summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/test/video_codec_tester.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libwebrtc/test/video_codec_tester.cc')
-rw-r--r--third_party/libwebrtc/test/video_codec_tester.cc1324
1 files changed, 1324 insertions, 0 deletions
diff --git a/third_party/libwebrtc/test/video_codec_tester.cc b/third_party/libwebrtc/test/video_codec_tester.cc
new file mode 100644
index 0000000000..9453c3a7ef
--- /dev/null
+++ b/third_party/libwebrtc/test/video_codec_tester.cc
@@ -0,0 +1,1324 @@
+/*
+ * Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "test/video_codec_tester.h"
+
+#include <algorithm>
+#include <set>
+#include <tuple>
+#include <utility>
+
+#include "api/array_view.h"
+#include "api/units/time_delta.h"
+#include "api/units/timestamp.h"
+#include "api/video/builtin_video_bitrate_allocator_factory.h"
+#include "api/video/i420_buffer.h"
+#include "api/video/video_bitrate_allocator.h"
+#include "api/video/video_codec_type.h"
+#include "api/video/video_frame.h"
+#include "api/video_codecs/video_decoder.h"
+#include "api/video_codecs/video_encoder.h"
+#include "media/base/media_constants.h"
+#include "modules/video_coding/codecs/av1/av1_svc_config.h"
+#include "modules/video_coding/codecs/vp9/svc_config.h"
+#include "modules/video_coding/include/video_codec_interface.h"
+#include "modules/video_coding/include/video_error_codes.h"
+#include "modules/video_coding/svc/scalability_mode_util.h"
+#include "modules/video_coding/utility/ivf_file_writer.h"
+#include "rtc_base/event.h"
+#include "rtc_base/logging.h"
+#include "rtc_base/strings/string_builder.h"
+#include "rtc_base/synchronization/mutex.h"
+#include "rtc_base/task_queue_for_test.h"
+#include "rtc_base/time_utils.h"
+#include "system_wrappers/include/sleep.h"
+#include "test/testsupport/file_utils.h"
+#include "test/testsupport/frame_reader.h"
+#include "test/testsupport/video_frame_writer.h"
+#include "third_party/libyuv/include/libyuv/compare.h"
+
+namespace webrtc {
+namespace test {
+
+namespace {
+using CodedVideoSource = VideoCodecTester::CodedVideoSource;
+using VideoSourceSettings = VideoCodecTester::VideoSourceSettings;
+using EncodingSettings = VideoCodecTester::EncodingSettings;
+using LayerSettings = EncodingSettings::LayerSettings;
+using LayerId = VideoCodecTester::LayerId;
+using EncoderSettings = VideoCodecTester::EncoderSettings;
+using DecoderSettings = VideoCodecTester::DecoderSettings;
+using PacingSettings = VideoCodecTester::PacingSettings;
+using PacingMode = PacingSettings::PacingMode;
+using VideoCodecStats = VideoCodecTester::VideoCodecStats;
+using DecodeCallback =
+ absl::AnyInvocable<void(const VideoFrame& decoded_frame)>;
+using webrtc::test::ImprovementDirection;
+
+constexpr Frequency k90kHz = Frequency::Hertz(90000);
+
+const std::set<ScalabilityMode> kFullSvcScalabilityModes{
+ ScalabilityMode::kL2T1, ScalabilityMode::kL2T1h, ScalabilityMode::kL2T2,
+ ScalabilityMode::kL2T2h, ScalabilityMode::kL2T3, ScalabilityMode::kL2T3h,
+ ScalabilityMode::kL3T1, ScalabilityMode::kL3T1h, ScalabilityMode::kL3T2,
+ ScalabilityMode::kL3T2h, ScalabilityMode::kL3T3, ScalabilityMode::kL3T3h};
+
+const std::set<ScalabilityMode> kKeySvcScalabilityModes{
+ ScalabilityMode::kL2T1_KEY, ScalabilityMode::kL2T2_KEY,
+ ScalabilityMode::kL2T2_KEY_SHIFT, ScalabilityMode::kL2T3_KEY,
+ ScalabilityMode::kL3T1_KEY, ScalabilityMode::kL3T2_KEY,
+ ScalabilityMode::kL3T3_KEY};
+
+// A thread-safe raw video frame reader.
+class VideoSource {
+ public:
+ explicit VideoSource(VideoSourceSettings source_settings)
+ : source_settings_(source_settings) {
+ MutexLock lock(&mutex_);
+ frame_reader_ = CreateYuvFrameReader(
+ source_settings_.file_path, source_settings_.resolution,
+ YuvFrameReaderImpl::RepeatMode::kPingPong);
+ RTC_CHECK(frame_reader_);
+ }
+
+ // Pulls next frame.
+ VideoFrame PullFrame(uint32_t timestamp_rtp,
+ Resolution resolution,
+ Frequency framerate) {
+ MutexLock lock(&mutex_);
+ int frame_num;
+ auto buffer = frame_reader_->PullFrame(
+ &frame_num, resolution,
+ {.num = framerate.millihertz<int>(),
+ .den = source_settings_.framerate.millihertz<int>()});
+ RTC_CHECK(buffer) << "Can not pull frame. RTP timestamp " << timestamp_rtp;
+ frame_num_[timestamp_rtp] = frame_num;
+ return VideoFrame::Builder()
+ .set_video_frame_buffer(buffer)
+ .set_timestamp_rtp(timestamp_rtp)
+ .set_timestamp_us((timestamp_rtp / k90kHz).us())
+ .build();
+ }
+
+ // Reads frame specified by `timestamp_rtp`, scales it to `resolution` and
+ // returns. Frame with the given `timestamp_rtp` is expected to be pulled
+ // before.
+ VideoFrame ReadFrame(uint32_t timestamp_rtp, Resolution resolution) {
+ MutexLock lock(&mutex_);
+ RTC_CHECK(frame_num_.find(timestamp_rtp) != frame_num_.end())
+ << "Frame with RTP timestamp " << timestamp_rtp
+ << " was not pulled before";
+ auto buffer =
+ frame_reader_->ReadFrame(frame_num_.at(timestamp_rtp), resolution);
+ return VideoFrame::Builder()
+ .set_video_frame_buffer(buffer)
+ .set_timestamp_rtp(timestamp_rtp)
+ .build();
+ }
+
+ private:
+ VideoSourceSettings source_settings_;
+ std::unique_ptr<FrameReader> frame_reader_ RTC_GUARDED_BY(mutex_);
+ std::map<uint32_t, int> frame_num_ RTC_GUARDED_BY(mutex_);
+ Mutex mutex_;
+};
+
+// Pacer calculates delay necessary to keep frame encode or decode call spaced
+// from the previous calls by the pacing time. `Schedule` is expected to be
+// called as close as possible to posting frame encode or decode task. This
+// class is not thread safe.
