summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/pacing/pacing_controller_unittest.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/modules/pacing/pacing_controller_unittest.cc')
-rw-r--r--third_party/libwebrtc/modules/pacing/pacing_controller_unittest.cc144
1 files changed, 78 insertions, 66 deletions
diff --git a/third_party/libwebrtc/modules/pacing/pacing_controller_unittest.cc b/third_party/libwebrtc/modules/pacing/pacing_controller_unittest.cc
index ba93d05bb7..9e6ede6dc0 100644
--- a/third_party/libwebrtc/modules/pacing/pacing_controller_unittest.cc
+++ b/third_party/libwebrtc/modules/pacing/pacing_controller_unittest.cc
@@ -427,6 +427,7 @@ TEST_F(PacingControllerTest, BudgetAffectsAudioInTrial) {
DataRate pacing_rate =
DataRate::BitsPerSec(kPacketSize / 3 * 8 * kProcessIntervalsPerSecond);
pacer.SetPacingRates(pacing_rate, DataRate::Zero());
+ pacer.SetSendBurstInterval(TimeDelta::Zero());
// Video fills budget for following process periods.
pacer.EnqueuePacket(video_.BuildNextPacket(kPacketSize));
EXPECT_CALL(callback_, SendPacket).Times(1);
@@ -484,7 +485,7 @@ TEST_F(PacingControllerTest, FirstSentPacketTimeIsSet) {
EXPECT_EQ(kStartTime, pacer->FirstSentPacketTime());
}
-TEST_F(PacingControllerTest, QueueAndPacePackets) {
+TEST_F(PacingControllerTest, QueueAndPacePacketsWithZeroBurstPeriod) {
const uint32_t kSsrc = 12345;
uint16_t sequence_number = 1234;
const DataSize kPackeSize = DataSize::Bytes(250);
@@ -495,6 +496,7 @@ TEST_F(PacingControllerTest, QueueAndPacePackets) {
const size_t kPacketsToSend = (kSendInterval * kTargetRate).bytes() *
kPaceMultiplier / kPackeSize.bytes();
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
+ pacer->SetSendBurstInterval(TimeDelta::Zero());
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
for (size_t i = 0; i < kPacketsToSend; ++i) {
@@ -536,30 +538,30 @@ TEST_F(PacingControllerTest, PaceQueuedPackets) {
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
- // Due to the multiplicative factor we can send 5 packets during a send
- // interval. (network capacity * multiplier / (8 bits per byte *
- // (packet size * #send intervals per second)
- const size_t packets_to_send_per_interval =
- kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
- for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
+ const size_t packets_to_send_per_burst_interval =
+ (kTargetRate * kPaceMultiplier * PacingController::kDefaultBurstInterval)
+ .bytes() /
+ kPacketSize;
+ for (size_t i = 0; i < packets_to_send_per_burst_interval; ++i) {
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
}
- for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
+ for (size_t j = 0; j < packets_to_send_per_burst_interval * 10; ++j) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize));
}
- EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
+ EXPECT_EQ(packets_to_send_per_burst_interval +
+ packets_to_send_per_burst_interval * 10,
pacer->QueueSizePackets());
- while (pacer->QueueSizePackets() > packets_to_send_per_interval * 10) {
+ while (pacer->QueueSizePackets() > packets_to_send_per_burst_interval * 10) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
- EXPECT_EQ(pacer->QueueSizePackets(), packets_to_send_per_interval * 10);
+ EXPECT_EQ(pacer->QueueSizePackets(), packets_to_send_per_burst_interval * 10);
EXPECT_CALL(callback_, SendPadding).Times(0);
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, false))
@@ -582,12 +584,12 @@ TEST_F(PacingControllerTest, PaceQueuedPackets) {
pacer->ProcessPackets();
// Send some more packet, just show that we can..?
