summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/video_coding/timing/jitter_estimator.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/modules/video_coding/timing/jitter_estimator.cc')
-rw-r--r--third_party/libwebrtc/modules/video_coding/timing/jitter_estimator.cc476
1 files changed, 476 insertions, 0 deletions
diff --git a/third_party/libwebrtc/modules/video_coding/timing/jitter_estimator.cc b/third_party/libwebrtc/modules/video_coding/timing/jitter_estimator.cc
new file mode 100644
index 0000000000..62757787a1
--- /dev/null
+++ b/third_party/libwebrtc/modules/video_coding/timing/jitter_estimator.cc
@@ -0,0 +1,476 @@
+/*
+ * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "modules/video_coding/timing/jitter_estimator.h"
+
+#include <math.h>
+#include <string.h>
+
+#include <algorithm>
+#include <cstdint>
+
+#include "absl/types/optional.h"
+#include "api/field_trials_view.h"
+#include "api/units/data_size.h"
+#include "api/units/frequency.h"
+#include "api/units/time_delta.h"
+#include "api/units/timestamp.h"
+#include "modules/video_coding/timing/rtt_filter.h"
+#include "rtc_base/checks.h"
+#include "rtc_base/logging.h"
+#include "rtc_base/numerics/safe_conversions.h"
+#include "system_wrappers/include/clock.h"
+
+namespace webrtc {
+namespace {
+
+// Number of frames to wait for before post processing estimate. Also used in
+// the frame rate estimator ramp-up.
+constexpr size_t kFrameProcessingStartupCount = 30;
+
+// Number of frames to wait for before enabling the frame size filters.
+constexpr size_t kFramesUntilSizeFiltering = 5;
+
+// Initial value for frame size filters.
+constexpr double kInitialAvgAndMaxFrameSizeBytes = 500.0;
+
+// Time constant for average frame size filter.
+constexpr double kPhi = 0.97;
+// Time constant for max frame size filter.
+constexpr double kPsi = 0.9999;
+// Default constants for percentile frame size filter.
+constexpr double kDefaultMaxFrameSizePercentile = 0.95;
+constexpr int kDefaultFrameSizeWindow = 30 * 10;
+
+// Outlier rejection constants.
+constexpr double kNumStdDevDelayClamp = 3.5;
+constexpr double kNumStdDevDelayOutlier = 15.0;
+constexpr double kNumStdDevSizeOutlier = 3.0;
+constexpr double kCongestionRejectionFactor = -0.25;
+
+// Rampup constant for deviation noise filters.
+constexpr size_t kAlphaCountMax = 400;
+
+// Noise threshold constants.
+// ~Less than 1% chance (look up in normal distribution table)...
+constexpr double kNoiseStdDevs = 2.33;
+// ...of getting 30 ms freezes
+constexpr double kNoiseStdDevOffset = 30.0;
+
+// Jitter estimate clamping limits.
+constexpr TimeDelta kMinJitterEstimate = TimeDelta::Millis(1);
+constexpr TimeDelta kMaxJitterEstimate = TimeDelta::Seconds(10);
+
+// A constant describing the delay from the jitter buffer to the delay on the
+// receiving side which is not accounted for by the jitter buffer nor the
+// decoding delay estimate.
+constexpr TimeDelta OPERATING_SYSTEM_JITTER = TimeDelta::Millis(10);
+
+// Time constant for reseting the NACK count.
+constexpr TimeDelta kNackCountTimeout = TimeDelta::Seconds(60);
+
+// RTT mult activation.
+constexpr size_t kNackLimit = 3;
+
+// Frame rate estimate clamping limit.
+constexpr Frequency kMaxFramerateEstimate = Frequency::Hertz(200);
+
+} // namespace
+
+constexpr char JitterEstimator::Config::kFieldTrialsKey[];
+
+JitterEstimator::Config JitterEstimator::Config::ParseAndValidate(
+ absl::string_view field_trial) {
+ Config config;
+ config.Parser()->Parse(field_trial);
+
+ // The `MovingPercentileFilter` RTC_CHECKs on the validity of the
+ // percentile and window length, so we'd better validate the field trial
+ // provided values here.