+class Pacer {
+ public:
+ explicit Pacer(PacingSettings settings)
+ : settings_(settings), delay_(TimeDelta::Zero()) {}
+
+ Timestamp Schedule(Timestamp timestamp) {
+ Timestamp now = Timestamp::Micros(rtc::TimeMicros());
+ if (settings_.mode == PacingMode::kNoPacing) {
+ return now;
+ }
+
+ Timestamp scheduled = now;
+ if (prev_scheduled_) {
+ scheduled = *prev_scheduled_ + PacingTime(timestamp);
+ if (scheduled < now) {
+ scheduled = now;
+ }
+ }
+
+ prev_timestamp_ = timestamp;
+ prev_scheduled_ = scheduled;
+ return scheduled;
+ }
+
+ private:
+ TimeDelta PacingTime(Timestamp timestamp) {
+ if (settings_.mode == PacingMode::kRealTime) {
+ return timestamp - *prev_timestamp_;
+ }
+ RTC_CHECK_EQ(PacingMode::kConstantRate, settings_.mode);
+ return 1 / settings_.constant_rate;
+ }
+
+ PacingSettings settings_;
+ absl::optional<Timestamp> prev_timestamp_;
+ absl::optional<Timestamp> prev_scheduled_;
+ TimeDelta delay_;
+};
+
+class LimitedTaskQueue {
+ public:
+ // The codec tester reads frames from video source in the main thread.
+ // Encoding and decoding are done in separate threads. If encoding or
+ // decoding is slow, the reading may go far ahead and may buffer too many
+ // frames in memory. To prevent this we limit the encoding/decoding queue
+ // size. When the queue is full, the main thread and, hence, reading frames
+ // from video source is blocked until a previously posted encoding/decoding
+ // task starts.
+ static constexpr int kMaxTaskQueueSize = 3;
+
+ LimitedTaskQueue() : queue_size_(0) {}
+
+ void PostScheduledTask(absl::AnyInvocable<void() &&> task, Timestamp start) {
+ ++queue_size_;
+ task_queue_.PostTask([this, task = std::move(task), start]() mutable {
+ // `TaskQueue` doesn't guarantee FIFO order of execution for delayed
+ // tasks.
+ int64_t wait_ms = (start - Timestamp::Millis(rtc::TimeMillis())).ms();
+ if (wait_ms > 0) {
+ RTC_CHECK_LT(wait_ms, 10000) << "Too high wait_ms " << wait_ms;
+ SleepMs(wait_ms);
+ }
+ std::move(task)();
+ --queue_size_;
+ task_executed_.Set();
+ });
+
+ task_executed_.Reset();
+ if (queue_size_ > kMaxTaskQueueSize) {
+ task_executed_.Wait(rtc::Event::kForever);
+ RTC_CHECK(queue_size_ <= kMaxTaskQueueSize);
+ }
+ }
+
+ void PostTaskAndWait(absl::AnyInvocable<void() &&> task) {
+ PostScheduledTask(std::move(task), Timestamp::Millis(rtc::TimeMillis()));
+ task_queue_.WaitForPreviouslyPostedTasks();
+ }
+
+ private:
+ TaskQueueForTest task_queue_;
+ std::atomic_int queue_size_;
+ rtc::Event task_executed_;
+};
+
+class TesterY4mWriter {
+ public:
+ explicit TesterY4mWriter(absl::string_view base_path)
+ : base_path_(base_path) {}
+
+ ~TesterY4mWriter() {
+ task_queue_.SendTask([] {});
+ }
+
+ void Write(const VideoFrame& frame, int spatial_idx) {
+ task_queue_.PostTask([this, frame, spatial_idx] {
+ if (y4m_writers_.find(spatial_idx) == y4m_writers_.end()) {
+ std::string file_path =
+ base_path_ + "-s" + std::to_string(spatial_idx) + ".y4m";
+ Y4mVideoFrameWriterImpl* y4m_writer = new Y4mVideoFrameWriterImpl(
+ file_path, frame.width(), frame.height(), /*fps=*/30);
+ RTC_CHECK(y4m_writer);
+
+ y4m_writers_[spatial_idx] =
+ std::unique_ptr<VideoFrameWriter>(y4m_writer);
+ }
+
+ y4m_writers_.at(spatial_idx)->WriteFrame(frame);
+ });
+ }
+
+ private:
+ std::string base_path_;
+ std::map<int, std::unique_ptr<VideoFrameWriter>> y4m_writers_;
+ TaskQueueForTest task_queue_;
+};
+
+class TesterIvfWriter {
+ public:
+ explicit TesterIvfWriter(absl::string_view base_path)
+ : base_path_(base_path) {}
+
+ ~TesterIvfWriter() {
+ task_queue_.SendTask([] {});
+ }
+
+ void Write(const EncodedImage& encoded_frame) {
+ task_queue_.PostTask([this, encoded_frame] {
+ int spatial_idx = encoded_frame.SimulcastIndex().value_or(0);
+ if (ivf_file_writers_.find(spatial_idx) == ivf_file_writers_.end()) {
+ std::string ivf_path =
+ base_path_ + "-s" + std::to_string(spatial_idx) + ".ivf";
+ FileWrapper ivf_file = FileWrapper::OpenWriteOnly(ivf_path);
+ RTC_CHECK(ivf_file.is_open());
+
+ std::unique_ptr<IvfFileWriter> ivf_writer =
+ IvfFileWriter::Wrap(std::move(ivf_file), /*byte_limit=*/0);
+ RTC_CHECK(ivf_writer);
+
+ ivf_file_writers_[spatial_idx] = std::move(ivf_writer);
+ }
+
+ // To play: ffplay -vcodec vp8|vp9|av1|hevc|h264 filename
+ ivf_file_writers_.at(spatial_idx)
+ ->WriteFrame(encoded_frame, VideoCodecType::kVideoCodecGeneric);
+ });
+ }
+
+ private:
+ std::string base_path_;
+ std::map<int, std::unique_ptr<IvfFileWriter>> ivf_file_writers_;
+ TaskQueueForTest task_queue_;
+};
+
+class LeakyBucket {
+ public:
+ LeakyBucket() : level_bits_(0) {}
+
+ // Updates bucket level and returns its current level in bits. Data is remove
+ // from bucket with rate equal to target bitrate of previous frame. Bucket
+ // level is tracked with floating point precision. Returned value of bucket
+ // level is rounded up.