- for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
+ for (size_t i = 0; i < packets_to_send_per_burst_interval; ++i) {
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(), 250);
}
- EXPECT_EQ(packets_to_send_per_interval, pacer->QueueSizePackets());
- for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
+ EXPECT_EQ(packets_to_send_per_burst_interval, pacer->QueueSizePackets());
+ for (size_t i = 0; i < packets_to_send_per_burst_interval; ++i) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
@@ -641,19 +643,23 @@ TEST_F(PacingControllerTest,
TEST_F(PacingControllerTest, Padding) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
- const size_t kPacketSize = 250;
+ const size_t kPacketSize = 1000;
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
- const size_t kPacketsToSend = 20;
+ const size_t kPacketsToSend = 30;
for (size_t i = 0; i < kPacketsToSend; ++i) {
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
}
+
+ int expected_bursts =
+ floor(DataSize::Bytes(pacer->QueueSizePackets() * kPacketSize) /
+ (kPaceMultiplier * kTargetRate) /
+ PacingController::kDefaultBurstInterval);
const TimeDelta expected_pace_time =
- DataSize::Bytes(pacer->QueueSizePackets() * kPacketSize) /
- (kPaceMultiplier * kTargetRate);
+ (expected_bursts - 1) * PacingController::kDefaultBurstInterval;
EXPECT_CALL(callback_, SendPadding).Times(0);
// Only the media packets should be sent.
Timestamp start_time = clock_.CurrentTime();
@@ -663,7 +669,7 @@ TEST_F(PacingControllerTest, Padding) {
}
const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time;
EXPECT_LE((actual_pace_time - expected_pace_time).Abs(),
- PacingController::kMinSleepTime);
+ PacingController::kDefaultBurstInterval);
// Pacing media happens at 2.5x, but padding was configured with 1.0x
// factor. We have to wait until the padding debt is gone before we start
@@ -766,8 +772,8 @@ TEST_F(PacingControllerTest, VerifyAverageBitrateVaryingMediaPayload) {
media_payload));
media_bytes += media_payload;
}
-
- AdvanceTimeUntil(pacer->NextSendTime());
+ AdvanceTimeUntil(std::min(clock_.CurrentTime() + TimeDelta::Millis(20),
+ pacer->NextSendTime()));
pacer->ProcessPackets();
}
@@ -805,20 +811,18 @@ TEST_F(PacingControllerTest, Priority) {
// Expect all high and normal priority to be sent out first.
EXPECT_CALL(callback_, SendPadding).Times(0);
+ testing::Sequence s;
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
- .Times(packets_to_send_per_interval + 1);
+ .Times(packets_to_send_per_interval + 1)
+ .InSequence(s);
+ EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
+ capture_time_ms_low_priority, _, _))
+ .InSequence(s);
- while (pacer->QueueSizePackets() > 1) {
+ while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
-
- EXPECT_EQ(1u, pacer->QueueSizePackets());
-
- EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
- capture_time_ms_low_priority, _, _));
- AdvanceTimeUntil(pacer->NextSendTime());
- pacer->ProcessPackets();
}
TEST_F(PacingControllerTest, RetransmissionPriority) {
@@ -829,23 +833,22 @@ TEST_F(PacingControllerTest, RetransmissionPriority) {
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
- // Due to the multiplicative factor we can send 5 packets during a send
- // interval. (network capacity * multiplier / (8 bits per byte *
- // (packet size * #send intervals per second)
- const size_t packets_to_send_per_interval =
- kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
+ const size_t packets_to_send_per_burst_interval =
+ (kTargetRate * kPaceMultiplier * PacingController::kDefaultBurstInterval)
+ .bytes() /
+ 250;
pacer->ProcessPackets();
EXPECT_EQ(0u, pacer->QueueSizePackets());
// Alternate retransmissions and normal packets.
- for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
+ for (size_t i = 0; i < packets_to_send_per_burst_interval; ++i) {
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc,
sequence_number++, capture_time_ms, 250));
pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission, ssrc,
sequence_number++,
capture_time_ms_retransmission, 250));
}
- EXPECT_EQ(2 * packets_to_send_per_interval, pacer->QueueSizePackets());
+ EXPECT_EQ(2 * packets_to_send_per_burst_interval, pacer->QueueSizePackets());
// Expect all retransmissions to be sent out first despite having a later
// capture time.
