summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/test/fake_encoder.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/test/fake_encoder.cc')
-rw-r--r--third_party/libwebrtc/test/fake_encoder.cc445
1 files changed, 445 insertions, 0 deletions
diff --git a/third_party/libwebrtc/test/fake_encoder.cc b/third_party/libwebrtc/test/fake_encoder.cc
new file mode 100644
index 0000000000..009af7b843
--- /dev/null
+++ b/third_party/libwebrtc/test/fake_encoder.cc
@@ -0,0 +1,445 @@
+/*
+ * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "test/fake_encoder.h"
+
+#include <string.h>
+
+#include <algorithm>
+#include <cstdint>
+#include <memory>
+#include <string>
+
+#include "api/video/video_content_type.h"
+#include "modules/video_coding/codecs/h264/include/h264_globals.h"
+#include "modules/video_coding/include/video_codec_interface.h"
+#include "modules/video_coding/include/video_error_codes.h"
+#include "rtc_base/checks.h"
+#include "system_wrappers/include/sleep.h"
+
+namespace webrtc {
+namespace test {
+namespace {
+const int kKeyframeSizeFactor = 5;
+
+// Inverse of proportion of frames assigned to each temporal layer for all
+// possible temporal layers numbers.
+const int kTemporalLayerRateFactor[4][4] = {
+ {1, 0, 0, 0}, // 1/1
+ {2, 2, 0, 0}, // 1/2 + 1/2
+ {4, 4, 2, 0}, // 1/4 + 1/4 + 1/2
+ {8, 8, 4, 2}, // 1/8 + 1/8 + 1/4 + 1/2
+};
+
+void WriteCounter(unsigned char* payload, uint32_t counter) {
+ payload[0] = (counter & 0x00FF);
+ payload[1] = (counter & 0xFF00) >> 8;
+ payload[2] = (counter & 0xFF0000) >> 16;
+ payload[3] = (counter & 0xFF000000) >> 24;
+}
+
+} // namespace
+
+FakeEncoder::FakeEncoder(Clock* clock)
+ : clock_(clock),
+ num_initializations_(0),
+ callback_(nullptr),
+ max_target_bitrate_kbps_(-1),
+ pending_keyframe_(true),
+ counter_(0),
+ debt_bytes_(0) {
+ for (bool& used : used_layers_) {
+ used = false;
+ }
+}
+
+void FakeEncoder::SetFecControllerOverride(
+ FecControllerOverride* fec_controller_override) {
+ // Ignored.
+}
+
+void FakeEncoder::SetMaxBitrate(int max_kbps) {
+ RTC_DCHECK_GE(max_kbps, -1); // max_kbps == -1 disables it.
+ MutexLock lock(&mutex_);
+ max_target_bitrate_kbps_ = max_kbps;
+ SetRatesLocked(current_rate_settings_);
+}
+
+void FakeEncoder::SetQp(int qp) {
+ MutexLock lock(&mutex_);
+ qp_ = qp;
+}
+
+void FakeEncoder::SetImplementationName(absl::string_view implementation_name) {
+ MutexLock lock(&mutex_);
+ implementation_name_ = std::string(implementation_name);
+}
+
+int32_t FakeEncoder::InitEncode(const VideoCodec* config,
+ const Settings& settings) {
+ MutexLock lock(&mutex_);
+ config_ = *config;
+ ++num_initializations_;
+ current_rate_settings_.bitrate.SetBitrate(0, 0, config_.startBitrate * 1000);
+ current_rate_settings_.framerate_fps = config_.maxFramerate;
+ pending_keyframe_ = true;
+ last_frame_info_ = FrameInfo();
+ return 0;
+}
+
+int32_t FakeEncoder::Encode(const VideoFrame& input_image,
+ const std::vector<VideoFrameType>* frame_types) {
+ unsigned char max_framerate;
+ unsigned char num_simulcast_streams;
+ SimulcastStream simulcast_streams[kMaxSimulcastStreams];
+ EncodedImageCallback* callback;
+ RateControlParameters rates;
+ bool keyframe;
+ uint32_t counter;
+ absl::optional<int> qp;
+ {
+ MutexLock lock(&mutex_);
+ max_framerate = config_.maxFramerate;
+ num_simulcast_streams = config_.numberOfSimulcastStreams;
+ for (int i = 0; i < num_simulcast_streams; ++i) {
+ simulcast_streams[i] = config_.simulcastStream[i];
+ }
+ callback = callback_;
+ rates = current_rate_settings_;
+ if (rates.framerate_fps <= 0.0) {
+ rates.framerate_fps = max_framerate;
+ }
+ keyframe = pending_keyframe_;
+ pending_keyframe_ = false;
+ counter = counter_++;
+ qp = qp_;
+ }
+
+ FrameInfo frame_info =
+ NextFrame(frame_types, keyframe, num_simulcast_streams, rates.bitrate,
+ simulcast_streams, static_cast<int>(rates.framerate_fps + 0.5));
+ for (uint8_t i = 0; i < frame_info.layers.size(); ++i) {
+ constexpr int kMinPayLoadLength = 14;
+ if (frame_info.layers[i].size < kMinPayLoadLength) {
+ // Drop this temporal layer.
