max_colors = nb_pixels * estimated_bpp_without_palette * 0.0005 +
+ // + nb_pixels / 128 + 128
+ // (estimated_bpp_without_palette = cost_before / nb_pixels)
+ // Rationale: small image with large palette is not effective;
+ // also if the entropy (estimated bpp) is low (e.g. mostly solid/gradient
+ // areas), palette is less useful and may even be counterproductive.
+ maybe_palette.nb_colors = std::min(
+ static_cast<int>(cost_before * 0.0005f + nb_pixels / 128 + 128),
+ std::abs(cparams_.palette_colors));
+ maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
+ maybe_palette.lossy_palette =
+ (cparams_.lossy_palette && maybe_palette.num_c == 3);
+ if (maybe_palette.lossy_palette) {
+ maybe_palette.predictor = Predictor::Average4;
+ }
+ // TODO(veluca): use a custom weighted header if using the weighted
+ // predictor.
+ if (maybe_do_transform(gi, maybe_palette, cparams_, weighted::Header(),
+ cost_before, pool, cparams_.options.zero_tokens)) {
+ did_palette = 1;
+ };
+ }
+ // all-minus-one-channel palette (RGB with separate alpha, or CMY with
+ // separate K)
+ if (!did_palette && nb_chans > 3) {
+ Transform maybe_palette_3(TransformId::kPalette);
+ maybe_palette_3.begin_c = gi.nb_meta_channels;
+ maybe_palette_3.num_c = nb_chans - 1;
+ maybe_palette_3.nb_colors = std::min(
+ static_cast<int>(cost_before * 0.0005f + nb_pixels / 128 + 128),
+ std::abs(cparams_.palette_colors));
+ maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0;
+ maybe_palette_3.lossy_palette = cparams_.lossy_palette;
+ if (maybe_palette_3.lossy_palette) {
+ maybe_palette_3.predictor = Predictor::Average4;
+ }
+ if (maybe_do_transform(gi, maybe_palette_3, cparams_, weighted::Header(),
+ cost_before, pool, cparams_.options.zero_tokens)) {
+ did_palette = 1;
+ }
+ }
+ }
+
+ if (channel_colors_percent > 0) {
+ // single channel palette (like FLIF's ChannelCompact)
+ size_t nb_channels = gi.channel.size() - gi.nb_meta_channels - did_palette;
+ int orig_bitdepth = max_bitdepth;
+ max_bitdepth = 0;
+ if (nb_channels > 0 && (did_palette || cost_before == 0)) {
+ cost_before =
+ cparams_.speed_tier < SpeedTier::kSquirrel ? EstimateCost(gi) : 0;
+ }
+ for (size_t i = did_palette; i < nb_channels + did_palette; i++) {
+ int32_t min;
+ int32_t max;
+ compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
+ int64_t colors = static_cast<int64_t>(max) - min + 1;
+ JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max);
+ Transform maybe_palette_1(TransformId::kPalette);
+ maybe_palette_1.begin_c = i + gi.nb_meta_channels;
+ maybe_palette_1.num_c = 1;
+ // simple heuristic: if less than X percent of the values in the range
+ // actually occur, it is probably worth it to do a compaction
+ // (but only if the channel palette is less than 6% the size of the
+ // image itself)
+ maybe_palette_1.nb_colors =
+ std::min(static_cast<int>(nb_pixels / 16),
+ static_cast<int>(channel_colors_percent / 100. * colors));
+ if (maybe_do_transform(gi, maybe_palette_1, cparams_, weighted::Header(),
+ cost_before, pool)) {
+ // effective bit depth is lower, adjust quantization accordingly
+ compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
+ if (max < maxval) maxval = max;
+ int ch_bitdepth =
+ (max > 0 ? CeilLog2Nonzero(static_cast<uint32_t>(max)) : 0);
+ if (ch_bitdepth > max_bitdepth) max_bitdepth = ch_bitdepth;
+ } else {
+ max_bitdepth = orig_bitdepth;
+ }
+ }
+ }
+}
+
} // namespace
ModularFrameEncoder::ModularFrameEncoder(const FrameHeader& frame_header,
@@ -479,7 +582,6 @@ ModularFrameEncoder::ModularFrameEncoder(const FrameHeader& frame_header,
cparams_.options.predictor = Predictor::Gradient;
}
} else {
- delta_pred_ = cparams_.options.predictor;
if (cparams_.lossy_palette) cparams_.options.predictor = Predictor::Zero;
}
if (!cparams_.ModularPartIsLossless()) {
@@ -624,6 +726,7 @@ Status ModularFrameEncoder::ComputeEncodingData(
pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y);
pixel_type* const JXL_RESTRICT row_Y = gi.channel[0].Row(y);
for (size_t x = 0; x < xsize; ++x) {
+ // TODO(eustas): check if std::roundf is appropriate