+ if (config.max_frame_size_percentile) {
+ double original = *config.max_frame_size_percentile;
+ config.max_frame_size_percentile = std::min(std::max(0.0, original), 1.0);
+ if (config.max_frame_size_percentile != original) {
+ RTC_LOG(LS_ERROR) << "Skipping invalid max_frame_size_percentile="
+ << original;
+ }
+ }
+ if (config.frame_size_window && config.frame_size_window < 1) {
+ RTC_LOG(LS_ERROR) << "Skipping invalid frame_size_window="
+ << *config.frame_size_window;
+ config.frame_size_window = 1;
+ }
+
+ // General sanity checks.
+ if (config.num_stddev_delay_clamp && config.num_stddev_delay_clamp < 0.0) {
+ RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_clamp="
+ << *config.num_stddev_delay_clamp;
+ config.num_stddev_delay_clamp = 0.0;
+ }
+ if (config.num_stddev_delay_outlier &&
+ config.num_stddev_delay_outlier < 0.0) {
+ RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_outlier="
+ << *config.num_stddev_delay_outlier;
+ config.num_stddev_delay_outlier = 0.0;
+ }
+ if (config.num_stddev_size_outlier && config.num_stddev_size_outlier < 0.0) {
+ RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_size_outlier="
+ << *config.num_stddev_size_outlier;
+ config.num_stddev_size_outlier = 0.0;
+ }
+
+ return config;
+}
+
+JitterEstimator::JitterEstimator(Clock* clock,
+ const FieldTrialsView& field_trials)
+ : config_(Config::ParseAndValidate(
+ field_trials.Lookup(Config::kFieldTrialsKey))),
+ avg_frame_size_median_bytes_(static_cast<size_t>(
+ config_.frame_size_window.value_or(kDefaultFrameSizeWindow))),
+ max_frame_size_bytes_percentile_(
+ config_.max_frame_size_percentile.value_or(
+ kDefaultMaxFrameSizePercentile),
+ static_cast<size_t>(
+ config_.frame_size_window.value_or(kDefaultFrameSizeWindow))),
+ fps_counter_(30), // TODO(sprang): Use an estimator with limit based
+ // on time, rather than number of samples.
+ clock_(clock) {
+ Reset();
+}
+
+JitterEstimator::~JitterEstimator() = default;
+
+// Resets the JitterEstimate.
+void JitterEstimator::Reset() {
+ avg_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes;
+ max_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes;
+ var_frame_size_bytes2_ = 100;
+ avg_frame_size_median_bytes_.Reset();
+ max_frame_size_bytes_percentile_.Reset();
+ last_update_time_ = absl::nullopt;
+ prev_estimate_ = absl::nullopt;
+ prev_frame_size_ = absl::nullopt;
+ avg_noise_ms_ = 0.0;
+ var_noise_ms2_ = 4.0;
+ alpha_count_ = 1;
+ filter_jitter_estimate_ = TimeDelta::Zero();
+ latest_nack_ = Timestamp::Zero();
+ nack_count_ = 0;
+ startup_frame_size_sum_bytes_ = 0;
+ startup_frame_size_count_ = 0;
+ startup_count_ = 0;
+ rtt_filter_.Reset();
+ fps_counter_.Reset();
+
+ kalman_filter_ = FrameDelayVariationKalmanFilter();
+}
+
+// Updates the estimates with the new measurements.
+void JitterEstimator::UpdateEstimate(TimeDelta frame_delay,
+ DataSize frame_size) {
+ if (frame_size.IsZero()) {
+ return;
+ }
+ // Can't use DataSize since this can be negative.
+ double delta_frame_bytes =
+ frame_size.bytes() - prev_frame_size_.value_or(DataSize::Zero()).bytes();
+ if (startup_frame_size_count_ < kFramesUntilSizeFiltering) {
+ startup_frame_size_sum_bytes_ += frame_size.bytes();
+ startup_frame_size_count_++;
+ } else if (startup_frame_size_count_ == kFramesUntilSizeFiltering) {
+ // Give the frame size filter.
+ avg_frame_size_bytes_ = startup_frame_size_sum_bytes_ /
+ static_cast<double>(startup_frame_size_count_);
+ startup_frame_size_count_++;
+ }
+
+ double avg_frame_size_bytes =
+ kPhi * avg_frame_size_bytes_ + (1 - kPhi) * frame_size.bytes();
+ double deviation_size_bytes = 2 * sqrt(var_frame_size_bytes2_);
+ if (frame_size.bytes() < avg_frame_size_bytes_ + deviation_size_bytes) {
+ // Only update the average frame size if this sample wasn't a key frame.