@@ -853,19 +856,19 @@ TEST_F(PacingControllerTest, RetransmissionPriority) {
EXPECT_CALL(callback_, SendPacket(_, _, _, false, _)).Times(0);
EXPECT_CALL(callback_,
SendPacket(ssrc, _, capture_time_ms_retransmission, true, _))
- .Times(packets_to_send_per_interval);
+ .Times(packets_to_send_per_burst_interval);
- while (pacer->QueueSizePackets() > packets_to_send_per_interval) {
+ while (pacer->QueueSizePackets() > packets_to_send_per_burst_interval) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
- EXPECT_EQ(packets_to_send_per_interval, pacer->QueueSizePackets());
+ EXPECT_EQ(packets_to_send_per_burst_interval, pacer->QueueSizePackets());
// Expect the remaining (non-retransmission) packets to be sent.
EXPECT_CALL(callback_, SendPadding).Times(0);
EXPECT_CALL(callback_, SendPacket(_, _, _, true, _)).Times(0);
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, false, _))
- .Times(packets_to_send_per_interval);
+ .Times(packets_to_send_per_burst_interval);
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
@@ -890,13 +893,13 @@ TEST_F(PacingControllerTest, HighPrioDoesntAffectBudget) {
sequence_number++, capture_time_ms, kPacketSize);
}
pacer->ProcessPackets();
+ EXPECT_EQ(pacer->QueueSizePackets(), 0u);
// Low prio packets does affect the budget.
- // Due to the multiplicative factor we can send 5 packets during a send
- // interval. (network capacity * multiplier / (8 bits per byte *
- // (packet size * #send intervals per second)
- const size_t kPacketsToSendPerInterval =
- kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
- for (size_t i = 0; i < kPacketsToSendPerInterval; ++i) {
+ const size_t kPacketsToSendPerBurstInterval =
+ (kTargetRate * kPaceMultiplier * PacingController::kDefaultBurstInterval)
+ .bytes() /
+ kPacketSize;
+ for (size_t i = 0; i < kPacketsToSendPerBurstInterval; ++i) {
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize);
@@ -904,16 +907,16 @@ TEST_F(PacingControllerTest, HighPrioDoesntAffectBudget) {
// Send all packets and measure pace time.
Timestamp start_time = clock_.CurrentTime();
+ EXPECT_EQ(pacer->NextSendTime(), clock_.CurrentTime());
while (pacer->QueueSizePackets() > 0) {
AdvanceTimeUntil(pacer->NextSendTime());
pacer->ProcessPackets();
}
- // Measure pacing time. Expect only low-prio packets to affect this.
+ // Measure pacing time.
TimeDelta pacing_time = clock_.CurrentTime() - start_time;
- TimeDelta expected_pacing_time =
- DataSize::Bytes(kPacketsToSendPerInterval * kPacketSize) /
- (kTargetRate * kPaceMultiplier);
+ // All packets sent in one burst since audio packets are not accounted for.
+ TimeDelta expected_pacing_time = TimeDelta::Zero();
EXPECT_NEAR(pacing_time.us<double>(), expected_pacing_time.us<double>(),
PacingController::kMinSleepTime.us<double>());
}
@@ -965,6 +968,7 @@ TEST_F(PacingControllerTest, DoesNotAllowOveruseAfterCongestion) {
auto now_ms = [this] { return clock_.TimeInMilliseconds(); };
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
+ pacer->SetSendBurstInterval(TimeDelta::Zero());
EXPECT_CALL(callback_, SendPadding).Times(0);
// The pacing rate is low enough that the budget should not allow two packets
// to be sent in a row.
@@ -1853,6 +1857,7 @@ TEST_F(PacingControllerTest, AccountsForAudioEnqueueTime) {
// Audio not paced, but still accounted for in budget.
pacer->SetAccountForAudioPackets(true);
pacer->SetPacingRates(kPacingDataRate, kPaddingDataRate);
+ pacer->SetSendBurstInterval(TimeDelta::Zero());
// Enqueue two audio packets, advance clock to where one packet
// should have drained the buffer already, has they been sent
@@ -1898,13 +1903,12 @@ TEST_F(PacingControllerTest, NextSendTimeAccountsForPadding) {
EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(),
PacingController::kPausedProcessInterval);
- // Enqueue a new packet, that can't be sent until previous buffer has
- // drained.