+ int Update(const VideoCodecStats::Frame& frame) {
+ RTC_CHECK(frame.target_bitrate) << "Bitrate must be specified.";
+ if (prev_frame_) {
+ RTC_CHECK_GT(frame.timestamp_rtp, prev_frame_->timestamp_rtp)
+ << "Timestamp must increase.";
+ TimeDelta passed =
+ (frame.timestamp_rtp - prev_frame_->timestamp_rtp) / k90kHz;
+ level_bits_ -=
+ prev_frame_->target_bitrate->bps<double>() * passed.seconds<double>();
+ level_bits_ = std::max(level_bits_, 0.0);
+ }
+ prev_frame_ = frame;
+ level_bits_ += frame.frame_size.bytes() * 8;
+ return static_cast<int>(std::ceil(level_bits_));
+ }
+
+ private:
+ absl::optional<VideoCodecStats::Frame> prev_frame_;
+ double level_bits_;
+};
+
+class VideoCodecAnalyzer : public VideoCodecTester::VideoCodecStats {
+ public:
+ explicit VideoCodecAnalyzer(VideoSource* video_source)
+ : video_source_(video_source) {}
+
+ void StartEncode(const VideoFrame& video_frame,
+ const EncodingSettings& encoding_settings) {
+ int64_t encode_start_us = rtc::TimeMicros();
+ task_queue_.PostTask([this, timestamp_rtp = video_frame.timestamp(),
+ encoding_settings, encode_start_us]() {
+ RTC_CHECK(frames_.find(timestamp_rtp) == frames_.end())
+ << "Duplicate frame. Frame with timestamp " << timestamp_rtp
+ << " was seen before";
+
+ Frame frame;
+ frame.timestamp_rtp = timestamp_rtp;
+ frame.encode_start = Timestamp::Micros(encode_start_us),
+ frames_.emplace(timestamp_rtp,
+ std::map<int, Frame>{{/*spatial_idx=*/0, frame}});
+ encoding_settings_.emplace(timestamp_rtp, encoding_settings);
+ });
+ }
+
+ void FinishEncode(const EncodedImage& encoded_frame) {
+ int64_t encode_finished_us = rtc::TimeMicros();
+ task_queue_.PostTask(
+ [this, timestamp_rtp = encoded_frame.RtpTimestamp(),
+ spatial_idx = encoded_frame.SpatialIndex().value_or(0),
+ temporal_idx = encoded_frame.TemporalIndex().value_or(0),
+ width = encoded_frame._encodedWidth,
+ height = encoded_frame._encodedHeight,
+ frame_type = encoded_frame._frameType,
+ frame_size_bytes = encoded_frame.size(), qp = encoded_frame.qp_,
+ encode_finished_us]() {
+ if (spatial_idx > 0) {
+ RTC_CHECK(frames_.find(timestamp_rtp) != frames_.end())
+ << "Spatial layer 0 frame with timestamp " << timestamp_rtp
+ << " was not seen before";
+ const Frame& base_frame =
+ frames_.at(timestamp_rtp).at(/*spatial_idx=*/0);
+ frames_.at(timestamp_rtp).emplace(spatial_idx, base_frame);
+ }
+
+ Frame& frame = frames_.at(timestamp_rtp).at(spatial_idx);
+ frame.layer_id = {.spatial_idx = spatial_idx,
+ .temporal_idx = temporal_idx};
+ frame.width = width;
+ frame.height = height;
+ frame.frame_size = DataSize::Bytes(frame_size_bytes);
+ frame.qp = qp;
+ frame.keyframe = frame_type == VideoFrameType::kVideoFrameKey;
+ frame.encode_time =
+ Timestamp::Micros(encode_finished_us) - frame.encode_start;
+ frame.encoded = true;
+ });
+ }
+
+ void StartDecode(const EncodedImage& encoded_frame) {
+ int64_t decode_start_us = rtc::TimeMicros();
+ task_queue_.PostTask(
+ [this, timestamp_rtp = encoded_frame.RtpTimestamp(),
+ spatial_idx = encoded_frame.SpatialIndex().value_or(0),
+ frame_size_bytes = encoded_frame.size(), decode_start_us]() {
+ if (frames_.find(timestamp_rtp) == frames_.end() ||
+ frames_.at(timestamp_rtp).find(spatial_idx) ==
+ frames_.at(timestamp_rtp).end()) {
+ Frame frame;
+ frame.timestamp_rtp = timestamp_rtp;
+ frame.layer_id = {.spatial_idx = spatial_idx};
+ frame.frame_size = DataSize::Bytes(frame_size_bytes);
+ frames_.emplace(timestamp_rtp,
+ std::map<int, Frame>{{spatial_idx, frame}});
+ }
+
+ Frame& frame = frames_.at(timestamp_rtp).at(spatial_idx);
+ frame.decode_start = Timestamp::Micros(decode_start_us);
+ });
+ }
+
+ void FinishDecode(const VideoFrame& decoded_frame, int spatial_idx) {
+ int64_t decode_finished_us = rtc::TimeMicros();
+ task_queue_.PostTask([this, timestamp_rtp = decoded_frame.timestamp(),
+ spatial_idx, width = decoded_frame.width(),
+ height = decoded_frame.height(),
+ decode_finished_us]() {
+ Frame& frame = frames_.at(timestamp_rtp).at(spatial_idx);
+ frame.decode_time =
+ Timestamp::Micros(decode_finished_us) - frame.decode_start;
+ if (!frame.encoded) {
+ frame.width = width;
+ frame.height = height;
+ }
+ frame.decoded = true;
+ });
+
+ if (video_source_ != nullptr) {
+ // Copy hardware-backed frame into main memory to release output buffers
+ // which number may be limited in hardware decoders.