+ avg_frame_size_bytes_ = avg_frame_size_bytes;
+ }
+
+ double delta_bytes = frame_size.bytes() - avg_frame_size_bytes;
+ var_frame_size_bytes2_ = std::max(
+ kPhi * var_frame_size_bytes2_ + (1 - kPhi) * (delta_bytes * delta_bytes),
+ 1.0);
+
+ // Update non-linear IIR estimate of max frame size.
+ max_frame_size_bytes_ =
+ std::max<double>(kPsi * max_frame_size_bytes_, frame_size.bytes());
+
+ // Maybe update percentile estimates of frame sizes.
+ if (config_.avg_frame_size_median) {
+ avg_frame_size_median_bytes_.Insert(frame_size.bytes());
+ }
+ if (config_.MaxFrameSizePercentileEnabled()) {
+ max_frame_size_bytes_percentile_.Insert(frame_size.bytes());
+ }
+
+ if (!prev_frame_size_) {
+ prev_frame_size_ = frame_size;
+ return;
+ }
+ prev_frame_size_ = frame_size;
+
+ // Cap frame_delay based on the current time deviation noise.
+ double num_stddev_delay_clamp =
+ config_.num_stddev_delay_clamp.value_or(kNumStdDevDelayClamp);
+ TimeDelta max_time_deviation =
+ TimeDelta::Millis(num_stddev_delay_clamp * sqrt(var_noise_ms2_) + 0.5);
+ frame_delay.Clamp(-max_time_deviation, max_time_deviation);
+
+ double delay_deviation_ms =
+ frame_delay.ms() -
+ kalman_filter_.GetFrameDelayVariationEstimateTotal(delta_frame_bytes);
+
+ // Outlier rejection: these conditions depend on filtered versions of the
+ // delay and frame size _means_, respectively, together with a configurable
+ // number of standard deviations. If a sample is large with respect to the
+ // corresponding mean and dispersion (defined by the number of
+ // standard deviations and the sample standard deviation), it is deemed an
+ // outlier. This "empirical rule" is further described in
+ // https://en.wikipedia.org/wiki/68-95-99.7_rule. Note that neither of the
+ // estimated means are true sample means, which implies that they are possibly
+ // not normally distributed. Hence, this rejection method is just a heuristic.
+ double num_stddev_delay_outlier =
+ config_.num_stddev_delay_outlier.value_or(kNumStdDevDelayOutlier);
+ // Delay outlier rejection is two-sided.
+ bool abs_delay_is_not_outlier =
+ fabs(delay_deviation_ms) <
+ num_stddev_delay_outlier * sqrt(var_noise_ms2_);
+ // The reasoning above means, in particular, that we should use the sample
+ // mean-style `avg_frame_size_bytes_` estimate, as opposed to the
+ // median-filtered version, even if configured to use latter for the
+ // calculation in `CalculateEstimate()`.
+ // Size outlier rejection is one-sided.
+ double num_stddev_size_outlier =
+ config_.num_stddev_size_outlier.value_or(kNumStdDevSizeOutlier);
+ bool size_is_positive_outlier =
+ frame_size.bytes() >
+ avg_frame_size_bytes_ +
+ num_stddev_size_outlier * sqrt(var_frame_size_bytes2_);
+
+ // Only update the Kalman filter if the sample is not considered an extreme
+ // outlier. Even if it is an extreme outlier from a delay point of view, if
+ // the frame size also is large the deviation is probably due to an incorrect
+ // line slope.
+ if (abs_delay_is_not_outlier || size_is_positive_outlier) {
+ // Prevent updating with frames which have been congested by a large frame,
+ // and therefore arrives almost at the same time as that frame.
+ // This can occur when we receive a large frame (key frame) which has been
+ // delayed. The next frame is of normal size (delta frame), and thus deltaFS
+ // will be << 0. This removes all frame samples which arrives after a key
+ // frame.