row_out[x] = row_in[x] * factor + 0.5f;
row_out[x] -= row_Y[x];
// zero the lsb of B
@@ -720,81 +823,16 @@ Status ModularFrameEncoder::ComputeEncodingData(
cparams_.lossy_palette = false;
}
- // Global palette
- if ((cparams_.palette_colors != 0 || cparams_.lossy_palette) && !groupwise) {
- // all-channel palette (e.g. RGBA)
- if (gi.channel.size() - gi.nb_meta_channels > 1) {
- Transform maybe_palette(TransformId::kPalette);
- maybe_palette.begin_c = gi.nb_meta_channels;
- maybe_palette.num_c = gi.channel.size() - gi.nb_meta_channels;
- maybe_palette.nb_colors = std::min(static_cast<int>(xsize * ysize / 2),
- std::abs(cparams_.palette_colors));
- maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
- maybe_palette.lossy_palette =
- (cparams_.lossy_palette && maybe_palette.num_c == 3);
- if (maybe_palette.lossy_palette) {
- maybe_palette.predictor = delta_pred_;
- }
- // TODO(veluca): use a custom weighted header if using the weighted
- // predictor.
- maybe_do_transform(gi, maybe_palette, cparams_, weighted::Header(), pool,
- cparams_.options.zero_tokens);
- }
- // all-minus-one-channel palette (RGB with separate alpha, or CMY with
- // separate K)
- if (gi.channel.size() - gi.nb_meta_channels > 3) {
- Transform maybe_palette_3(TransformId::kPalette);
- maybe_palette_3.begin_c = gi.nb_meta_channels;
- maybe_palette_3.num_c = gi.channel.size() - gi.nb_meta_channels - 1;
- maybe_palette_3.nb_colors = std::min(static_cast<int>(xsize * ysize / 3),
- std::abs(cparams_.palette_colors));
- maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0;
- maybe_palette_3.lossy_palette = cparams_.lossy_palette;
- if (maybe_palette_3.lossy_palette) {
- maybe_palette_3.predictor = delta_pred_;
- }
- maybe_do_transform(gi, maybe_palette_3, cparams_, weighted::Header(),
- pool, cparams_.options.zero_tokens);
- }
- }
-
- // Global channel palette
- if (!groupwise && cparams_.channel_colors_pre_transform_percent > 0 &&
- !cparams_.lossy_palette &&
+ // Global palette transforms
+ float channel_colors_percent = 0;
+ if (!cparams_.lossy_palette &&
(cparams_.speed_tier <= SpeedTier::kThunder ||
(do_color && metadata.bit_depth.bits_per_sample > 8))) {
- // single channel palette (like FLIF's ChannelCompact)
- size_t nb_channels = gi.channel.size() - gi.nb_meta_channels;
- int orig_bitdepth = max_bitdepth;
- max_bitdepth = 0;
- for (size_t i = 0; i < nb_channels; i++) {
- int32_t min;
- int32_t max;
- compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
- int64_t colors = static_cast<int64_t>(max) - min + 1;
- JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max);
- Transform maybe_palette_1(TransformId::kPalette);
- maybe_palette_1.begin_c = i + gi.nb_meta_channels;
- maybe_palette_1.num_c = 1;
- // simple heuristic: if less than X percent of the values in the range
- // actually occur, it is probably worth it to do a compaction
- // (but only if the channel palette is less than 6% the size of the
- // image itself)
- maybe_palette_1.nb_colors = std::min(
- static_cast<int>(xsize * ysize / 16),
- static_cast<int>(cparams_.channel_colors_pre_transform_percent /
- 100. * colors));
- if (maybe_do_transform(gi, maybe_palette_1, cparams_, weighted::Header(),
- pool)) {
- // effective bit depth is lower, adjust quantization accordingly
- compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
- if (max < maxval) maxval = max;
- int ch_bitdepth =
- (max > 0 ? CeilLog2Nonzero(static_cast<uint32_t>(max)) : 0);
- if (ch_bitdepth > max_bitdepth) max_bitdepth = ch_bitdepth;
- } else
- max_bitdepth = orig_bitdepth;
- }
+ channel_colors_percent = cparams_.channel_colors_pre_transform_percent;
+ }
+ if (!groupwise) {
+ try_palettes(gi, max_bitdepth, maxval, cparams_, channel_colors_percent,
+ pool);
}
// don't do an RCT if we're short on bits
@@ -1318,61 +1356,17 @@ Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect,
if (gi.channel.empty()) return true;
// Do some per-group transforms
- // Local palette
+ // Local palette transforms
// TODO(veluca): make this work with quantize-after-prediction in lossy
// mode.