+ rtc::scoped_refptr<I420BufferInterface> decoded_buffer =
+ decoded_frame.video_frame_buffer()->ToI420();
+
+ task_queue_.PostTask([this, decoded_buffer,
+ timestamp_rtp = decoded_frame.timestamp(),
+ spatial_idx]() {
+ VideoFrame ref_frame = video_source_->ReadFrame(
+ timestamp_rtp, {.width = decoded_buffer->width(),
+ .height = decoded_buffer->height()});
+ rtc::scoped_refptr<I420BufferInterface> ref_buffer =
+ ref_frame.video_frame_buffer()->ToI420();
+ Frame& frame = frames_.at(timestamp_rtp).at(spatial_idx);
+ frame.psnr = CalcPsnr(*decoded_buffer, *ref_buffer);
+ });
+ }
+ }
+
+ std::vector<Frame> Slice(Filter filter, bool merge) const {
+ std::vector<Frame> slice;
+ for (const auto& [timestamp_rtp, temporal_unit_frames] : frames_) {
+ if (temporal_unit_frames.empty()) {
+ continue;
+ }
+
+ bool is_svc = false;
+ if (!encoding_settings_.empty()) {
+ ScalabilityMode scalability_mode =
+ encoding_settings_.at(timestamp_rtp).scalability_mode;
+ if (kFullSvcScalabilityModes.count(scalability_mode) > 0 ||
+ (kKeySvcScalabilityModes.count(scalability_mode) > 0 &&
+ temporal_unit_frames.at(0).keyframe)) {
+ is_svc = true;
+ }
+ }
+
+ std::vector<Frame> subframes;
+ for (const auto& [spatial_idx, frame] : temporal_unit_frames) {
+ if (frame.timestamp_rtp < filter.min_timestamp_rtp ||
+ frame.timestamp_rtp > filter.max_timestamp_rtp) {
+ continue;
+ }
+ if (filter.layer_id) {
+ if (is_svc &&
+ frame.layer_id.spatial_idx > filter.layer_id->spatial_idx) {
+ continue;
+ }
+ if (!is_svc &&
+ frame.layer_id.spatial_idx != filter.layer_id->spatial_idx) {
+ continue;
+ }
+ if (frame.layer_id.temporal_idx > filter.layer_id->temporal_idx) {
+ continue;
+ }
+ }
+ subframes.push_back(frame);
+ }
+
+ if (subframes.empty()) {
+ continue;
+ }
+
+ if (!merge) {
+ std::copy(subframes.begin(), subframes.end(),
+ std::back_inserter(slice));
+ continue;
+ }
+
+ Frame superframe = subframes.back();
+ for (const Frame& frame :
+ rtc::ArrayView<Frame>(subframes).subview(0, subframes.size() - 1)) {
+ superframe.frame_size += frame.frame_size;
+ superframe.keyframe |= frame.keyframe;
+ superframe.encode_time =
+ std::max(superframe.encode_time, frame.encode_time);
+ superframe.decode_time =
+ std::max(superframe.decode_time, frame.decode_time);
+ }
+
+ if (!encoding_settings_.empty()) {
+ RTC_CHECK(encoding_settings_.find(superframe.timestamp_rtp) !=
+ encoding_settings_.end())
+ << "No encoding settings for frame " << superframe.timestamp_rtp;
+ const EncodingSettings& es =
+ encoding_settings_.at(superframe.timestamp_rtp);
+ superframe.target_bitrate = GetTargetBitrate(es, filter.layer_id);
+ superframe.target_framerate = GetTargetFramerate(es, filter.layer_id);
+ }
+
+ slice.push_back(superframe);
+ }
+ return slice;
+ }
+
+ Stream Aggregate(Filter filter) const {
+ std::vector<Frame> frames = Slice(filter, /*merge=*/true);
+ Stream stream;
+ LeakyBucket leaky_bucket;
+ for (const Frame& frame : frames) {
+ Timestamp time = Timestamp::Micros((frame.timestamp_rtp / k90kHz).us());
+ if (!frame.frame_size.IsZero()) {
+ stream.width.AddSample(StatsSample(frame.width, time));
+ stream.height.AddSample(StatsSample(frame.height, time));
+ stream.frame_size_bytes.AddSample(
+ StatsSample(frame.frame_size.bytes(), time));
+ stream.keyframe.AddSample(StatsSample(frame.keyframe, time));
+ if (frame.qp) {
+ stream.qp.AddSample(StatsSample(*frame.qp, time));
+ }
+ }
+ if (frame.encoded) {
+ stream.encode_time_ms.AddSample(
+ StatsSample(frame.encode_time.ms(), time));
+ }
+ if (frame.decoded) {
+ stream.decode_time_ms.AddSample(
+ StatsSample(frame.decode_time.ms(), time));
+ }
+ if (frame.psnr) {
+ stream.psnr.y.AddSample(StatsSample(frame.psnr->y, time));
+ stream.psnr.u.AddSample(StatsSample(frame.psnr->u, time));
+ stream.psnr.v.AddSample(StatsSample(frame.psnr->v, time));
+ }
+ if (frame.target_framerate) {
+ stream.target_framerate_fps.AddSample(
+ StatsSample(frame.target_framerate->hertz<double>(), time));
+ }
+ if (frame.target_bitrate) {
+ stream.target_bitrate_kbps.AddSample(
+ StatsSample(frame.target_bitrate->kbps<double>(), time));
+ int buffer_level_bits = leaky_bucket.Update(frame);
+ stream.transmission_time_ms.AddSample(StatsSample(
+ 1000 * buffer_level_bits / frame.target_bitrate->bps<double>(),
+ time));
+ }
+ }
+
+ int num_encoded_frames = stream.frame_size_bytes.NumSamples();
+ const Frame& first_frame = frames.front();
+
+ Filter filter_all_layers{.min_timestamp_rtp = filter.min_timestamp_rtp,
+ .max_timestamp_rtp = filter.max_timestamp_rtp};
+ std::vector<Frame> frames_all_layers =
+ Slice(filter_all_layers, /*merge=*/true);
+ const Frame& last_frame = frames_all_layers.back();
+ TimeDelta duration =
+ (last_frame.timestamp_rtp - first_frame.timestamp_rtp) / k90kHz;
+ if (last_frame.target_framerate) {
+ duration += 1 / *last_frame.target_framerate;
+ }
+
+ DataRate encoded_bitrate =
+ DataSize::Bytes(stream.frame_size_bytes.GetSum()) / duration;
+ Frequency encoded_framerate = num_encoded_frames / duration;
+
+ double bitrate_mismatch_pct = 0.0;
+ if (const auto& target_bitrate = first_frame.target_bitrate;
+ target_bitrate) {
+ bitrate_mismatch_pct = 100 * (encoded_bitrate / *target_bitrate - 1);
+ }
+ double framerate_mismatch_pct = 0.0;
+ if (const auto& target_framerate = first_frame.target_framerate;
+ target_framerate) {
+ framerate_mismatch_pct =
+ 100 * (encoded_framerate / *target_framerate - 1);
+ }
+
+ for (Frame& frame : frames) {
+ Timestamp time = Timestamp::Micros((frame.timestamp_rtp / k90kHz).us());
+ stream.encoded_bitrate_kbps.AddSample(
+ StatsSample(encoded_bitrate.kbps<double>(), time));
+ stream.encoded_framerate_fps.AddSample(
+ StatsSample(encoded_framerate.hertz<double>(), time));
+ stream.bitrate_mismatch_pct.AddSample(
+ StatsSample(bitrate_mismatch_pct, time));
+ stream.framerate_mismatch_pct.AddSample(
+ StatsSample(framerate_mismatch_pct, time));
+ }
+
+ return stream;
+ }
+
+ void LogMetrics(absl::string_view csv_path,
+ std::vector<Frame> frames,
+ std::map<std::string, std::string> metadata) const {
+ RTC_LOG(LS_INFO) << "Write metrics to " << csv_path;
+ FILE* csv_file = fopen(csv_path.data(), "w");
+ const std::string delimiter = ";";
+ rtc::StringBuilder header;
+ header
+ << "timestamp_rtp;spatial_idx;temporal_idx;width;height;frame_size_"
+ "bytes;keyframe;qp;encode_time_us;decode_time_us;psnr_y_db;psnr_u_"
+ "db;psnr_v_db;target_bitrate_kbps;target_framerate_fps";
+ for (const auto& data : metadata) {
+ header << ";" << data.first;
+ }
+ fwrite(header.str().c_str(), 1, header.size(), csv_file);
+