+ double congestion_rejection_factor =
+ config_.congestion_rejection_factor.value_or(
+ kCongestionRejectionFactor);
+ double filtered_max_frame_size_bytes =
+ config_.MaxFrameSizePercentileEnabled()
+ ? max_frame_size_bytes_percentile_.GetFilteredValue()
+ : max_frame_size_bytes_;
+ bool is_not_congested =
+ delta_frame_bytes >
+ congestion_rejection_factor * filtered_max_frame_size_bytes;
+
+ if (is_not_congested || config_.estimate_noise_when_congested) {
+ // Update the variance of the deviation from the line given by the Kalman
+ // filter.
+ EstimateRandomJitter(delay_deviation_ms);
+ }
+ if (is_not_congested) {
+ // Neither a delay outlier nor a congested frame, so we can safely update
+ // the Kalman filter with the sample.
+ kalman_filter_.PredictAndUpdate(frame_delay.ms(), delta_frame_bytes,
+ filtered_max_frame_size_bytes,
+ var_noise_ms2_);
+ }
+ } else {
+ // Delay outliers affect the noise estimate through a value equal to the
+ // outlier rejection threshold.
+ double num_stddev = (delay_deviation_ms >= 0) ? num_stddev_delay_outlier
+ : -num_stddev_delay_outlier;
+ EstimateRandomJitter(num_stddev * sqrt(var_noise_ms2_));
+ }
+ // Post process the total estimated jitter
+ if (startup_count_ >= kFrameProcessingStartupCount) {
+ PostProcessEstimate();
+ } else {
+ startup_count_++;
+ }
+}
+
+// Updates the nack/packet ratio.
+void JitterEstimator::FrameNacked() {
+ if (nack_count_ < kNackLimit) {
+ nack_count_++;
+ }
+ latest_nack_ = clock_->CurrentTime();
+}
+
+void JitterEstimator::UpdateRtt(TimeDelta rtt) {
+ rtt_filter_.Update(rtt);
+}
+
+JitterEstimator::Config JitterEstimator::GetConfigForTest() const {
+ return config_;
+}
+
+// Estimates the random jitter by calculating the variance of the sample
+// distance from the line given by the Kalman filter.
+void JitterEstimator::EstimateRandomJitter(double d_dT) {
+ Timestamp now = clock_->CurrentTime();
+ if (last_update_time_.has_value()) {
+ fps_counter_.AddSample((now - *last_update_time_).us());
+ }
+ last_update_time_ = now;
+
+ if (alpha_count_ == 0) {
+ RTC_DCHECK_NOTREACHED();
+ return;
+ }
+ double alpha =
+ static_cast<double>(alpha_count_ - 1) / static_cast<double>(alpha_count_);
+ alpha_count_++;
+ if (alpha_count_ > kAlphaCountMax)
+ alpha_count_ = kAlphaCountMax;
+
+ // In order to avoid a low frame rate stream to react slower to changes,
+ // scale the alpha weight relative a 30 fps stream.
+ Frequency fps = GetFrameRate();
+ if (fps > Frequency::Zero()) {
+ constexpr Frequency k30Fps = Frequency::Hertz(30);
+ double rate_scale = k30Fps / fps;
+ // At startup, there can be a lot of noise in the fps estimate.
+ // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
+ // at sample #kFrameProcessingStartupCount.
+ if (alpha_count_ < kFrameProcessingStartupCount) {
+ rate_scale = (alpha_count_ * rate_scale +
+ (kFrameProcessingStartupCount - alpha_count_)) /
+ kFrameProcessingStartupCount;
+ }
+ alpha = pow(alpha, rate_scale);
+ }
+
+ double avg_noise_ms = alpha * avg_noise_ms_ + (1 - alpha) * d_dT;
+ double var_noise_ms2 = alpha * var_noise_ms2_ + (1 - alpha) *
+ (d_dT - avg_noise_ms_) *
+ (d_dT - avg_noise_ms_);
+ avg_noise_ms_ = avg_noise_ms;
+ var_noise_ms2_ = var_noise_ms2;
+ if (var_noise_ms2_ < 1.0) {
+ // The variance should never be zero, since we might get stuck and consider
+ // all samples as outliers.