- if (cparams_.butteraugli_distance == 0.f && cparams_.palette_colors != 0 &&
+ if (cparams_.butteraugli_distance == 0.f && !cparams_.lossy_palette &&
cparams_.speed_tier < SpeedTier::kCheetah) {
- // all-channel palette (e.g. RGBA)
- if (gi.channel.size() - gi.nb_meta_channels > 1) {
- Transform maybe_palette(TransformId::kPalette);
- maybe_palette.begin_c = gi.nb_meta_channels;
- maybe_palette.num_c = gi.channel.size() - gi.nb_meta_channels;
- maybe_palette.nb_colors = std::abs(cparams_.palette_colors);
- maybe_palette.ordered_palette = cparams_.palette_colors >= 0;
- maybe_do_transform(gi, maybe_palette, cparams_, weighted::Header());
- }
- // all-minus-one-channel palette (RGB with separate alpha, or CMY with
- // separate K)
- if (gi.channel.size() - gi.nb_meta_channels > 3) {
- Transform maybe_palette_3(TransformId::kPalette);
- maybe_palette_3.begin_c = gi.nb_meta_channels;
- maybe_palette_3.num_c = gi.channel.size() - gi.nb_meta_channels - 1;
- maybe_palette_3.nb_colors = std::abs(cparams_.palette_colors);
- maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0;
- maybe_palette_3.lossy_palette = cparams_.lossy_palette;
- if (maybe_palette_3.lossy_palette) {
- maybe_palette_3.predictor = Predictor::Weighted;
- }
- maybe_do_transform(gi, maybe_palette_3, cparams_, weighted::Header());
- }
- }
-
- // Local channel palette
- if (cparams_.channel_colors_percent > 0 &&
- cparams_.butteraugli_distance == 0.f && !cparams_.lossy_palette &&
- cparams_.speed_tier < SpeedTier::kCheetah &&
- !(cparams_.responsive && cparams_.decoding_speed_tier >= 1)) {
- // single channel palette (like FLIF's ChannelCompact)
- size_t nb_channels = gi.channel.size() - gi.nb_meta_channels;
- for (size_t i = 0; i < nb_channels; i++) {
- int32_t min;
- int32_t max;
- compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max);
- int64_t colors = static_cast<int64_t>(max) - min + 1;
- JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max);
- Transform maybe_palette_1(TransformId::kPalette);
- maybe_palette_1.begin_c = i + gi.nb_meta_channels;
- maybe_palette_1.num_c = 1;
- // simple heuristic: if less than X percent of the values in the range
- // actually occur, it is probably worth it to do a compaction
- // (but only if the channel palette is less than 80% the size of the
- // image itself)
- maybe_palette_1.nb_colors = std::min(
- static_cast<int>(xsize * ysize * 0.8),
- static_cast<int>(cparams_.channel_colors_percent / 100. * colors));
- maybe_do_transform(gi, maybe_palette_1, cparams_, weighted::Header());
+ int max_bitdepth = 0, maxval = 0; // don't care about that here
+ float channel_color_percent = 0;
+ if (!(cparams_.responsive && cparams_.decoding_speed_tier >= 1)) {
+ channel_color_percent = cparams_.channel_colors_percent;
}
+ try_palettes(gi, max_bitdepth, maxval, cparams_, channel_color_percent);
}
}