+ for (const Frame& f : frames) {
+ rtc::StringBuilder row;
+ row << "\n" << f.timestamp_rtp;
+ row << ";" << f.layer_id.spatial_idx;
+ row << ";" << f.layer_id.temporal_idx;
+ row << ";" << f.width;
+ row << ";" << f.height;
+ row << ";" << f.frame_size.bytes();
+ row << ";" << f.keyframe;
+ row << ";";
+ if (f.qp) {
+ row << *f.qp;
+ }
+ row << ";" << f.encode_time.us();
+ row << ";" << f.decode_time.us();
+ if (f.psnr) {
+ row << ";" << f.psnr->y;
+ row << ";" << f.psnr->u;
+ row << ";" << f.psnr->v;
+ } else {
+ row << ";;;";
+ }
+
+ const auto& es = encoding_settings_.at(f.timestamp_rtp);
+ row << ";"
+ << f.target_bitrate.value_or(GetTargetBitrate(es, f.layer_id)).kbps();
+ row << ";"
+ << f.target_framerate.value_or(GetTargetFramerate(es, f.layer_id))
+ .hertz<double>();
+
+ for (const auto& data : metadata) {
+ row << ";" << data.second;
+ }
+ fwrite(row.str().c_str(), 1, row.size(), csv_file);
+ }
+
+ fclose(csv_file);
+ }
+
+ void Flush() { task_queue_.WaitForPreviouslyPostedTasks(); }
+
+ private:
+ struct FrameId {
+ uint32_t timestamp_rtp;
+ int spatial_idx;
+
+ bool operator==(const FrameId& o) const {
+ return timestamp_rtp == o.timestamp_rtp && spatial_idx == o.spatial_idx;
+ }
+ bool operator<(const FrameId& o) const {
+ return timestamp_rtp < o.timestamp_rtp ||
+ (timestamp_rtp == o.timestamp_rtp && spatial_idx < o.spatial_idx);
+ }
+ };
+
+ Frame::Psnr CalcPsnr(const I420BufferInterface& ref_buffer,
+ const I420BufferInterface& dec_buffer) {
+ RTC_CHECK_EQ(ref_buffer.width(), dec_buffer.width());
+ RTC_CHECK_EQ(ref_buffer.height(), dec_buffer.height());
+
+ uint64_t sse_y = libyuv::ComputeSumSquareErrorPlane(
+ dec_buffer.DataY(), dec_buffer.StrideY(), ref_buffer.DataY(),
+ ref_buffer.StrideY(), dec_buffer.width(), dec_buffer.height());
+
+ uint64_t sse_u = libyuv::ComputeSumSquareErrorPlane(
+ dec_buffer.DataU(), dec_buffer.StrideU(), ref_buffer.DataU(),
+ ref_buffer.StrideU(), dec_buffer.width() / 2, dec_buffer.height() / 2);
+
+ uint64_t sse_v = libyuv::ComputeSumSquareErrorPlane(
+ dec_buffer.DataV(), dec_buffer.StrideV(), ref_buffer.DataV(),
+ ref_buffer.StrideV(), dec_buffer.width() / 2, dec_buffer.height() / 2);
+
+ int num_y_samples = dec_buffer.width() * dec_buffer.height();
+ Frame::Psnr psnr;
+ psnr.y = libyuv::SumSquareErrorToPsnr(sse_y, num_y_samples);
+ psnr.u = libyuv::SumSquareErrorToPsnr(sse_u, num_y_samples / 4);
+ psnr.v = libyuv::SumSquareErrorToPsnr(sse_v, num_y_samples / 4);
+ return psnr;
+ }
+
+ DataRate GetTargetBitrate(const EncodingSettings& encoding_settings,
+ absl::optional<LayerId> layer_id) const {
+ int base_spatial_idx;
+ if (layer_id.has_value()) {
+ bool is_svc =
+ kFullSvcScalabilityModes.count(encoding_settings.scalability_mode);
+ base_spatial_idx = is_svc ? 0 : layer_id->spatial_idx;
+ } else {
+ int num_spatial_layers =
+ ScalabilityModeToNumSpatialLayers(encoding_settings.scalability_mode);
+ int num_temporal_layers = ScalabilityModeToNumTemporalLayers(
+ encoding_settings.scalability_mode);
+ layer_id = LayerId({.spatial_idx = num_spatial_layers - 1,
+ .temporal_idx = num_temporal_layers - 1});
+ base_spatial_idx = 0;
+ }
+
+ DataRate bitrate = DataRate::Zero();
+ for (int sidx = base_spatial_idx; sidx <= layer_id->spatial_idx; ++sidx) {
+ for (int tidx = 0; tidx <= layer_id->temporal_idx; ++tidx) {
+ auto layer_settings = encoding_settings.layers_settings.find(
+ {.spatial_idx = sidx, .temporal_idx = tidx});
+ RTC_CHECK(layer_settings != encoding_settings.layers_settings.end())
+ << "bitrate is not specified for layer sidx=" << sidx
+ << " tidx=" << tidx;
+ bitrate += layer_settings->second.bitrate;
+ }
+ }
+ return bitrate;
+ }
+
+ Frequency GetTargetFramerate(const EncodingSettings& encoding_settings,
+ absl::optional<LayerId> layer_id) const {
+ if (layer_id.has_value()) {
+ auto layer_settings = encoding_settings.layers_settings.find(
+ {.spatial_idx = layer_id->spatial_idx,
+ .temporal_idx = layer_id->temporal_idx});
+ RTC_CHECK(layer_settings != encoding_settings.layers_settings.end())
+ << "framerate is not specified for layer sidx="
+ << layer_id->spatial_idx << " tidx=" << layer_id->temporal_idx;
+ return layer_settings->second.framerate;
+ }
+ return encoding_settings.layers_settings.rbegin()->second.framerate;
+ }
+
+ SamplesStatsCounter::StatsSample StatsSample(double value,
+ Timestamp time) const {
+ return SamplesStatsCounter::StatsSample{value, time};
+ }
+
+ VideoSource* const video_source_;
+ TaskQueueForTest task_queue_;
+ // RTP timestamp -> spatial layer -> Frame
+ std::map<uint32_t, std::map<int, Frame>> frames_;
+ std::map<uint32_t, EncodingSettings> encoding_settings_;
+};
+
+class Decoder : public DecodedImageCallback {
+ public:
+ Decoder(VideoDecoderFactory* decoder_factory,
+ const DecoderSettings& decoder_settings,
+ VideoCodecAnalyzer* analyzer)
+ : decoder_factory_(decoder_factory),
+ analyzer_(analyzer),
+ pacer_(decoder_settings.pacing_settings) {
+ RTC_CHECK(analyzer_) << "Analyzer must be provided";
+
+ if (decoder_settings.decoder_input_base_path) {
+ ivf_writer_ = std::make_unique<TesterIvfWriter>(
+ *decoder_settings.decoder_input_base_path);
+ }
+
+ if (decoder_settings.decoder_output_base_path) {
+ y4m_writer_ = std::make_unique<TesterY4mWriter>(
+ *decoder_settings.decoder_output_base_path);
+ }
+ }
+
+ void Initialize(const SdpVideoFormat& sdp_video_format) {
+ decoder_ = decoder_factory_->CreateVideoDecoder(sdp_video_format);
+ RTC_CHECK(decoder_) << "Could not create decoder for video format "
+ << sdp_video_format.ToString();
+
+ task_queue_.PostTaskAndWait([this, &sdp_video_format] {
+ decoder_->RegisterDecodeCompleteCallback(this);
+
+ VideoDecoder::Settings ds;
+ ds.set_codec_type(PayloadStringToCodecType(sdp_video_format.name));
+ ds.set_number_of_cores(1);
+ ds.set_max_render_resolution({1280, 720});
+ bool result = decoder_->Configure(ds);
+ RTC_CHECK(result) << "Failed to configure decoder";
+ });
+ }
+
+ void Decode(const EncodedImage& encoded_frame) {
+ Timestamp pts =
+ Timestamp::Micros((encoded_frame.RtpTimestamp() / k90kHz).us());
+
+ task_queue_.PostScheduledTask(
+ [this, encoded_frame] {
+ analyzer_->StartDecode(encoded_frame);
+ int error = decoder_->Decode(encoded_frame, /*render_time_ms*/ 0);
+ if (error != 0) {
+ RTC_LOG(LS_WARNING)
+ << "Decode failed with error code " << error
+ << " RTP timestamp " << encoded_frame.RtpTimestamp();
+ }
+ },
+ pacer_.Schedule(pts));
+
+ if (ivf_writer_) {
+ ivf_writer_->Write(encoded_frame);
+ }
+ }
+
+ void Flush() {
+ // TODO(webrtc:14852): Add Flush() to VideoDecoder API.