+ continue;
+ }
+
+ auto buffer = EncodedImageBuffer::Create(frame_info.layers[i].size);
+ // Fill the buffer with arbitrary data. Write someting to make Asan happy.
+ memset(buffer->data(), 9, frame_info.layers[i].size);
+ // Write a counter to the image to make each frame unique.
+ WriteCounter(buffer->data() + frame_info.layers[i].size - 4, counter);
+
+ EncodedImage encoded;
+ encoded.SetEncodedData(buffer);
+
+ encoded.SetRtpTimestamp(input_image.timestamp());
+ encoded._frameType = frame_info.keyframe ? VideoFrameType::kVideoFrameKey
+ : VideoFrameType::kVideoFrameDelta;
+ encoded._encodedWidth = simulcast_streams[i].width;
+ encoded._encodedHeight = simulcast_streams[i].height;
+ if (qp)
+ encoded.qp_ = *qp;
+ encoded.SetSimulcastIndex(i);
+ CodecSpecificInfo codec_specific = EncodeHook(encoded, buffer);
+
+ if (callback->OnEncodedImage(encoded, &codec_specific).error !=
+ EncodedImageCallback::Result::OK) {
+ return -1;
+ }
+ }
+ return 0;
+}
+
+CodecSpecificInfo FakeEncoder::EncodeHook(
+ EncodedImage& encoded_image,
+ rtc::scoped_refptr<EncodedImageBuffer> buffer) {
+ CodecSpecificInfo codec_specific;
+ codec_specific.codecType = kVideoCodecGeneric;
+ return codec_specific;
+}
+
+FakeEncoder::FrameInfo FakeEncoder::NextFrame(
+ const std::vector<VideoFrameType>* frame_types,
+ bool keyframe,
+ uint8_t num_simulcast_streams,
+ const VideoBitrateAllocation& target_bitrate,
+ SimulcastStream simulcast_streams[kMaxSimulcastStreams],
+ int framerate) {
+ FrameInfo frame_info;
+ frame_info.keyframe = keyframe;
+
+ if (frame_types) {
+ for (VideoFrameType frame_type : *frame_types) {
+ if (frame_type == VideoFrameType::kVideoFrameKey) {
+ frame_info.keyframe = true;
+ break;
+ }
+ }
+ }
+
+ MutexLock lock(&mutex_);
+ for (uint8_t i = 0; i < num_simulcast_streams; ++i) {
+ if (target_bitrate.GetBitrate(i, 0) > 0) {
+ int temporal_id = last_frame_info_.layers.size() > i
+ ? ++last_frame_info_.layers[i].temporal_id %
+ simulcast_streams[i].numberOfTemporalLayers
+ : 0;
+ frame_info.layers.emplace_back(0, temporal_id);
+ }
+ }
+
+ if (last_frame_info_.layers.size() < frame_info.layers.size()) {
+ // A new keyframe is needed since a new layer will be added.
+ frame_info.keyframe = true;
+ }
+
+ for (uint8_t i = 0; i < frame_info.layers.size(); ++i) {
+ FrameInfo::SpatialLayer& layer_info = frame_info.layers[i];
+ if (frame_info.keyframe) {
+ layer_info.temporal_id = 0;
+ size_t avg_frame_size =
+ (target_bitrate.GetBitrate(i, 0) + 7) *
+ kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] /
+ (8 * framerate);
+
+ // The first frame is a key frame and should be larger.
+ // Store the overshoot bytes and distribute them over the coming frames,
+ // so that we on average meet the bitrate target.