+ var_noise_ms2_ = 1.0;
+ }
+}
+
+double JitterEstimator::NoiseThreshold() const {
+ double noise_threshold_ms =
+ kNoiseStdDevs * sqrt(var_noise_ms2_) - kNoiseStdDevOffset;
+ if (noise_threshold_ms < 1.0) {
+ noise_threshold_ms = 1.0;
+ }
+ return noise_threshold_ms;
+}
+
+// Calculates the current jitter estimate from the filtered estimates.
+TimeDelta JitterEstimator::CalculateEstimate() {
+ // Using median- and percentile-filtered versions of the frame sizes may be
+ // more robust than using sample mean-style estimates.
+ double filtered_avg_frame_size_bytes =
+ config_.avg_frame_size_median
+ ? avg_frame_size_median_bytes_.GetFilteredValue()
+ : avg_frame_size_bytes_;
+ double filtered_max_frame_size_bytes =
+ config_.MaxFrameSizePercentileEnabled()
+ ? max_frame_size_bytes_percentile_.GetFilteredValue()
+ : max_frame_size_bytes_;
+ double worst_case_frame_size_deviation_bytes =
+ filtered_max_frame_size_bytes - filtered_avg_frame_size_bytes;
+ double ret_ms = kalman_filter_.GetFrameDelayVariationEstimateSizeBased(
+ worst_case_frame_size_deviation_bytes) +
+ NoiseThreshold();
+ TimeDelta ret = TimeDelta::Millis(ret_ms);
+
+ // A very low estimate (or negative) is neglected.
+ if (ret < kMinJitterEstimate) {
+ ret = prev_estimate_.value_or(kMinJitterEstimate);
+ // Sanity check to make sure that no other method has set `prev_estimate_`
+ // to a value lower than `kMinJitterEstimate`.
+ RTC_DCHECK_GE(ret, kMinJitterEstimate);
+ } else if (ret > kMaxJitterEstimate) { // Sanity
+ ret = kMaxJitterEstimate;
+ }
+ prev_estimate_ = ret;
+ return ret;
+}
+
+void JitterEstimator::PostProcessEstimate() {
+ filter_jitter_estimate_ = CalculateEstimate();
+}
+
+// Returns the current filtered estimate if available,
+// otherwise tries to calculate an estimate.
+TimeDelta JitterEstimator::GetJitterEstimate(
+ double rtt_multiplier,
+ absl::optional<TimeDelta> rtt_mult_add_cap) {
+ TimeDelta jitter = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
+ Timestamp now = clock_->CurrentTime();
+
+ if (now - latest_nack_ > kNackCountTimeout)
+ nack_count_ = 0;
+
+ if (filter_jitter_estimate_ > jitter)
+ jitter = filter_jitter_estimate_;
+ if (nack_count_ >= kNackLimit) {
+ if (rtt_mult_add_cap.has_value()) {
+ jitter += std::min(rtt_filter_.Rtt() * rtt_multiplier,
+ rtt_mult_add_cap.value());
+ } else {
+ jitter += rtt_filter_.Rtt() * rtt_multiplier;
+ }
+ }
+
+ static const Frequency kJitterScaleLowThreshold = Frequency::Hertz(5);
+ static const Frequency kJitterScaleHighThreshold = Frequency::Hertz(10);
+ Frequency fps = GetFrameRate();
+ // Ignore jitter for very low fps streams.
+ if (fps < kJitterScaleLowThreshold) {
+ if (fps.IsZero()) {
+ return std::max(TimeDelta::Zero(), jitter);
+ }
+ return TimeDelta::Zero();
+ }
+
+ // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
+ // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
+ if (fps < kJitterScaleHighThreshold) {
+ jitter = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
+ (fps - kJitterScaleLowThreshold) * jitter;
+ }
+
+ return std::max(TimeDelta::Zero(), jitter);
+}
+
+Frequency JitterEstimator::GetFrameRate() const {
+ TimeDelta mean_frame_period = TimeDelta::Micros(fps_counter_.ComputeMean());
+ if (mean_frame_period <= TimeDelta::Zero())
+ return Frequency::Zero();
+
+ Frequency fps = 1 / mean_frame_period;
+ // Sanity check.
+ RTC_DCHECK_GE(fps, Frequency::Zero());
+ return std::min(fps, kMaxFramerateEstimate);
+}
+} // namespace webrtc