+ task_queue_.PostTaskAndWait([this] { decoder_->Release(); });
+ }
+
+ private:
+ int Decoded(VideoFrame& decoded_frame) override {
+ analyzer_->FinishDecode(decoded_frame, /*spatial_idx=*/0);
+
+ if (y4m_writer_) {
+ y4m_writer_->Write(decoded_frame, /*spatial_idx=*/0);
+ }
+
+ return WEBRTC_VIDEO_CODEC_OK;
+ }
+
+ VideoDecoderFactory* decoder_factory_;
+ std::unique_ptr<VideoDecoder> decoder_;
+ VideoCodecAnalyzer* const analyzer_;
+ Pacer pacer_;
+ LimitedTaskQueue task_queue_;
+ std::unique_ptr<TesterIvfWriter> ivf_writer_;
+ std::unique_ptr<TesterY4mWriter> y4m_writer_;
+};
+
+class Encoder : public EncodedImageCallback {
+ public:
+ using EncodeCallback =
+ absl::AnyInvocable<void(const EncodedImage& encoded_frame)>;
+
+ Encoder(VideoEncoderFactory* encoder_factory,
+ const EncoderSettings& encoder_settings,
+ VideoCodecAnalyzer* analyzer)
+ : encoder_factory_(encoder_factory),
+ analyzer_(analyzer),
+ pacer_(encoder_settings.pacing_settings) {
+ RTC_CHECK(analyzer_) << "Analyzer must be provided";
+
+ if (encoder_settings.encoder_input_base_path) {
+ y4m_writer_ = std::make_unique<TesterY4mWriter>(
+ *encoder_settings.encoder_input_base_path);
+ }
+
+ if (encoder_settings.encoder_output_base_path) {
+ ivf_writer_ = std::make_unique<TesterIvfWriter>(
+ *encoder_settings.encoder_output_base_path);
+ }
+ }
+
+ void Initialize(const EncodingSettings& encoding_settings) {
+ encoder_ = encoder_factory_->CreateVideoEncoder(
+ encoding_settings.sdp_video_format);
+ RTC_CHECK(encoder_) << "Could not create encoder for video format "
+ << encoding_settings.sdp_video_format.ToString();
+
+ task_queue_.PostTaskAndWait([this, encoding_settings] {
+ encoder_->RegisterEncodeCompleteCallback(this);
+ Configure(encoding_settings);
+ SetRates(encoding_settings);
+ });
+ }
+
+ void Encode(const VideoFrame& input_frame,
+ const EncodingSettings& encoding_settings,
+ EncodeCallback callback) {
+ {
+ MutexLock lock(&mutex_);
+ callbacks_[input_frame.timestamp()] = std::move(callback);
+ }
+
+ Timestamp pts = Timestamp::Micros((input_frame.timestamp() / k90kHz).us());
+
+ task_queue_.PostScheduledTask(
+ [this, input_frame, encoding_settings] {
+ analyzer_->StartEncode(input_frame, encoding_settings);
+
+ if (!last_encoding_settings_ ||
+ !IsSameRate(encoding_settings, *last_encoding_settings_)) {
+ SetRates(encoding_settings);
+ }
+
+ int error = encoder_->Encode(input_frame, /*frame_types=*/nullptr);
+ if (error != 0) {
+ RTC_LOG(LS_WARNING) << "Encode failed with error code " << error
+ << " RTP timestamp " << input_frame.timestamp();
+ }
+
+ last_encoding_settings_ = encoding_settings;
+ },
+ pacer_.Schedule(pts));
+
+ if (y4m_writer_) {
+ y4m_writer_->Write(input_frame, /*spatial_idx=*/0);
+ }
+ }
+
+ void Flush() {
+ task_queue_.PostTaskAndWait([this] { encoder_->Release(); });
+ }
+
+ private:
+ Result OnEncodedImage(const EncodedImage& encoded_frame,
+ const CodecSpecificInfo* codec_specific_info) override {
+ analyzer_->FinishEncode(encoded_frame);
+
+ {
+ MutexLock lock(&mutex_);
+ auto it = callbacks_.find(encoded_frame.RtpTimestamp());
+ RTC_CHECK(it != callbacks_.end());
+ it->second(encoded_frame);
+ callbacks_.erase(callbacks_.begin(), it);
+ }
+
+ if (ivf_writer_ != nullptr) {
+ ivf_writer_->Write(encoded_frame);
+ }
+
+ return Result(Result::Error::OK);
+ }
+
+ void Configure(const EncodingSettings& es) {
+ const LayerSettings& layer_settings = es.layers_settings.rbegin()->second;
+ const DataRate& bitrate = layer_settings.bitrate;
+
+ VideoCodec vc;
+ vc.width = layer_settings.resolution.width;
+ vc.height = layer_settings.resolution.height;
+ vc.startBitrate = bitrate.kbps();
+ vc.maxBitrate = bitrate.kbps();
+ vc.minBitrate = 0;
+ vc.maxFramerate = layer_settings.framerate.hertz<uint32_t>();
+ vc.active = true;
+ vc.numberOfSimulcastStreams = 0;
+ vc.mode = webrtc::VideoCodecMode::kRealtimeVideo;
+ vc.SetFrameDropEnabled(true);
+ vc.SetScalabilityMode(es.scalability_mode);
+ vc.SetVideoEncoderComplexity(VideoCodecComplexity::kComplexityNormal);
+
+ vc.codecType = PayloadStringToCodecType(es.sdp_video_format.name);
+ switch (vc.codecType) {
+ case kVideoCodecVP8:
+ *(vc.VP8()) = VideoEncoder::GetDefaultVp8Settings();
+ vc.VP8()->SetNumberOfTemporalLayers(
+ ScalabilityModeToNumTemporalLayers(es.scalability_mode));
+ vc.qpMax = cricket::kDefaultVideoMaxQpVpx;
+ // TODO(webrtc:14852): Configure simulcast.