+ debt_bytes_ += (kKeyframeSizeFactor - 1) * avg_frame_size;
+ layer_info.size = kKeyframeSizeFactor * avg_frame_size;
+ } else {
+ size_t avg_frame_size =
+ (target_bitrate.GetBitrate(i, layer_info.temporal_id) + 7) *
+ kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] /
+ (8 * framerate);
+ layer_info.size = avg_frame_size;
+ if (debt_bytes_ > 0) {
+ // Pay at most half of the frame size for old debts.
+ size_t payment_size = std::min(avg_frame_size / 2, debt_bytes_);
+ debt_bytes_ -= payment_size;
+ layer_info.size -= payment_size;
+ }
+ }
+ }
+ last_frame_info_ = frame_info;
+ return frame_info;
+}
+
+int32_t FakeEncoder::RegisterEncodeCompleteCallback(
+ EncodedImageCallback* callback) {
+ MutexLock lock(&mutex_);
+ callback_ = callback;
+ return 0;
+}
+
+int32_t FakeEncoder::Release() {
+ return 0;
+}
+
+void FakeEncoder::SetRates(const RateControlParameters& parameters) {
+ MutexLock lock(&mutex_);
+ SetRatesLocked(parameters);
+}
+
+void FakeEncoder::SetRatesLocked(const RateControlParameters& parameters) {
+ current_rate_settings_ = parameters;
+ int allocated_bitrate_kbps = parameters.bitrate.get_sum_kbps();
+
+ // Scale bitrate allocation to not exceed the given max target bitrate.
+ if (max_target_bitrate_kbps_ > 0 &&
+ allocated_bitrate_kbps > max_target_bitrate_kbps_) {
+ for (uint8_t spatial_idx = 0; spatial_idx < kMaxSpatialLayers;
+ ++spatial_idx) {
+ for (uint8_t temporal_idx = 0; temporal_idx < kMaxTemporalStreams;
+ ++temporal_idx) {
+ if (current_rate_settings_.bitrate.HasBitrate(spatial_idx,
+ temporal_idx)) {
+ uint32_t bitrate = current_rate_settings_.bitrate.GetBitrate(
+ spatial_idx, temporal_idx);
+ bitrate = static_cast<uint32_t>(
+ (bitrate* int64_t{max_target_bitrate_kbps_}) /
+ allocated_bitrate_kbps);
+ current_rate_settings_.bitrate.SetBitrate(spatial_idx, temporal_idx,
+ bitrate);
+ }
+ }
+ }
+ }
+}
+
+VideoEncoder::EncoderInfo FakeEncoder::GetEncoderInfo() const {
+ EncoderInfo info;
+ MutexLock lock(&mutex_);
+ info.implementation_name = implementation_name_.value_or(kImplementationName);
+ info.is_hardware_accelerated = true;
+ for (int sid = 0; sid < config_.numberOfSimulcastStreams; ++sid) {
+ int number_of_temporal_layers =
+ config_.simulcastStream[sid].numberOfTemporalLayers;
+ info.fps_allocation[sid].clear();
+ for (int tid = 0; tid < number_of_temporal_layers; ++tid) {
+ // {1/4, 1/2, 1} allocation for num layers = 3.