+ // Enqueue a new packet, that can be sent immediately due to default burst
+ // rate is 40ms.
SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc,
sequnce_number++, clock_.TimeInMilliseconds(),
kPacketSize.bytes());
- EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
- clock_.AdvanceTime(kPacketPacingTime);
+ EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), TimeDelta::Zero());
pacer->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
@@ -1916,11 +1920,13 @@ TEST_F(PacingControllerTest, NextSendTimeAccountsForPadding) {
// previous debt has cleared. Since padding was disabled before, there
// currently is no padding debt.
pacer->SetPacingRates(kPacingDataRate, kPacingDataRate / 2);
- EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
+ EXPECT_EQ(pacer->QueueSizePackets(), 0u);
+ EXPECT_LT(pacer->NextSendTime() - clock_.CurrentTime(),
+ PacingController::kDefaultBurstInterval);
// Advance time, expect padding.
EXPECT_CALL(callback_, SendPadding).WillOnce(Return(kPacketSize.bytes()));
- clock_.AdvanceTime(kPacketPacingTime);
+ clock_.AdvanceTime(pacer->NextSendTime() - clock_.CurrentTime());
pacer->ProcessPackets();
::testing::Mock::VerifyAndClearExpectations(&callback_);
@@ -1933,7 +1939,7 @@ TEST_F(PacingControllerTest, NextSendTimeAccountsForPadding) {
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++,
clock_.TimeInMilliseconds(), kPacketSize.bytes()));
- EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
+ EXPECT_EQ(pacer->NextSendTime(), clock_.CurrentTime());
}
TEST_F(PacingControllerTest, PaddingTargetAccountsForPaddingRate) {
@@ -2011,8 +2017,8 @@ TEST_F(PacingControllerTest, SendsFecPackets) {
TEST_F(PacingControllerTest, GapInPacingDoesntAccumulateBudget) {
const uint32_t kSsrc = 12345;
uint16_t sequence_number = 1234;
- const DataSize kPackeSize = DataSize::Bytes(250);
- const TimeDelta kPacketSendTime = TimeDelta::Millis(15);
+ const DataSize kPackeSize = DataSize::Bytes(1000);
+ const TimeDelta kPacketSendTime = TimeDelta::Millis(25);
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
pacer->SetPacingRates(kPackeSize / kPacketSendTime,
@@ -2028,15 +2034,20 @@ TEST_F(PacingControllerTest, GapInPacingDoesntAccumulateBudget) {
// Advance time kPacketSendTime past where the media debt should be 0.
clock_.AdvanceTime(2 * kPacketSendTime);
- // Enqueue two new packets. Expect only one to be sent one ProcessPackets().
+ // Enqueue three new packets. Expect only two to be sent one ProcessPackets()
+ // since the default burst interval is 40ms.
+ SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc,
+ sequence_number++, clock_.TimeInMilliseconds(),
+ kPackeSize.bytes());
+ SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc,
+ sequence_number++, clock_.TimeInMilliseconds(),
+ kPackeSize.bytes());
+ EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number + 1, _, _, _))
+ .Times(0);
pacer->EnqueuePacket(
BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number + 1,
clock_.TimeInMilliseconds(), kPackeSize.bytes()));
- pacer->EnqueuePacket(
- BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number + 2,
- clock_.TimeInMilliseconds(), kPackeSize.bytes()));
- EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number + 1,
- clock_.TimeInMilliseconds(), false, false));
+
pacer->ProcessPackets();
}
@@ -2044,6 +2055,7 @@ TEST_F(PacingControllerTest, HandlesSubMicrosecondSendIntervals) {
static constexpr DataSize kPacketSize = DataSize::Bytes(1);
static constexpr TimeDelta kPacketSendTime = TimeDelta::Micros(1);
auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_);
+ pacer->SetSendBurstInterval(TimeDelta::Zero());
// Set pacing rate such that a packet is sent in 0.5us.
pacer->SetPacingRates(/*pacing_rate=*/2 * kPacketSize / kPacketSendTime,