+ break;
+ case kVideoCodecVP9:
+ *(vc.VP9()) = VideoEncoder::GetDefaultVp9Settings();
+ // See LibvpxVp9Encoder::ExplicitlyConfiguredSpatialLayers.
+ vc.spatialLayers[0].targetBitrate = vc.maxBitrate;
+ vc.qpMax = cricket::kDefaultVideoMaxQpVpx;
+ break;
+ case kVideoCodecAV1:
+ vc.qpMax = cricket::kDefaultVideoMaxQpVpx;
+ break;
+ case kVideoCodecH264:
+ *(vc.H264()) = VideoEncoder::GetDefaultH264Settings();
+ vc.qpMax = cricket::kDefaultVideoMaxQpH26x;
+ break;
+ case kVideoCodecH265:
+ vc.qpMax = cricket::kDefaultVideoMaxQpH26x;
+ break;
+ case kVideoCodecGeneric:
+ case kVideoCodecMultiplex:
+ RTC_CHECK_NOTREACHED();
+ break;
+ }
+
+ VideoEncoder::Settings ves(
+ VideoEncoder::Capabilities(/*loss_notification=*/false),
+ /*number_of_cores=*/1,
+ /*max_payload_size=*/1440);
+
+ int result = encoder_->InitEncode(&vc, ves);
+ RTC_CHECK(result == WEBRTC_VIDEO_CODEC_OK);
+
+ SetRates(es);
+ }
+
+ void SetRates(const EncodingSettings& es) {
+ VideoEncoder::RateControlParameters rc;
+ int num_spatial_layers =
+ ScalabilityModeToNumSpatialLayers(es.scalability_mode);
+ int num_temporal_layers =
+ ScalabilityModeToNumTemporalLayers(es.scalability_mode);
+ for (int sidx = 0; sidx < num_spatial_layers; ++sidx) {
+ for (int tidx = 0; tidx < num_temporal_layers; ++tidx) {
+ auto layers_settings = es.layers_settings.find(
+ {.spatial_idx = sidx, .temporal_idx = tidx});
+ RTC_CHECK(layers_settings != es.layers_settings.end())
+ << "Bitrate for layer S=" << sidx << " T=" << tidx << " is not set";
+ rc.bitrate.SetBitrate(sidx, tidx,
+ layers_settings->second.bitrate.bps());
+ }
+ }
+ rc.framerate_fps =
+ es.layers_settings.rbegin()->second.framerate.hertz<double>();
+ encoder_->SetRates(rc);
+ }
+
+ bool IsSameRate(const EncodingSettings& a, const EncodingSettings& b) const {
+ for (auto [layer_id, layer] : a.layers_settings) {
+ const auto& other_layer = b.layers_settings.at(layer_id);
+ if (layer.bitrate != other_layer.bitrate ||
+ layer.framerate != other_layer.framerate) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ VideoEncoderFactory* const encoder_factory_;
+ std::unique_ptr<VideoEncoder> encoder_;
+ VideoCodecAnalyzer* const analyzer_;
+ Pacer pacer_;
+ absl::optional<EncodingSettings> last_encoding_settings_;
+ std::unique_ptr<VideoBitrateAllocator> bitrate_allocator_;
+ LimitedTaskQueue task_queue_;
+ std::unique_ptr<TesterY4mWriter> y4m_writer_;
+ std::unique_ptr<TesterIvfWriter> ivf_writer_;
+ std::map<uint32_t, int> sidx_ RTC_GUARDED_BY(mutex_);
+ std::map<uint32_t, EncodeCallback> callbacks_ RTC_GUARDED_BY(mutex_);
+ Mutex mutex_;
+};
+
+std::tuple<std::vector<DataRate>, ScalabilityMode>
+SplitBitrateAndUpdateScalabilityMode(std::string codec_type,
+ ScalabilityMode scalability_mode,
+ int width,
+ int height,
+ std::vector<int> bitrates_kbps,
+ double framerate_fps) {
+ int num_spatial_layers = ScalabilityModeToNumSpatialLayers(scalability_mode);
+ int num_temporal_layers =
+ ScalabilityModeToNumTemporalLayers(scalability_mode);
+
+ if (bitrates_kbps.size() > 1 ||
+ (num_spatial_layers == 1 && num_temporal_layers == 1)) {
+ RTC_CHECK(bitrates_kbps.size() ==
+ static_cast<size_t>(num_spatial_layers * num_temporal_layers))
+ << "bitrates must be provided for all layers";
+ std::vector<DataRate> bitrates;
+ for (const auto& bitrate_kbps : bitrates_kbps) {
+ bitrates.push_back(DataRate::KilobitsPerSec(bitrate_kbps));
+ }
+ return std::make_tuple(bitrates, scalability_mode);
+ }
+
+ VideoCodec vc;
+ vc.codecType = PayloadStringToCodecType(codec_type);
+ vc.width = width;
+ vc.height = height;
+ vc.startBitrate = bitrates_kbps.front();
+ vc.maxBitrate = bitrates_kbps.front();
+ vc.minBitrate = 0;
+ vc.maxFramerate = static_cast<uint32_t>(framerate_fps);
+ vc.numberOfSimulcastStreams = 0;
+ vc.mode = webrtc::VideoCodecMode::kRealtimeVideo;
+ vc.SetScalabilityMode(scalability_mode);
+
+ switch (vc.codecType) {
+ case kVideoCodecVP8:
+ // TODO(webrtc:14852): Configure simulcast.