+ info.fps_allocation[sid].push_back(255 /
+ (number_of_temporal_layers - tid));
+ }
+ }
+ return info;
+}
+
+int FakeEncoder::GetConfiguredInputFramerate() const {
+ MutexLock lock(&mutex_);
+ return static_cast<int>(current_rate_settings_.framerate_fps + 0.5);
+}
+
+int FakeEncoder::GetNumInitializations() const {
+ MutexLock lock(&mutex_);
+ return num_initializations_;
+}
+
+const VideoCodec& FakeEncoder::config() const {
+ MutexLock lock(&mutex_);
+ return config_;
+}
+
+FakeH264Encoder::FakeH264Encoder(Clock* clock)
+ : FakeEncoder(clock), idr_counter_(0) {}
+
+CodecSpecificInfo FakeH264Encoder::EncodeHook(
+ EncodedImage& encoded_image,
+ rtc::scoped_refptr<EncodedImageBuffer> buffer) {
+ static constexpr std::array<uint8_t, 3> kStartCode = {0, 0, 1};
+ const size_t kSpsSize = 8;
+ const size_t kPpsSize = 11;
+ const int kIdrFrequency = 10;
+ int current_idr_counter;
+ {
+ MutexLock lock(&local_mutex_);
+ current_idr_counter = idr_counter_;
+ ++idr_counter_;
+ }
+ for (size_t i = 0; i < encoded_image.size(); ++i) {
+ buffer->data()[i] = static_cast<uint8_t>(i);
+ }
+
+ if (current_idr_counter % kIdrFrequency == 0 &&
+ encoded_image.size() > kSpsSize + kPpsSize + 1 + 3 * kStartCode.size()) {
+ const size_t kSpsNalHeader = 0x67;
+ const size_t kPpsNalHeader = 0x68;
+ const size_t kIdrNalHeader = 0x65;
+ uint8_t* data = buffer->data();
+ memcpy(data, kStartCode.data(), kStartCode.size());
+ data += kStartCode.size();
+ data[0] = kSpsNalHeader;
+ data += kSpsSize;
+
+ memcpy(data, kStartCode.data(), kStartCode.size());
+ data += kStartCode.size();
+ data[0] = kPpsNalHeader;
+ data += kPpsSize;
+
+ memcpy(data, kStartCode.data(), kStartCode.size());
+ data += kStartCode.size();
+ data[0] = kIdrNalHeader;
+ } else {
+ memcpy(buffer->data(), kStartCode.data(), kStartCode.size());
+ const size_t kNalHeader = 0x41;
+ buffer->data()[kStartCode.size()] = kNalHeader;
+ }
+
+ CodecSpecificInfo codec_specific;
+ codec_specific.codecType = kVideoCodecH264;
+ codec_specific.codecSpecific.H264.packetization_mode =
+ H264PacketizationMode::NonInterleaved;
+ return codec_specific;
+}
+
+DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms)
+ : test::FakeEncoder(clock), delay_ms_(delay_ms) {
+ // The encoder could be created on a different thread than
+ // it is being used on.
+ sequence_checker_.Detach();
+}
+
+void DelayedEncoder::SetDelay(int delay_ms) {
+ RTC_DCHECK_RUN_ON(&sequence_checker_);
+ delay_ms_ = delay_ms;
+}
+
+int32_t DelayedEncoder::Encode(const VideoFrame& input_image,
+ const std::vector<VideoFrameType>* frame_types) {
+ RTC_DCHECK_RUN_ON(&sequence_checker_);
+
+ SleepMs(delay_ms_);
+
+ return FakeEncoder::Encode(input_image, frame_types);
+}
+
+MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder(
+ Clock* clock,
+ TaskQueueFactory* task_queue_factory)
+ : test::FakeH264Encoder(clock),
+ task_queue_factory_(task_queue_factory),
+ current_queue_(0),
+ queue1_(nullptr),
+ queue2_(nullptr) {
+ // The encoder could be created on a different thread than
+ // it is being used on.
+ sequence_checker_.Detach();
+}
+
+int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config,
+ const Settings& settings) {
+ RTC_DCHECK_RUN_ON(&sequence_checker_);
+
+ queue1_ = task_queue_factory_->CreateTaskQueue(
+ "Queue 1", TaskQueueFactory::Priority::NORMAL);
+ queue2_ = task_queue_factory_->CreateTaskQueue(
+ "Queue 2", TaskQueueFactory::Priority::NORMAL);
+
+ return FakeH264Encoder::InitEncode(config, settings);
+}
+
+int32_t MultithreadedFakeH264Encoder::Encode(
+ const VideoFrame& input_image,
+ const std::vector<VideoFrameType>* frame_types) {
+ RTC_DCHECK_RUN_ON(&sequence_checker_);
+
+ TaskQueueBase* queue =
+ (current_queue_++ % 2 == 0) ? queue1_.get() : queue2_.get();
+
+ if (!queue) {
+ return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
+ }
+
+ queue->PostTask([this, input_image, frame_types = *frame_types] {
+ EncodeCallback(input_image, &frame_types);
+ });
+
+ return WEBRTC_VIDEO_CODEC_OK;
+}
+
+int32_t MultithreadedFakeH264Encoder::EncodeCallback(
+ const VideoFrame& input_image,
+ const std::vector<VideoFrameType>* frame_types) {
+ return FakeH264Encoder::Encode(input_image, frame_types);
+}
+
+int32_t MultithreadedFakeH264Encoder::Release() {
+ RTC_DCHECK_RUN_ON(&sequence_checker_);
+
+ queue1_.reset();
+ queue2_.reset();
+
+ return FakeH264Encoder::Release();
+}
+
+} // namespace test
+} // namespace webrtc