+ *(vc.VP8()) = VideoEncoder::GetDefaultVp8Settings();
+ vc.VP8()->SetNumberOfTemporalLayers(num_temporal_layers);
+ vc.simulcastStream[0].width = vc.width;
+ vc.simulcastStream[0].height = vc.height;
+ break;
+ case kVideoCodecVP9: {
+ *(vc.VP9()) = VideoEncoder::GetDefaultVp9Settings();
+ vc.VP9()->SetNumberOfTemporalLayers(num_temporal_layers);
+ const std::vector<SpatialLayer> spatialLayers = GetVp9SvcConfig(vc);
+ for (size_t i = 0; i < spatialLayers.size(); ++i) {
+ vc.spatialLayers[i] = spatialLayers[i];
+ vc.spatialLayers[i].active = true;
+ }
+ } break;
+ case kVideoCodecAV1: {
+ bool result =
+ SetAv1SvcConfig(vc, num_spatial_layers, num_temporal_layers);
+ RTC_CHECK(result) << "SetAv1SvcConfig failed";
+ } break;
+ case kVideoCodecH264: {
+ *(vc.H264()) = VideoEncoder::GetDefaultH264Settings();
+ vc.H264()->SetNumberOfTemporalLayers(num_temporal_layers);
+ } break;
+ case kVideoCodecH265:
+ break;
+ case kVideoCodecGeneric:
+ case kVideoCodecMultiplex:
+ RTC_CHECK_NOTREACHED();
+ }
+
+ if (*vc.GetScalabilityMode() != scalability_mode) {
+ RTC_LOG(LS_WARNING) << "Scalability mode changed from "
+ << ScalabilityModeToString(scalability_mode) << " to "
+ << ScalabilityModeToString(*vc.GetScalabilityMode());
+ num_spatial_layers =
+ ScalabilityModeToNumSpatialLayers(*vc.GetScalabilityMode());
+ num_temporal_layers =
+ ScalabilityModeToNumTemporalLayers(*vc.GetScalabilityMode());
+ }
+
+ std::unique_ptr<VideoBitrateAllocator> bitrate_allocator =
+ CreateBuiltinVideoBitrateAllocatorFactory()->CreateVideoBitrateAllocator(
+ vc);
+ VideoBitrateAllocation bitrate_allocation =
+ bitrate_allocator->Allocate(VideoBitrateAllocationParameters(
+ 1000 * bitrates_kbps.front(), framerate_fps));
+
+ std::vector<DataRate> bitrates;
+ for (int sidx = 0; sidx < num_spatial_layers; ++sidx) {
+ for (int tidx = 0; tidx < num_temporal_layers; ++tidx) {
+ int bitrate_bps = bitrate_allocation.GetBitrate(sidx, tidx);
+ bitrates.push_back(DataRate::BitsPerSec(bitrate_bps));
+ }
+ }
+
+ return std::make_tuple(bitrates, *vc.GetScalabilityMode());
+}
+
+} // namespace
+
+void VideoCodecStats::Stream::LogMetrics(
+ MetricsLogger* logger,
+ std::string test_case_name,
+ std::string prefix,
+ std::map<std::string, std::string> metadata) const {
+ logger->LogMetric(prefix + "width", test_case_name, width, Unit::kCount,
+ ImprovementDirection::kBiggerIsBetter, metadata);
+ logger->LogMetric(prefix + "height", test_case_name, height, Unit::kCount,
+ ImprovementDirection::kBiggerIsBetter, metadata);
+ logger->LogMetric(prefix + "frame_size_bytes", test_case_name,
+ frame_size_bytes, Unit::kBytes,
+ ImprovementDirection::kNeitherIsBetter, metadata);
+ logger->LogMetric(prefix + "keyframe", test_case_name, keyframe, Unit::kCount,
+ ImprovementDirection::kSmallerIsBetter, metadata);
+ logger->LogMetric(prefix + "qp", test_case_name, qp, Unit::kUnitless,
+ ImprovementDirection::kSmallerIsBetter, metadata);
+ // TODO(webrtc:14852): Change to us or even ns.
+ logger->LogMetric(prefix + "encode_time_ms", test_case_name, encode_time_ms,
+ Unit::kMilliseconds, ImprovementDirection::kSmallerIsBetter,
+ metadata);
+ logger->LogMetric(prefix + "decode_time_ms", test_case_name, decode_time_ms,
+ Unit::kMilliseconds, ImprovementDirection::kSmallerIsBetter,
+ metadata);
+ // TODO(webrtc:14852): Change to kUnitLess. kKilobitsPerSecond are converted
+ // to bytes per second in Chromeperf dash.
+ logger->LogMetric(prefix + "target_bitrate_kbps", test_case_name,
+ target_bitrate_kbps, Unit::kKilobitsPerSecond,
+ ImprovementDirection::kBiggerIsBetter, metadata);
+ logger->LogMetric(prefix + "target_framerate_fps", test_case_name,
+ target_framerate_fps, Unit::kHertz,
+ ImprovementDirection::kBiggerIsBetter, metadata);
+ // TODO(webrtc:14852): Change to kUnitLess. kKilobitsPerSecond are converted
+ // to bytes per second in Chromeperf dash.
+ logger->LogMetric(prefix + "encoded_bitrate_kbps", test_case_name,
+ encoded_bitrate_kbps, Unit::kKilobitsPerSecond,
+ ImprovementDirection::kBiggerIsBetter, metadata);
+ logger->LogMetric(prefix + "encoded_framerate_fps", test_case_name,
+ encoded_framerate_fps, Unit::kHertz,
+ ImprovementDirection::kBiggerIsBetter, metadata);
+ logger->LogMetric(prefix + "bitrate_mismatch_pct", test_case_name,
+ bitrate_mismatch_pct, Unit::kPercent,
+ ImprovementDirection::kNeitherIsBetter, metadata);
+ logger->LogMetric(prefix + "framerate_mismatch_pct", test_case_name,
+ framerate_mismatch_pct, Unit::kPercent,
+ ImprovementDirection::kNeitherIsBetter, metadata);
+ logger->LogMetric(prefix + "transmission_time_ms", test_case_name,
+ transmission_time_ms, Unit::kMilliseconds,
+ ImprovementDirection::kSmallerIsBetter, metadata);
+ logger->LogMetric(prefix + "psnr_y_db", test_case_name, psnr.y,
+ Unit::kUnitless, ImprovementDirection::kBiggerIsBetter,
+ metadata);
+ logger->LogMetric(prefix + "psnr_u_db", test_case_name, psnr.u,
+ Unit::kUnitless, ImprovementDirection::kBiggerIsBetter,
+ metadata);
+ logger->LogMetric(prefix + "psnr_v_db", test_case_name, psnr.v,
+ Unit::kUnitless, ImprovementDirection::kBiggerIsBetter,
+ metadata);
+}
+
+// TODO(ssilkin): use Frequency and DataRate for framerate and bitrate.
+std::map<uint32_t, EncodingSettings> VideoCodecTester::CreateEncodingSettings(
+ std::string codec_type,
+ std::string scalability_name,
+ int width,
+ int height,
+ std::vector<int> layer_bitrates_kbps,
+ double framerate_fps,
+ int num_frames,
+ uint32_t first_timestamp_rtp) {
+ auto [layer_bitrates, scalability_mode] =
+ SplitBitrateAndUpdateScalabilityMode(
+ codec_type, *ScalabilityModeFromString(scalability_name), width,
+ height, layer_bitrates_kbps, framerate_fps);
+
+ int num_spatial_layers = ScalabilityModeToNumSpatialLayers(scalability_mode);
+ int num_temporal_layers =
+ ScalabilityModeToNumTemporalLayers(scalability_mode);
+
+ std::map<LayerId, LayerSettings> layers_settings;
+ for (int sidx = 0; sidx < num_spatial_layers; ++sidx) {
+ int layer_width = width >> (num_spatial_layers - sidx - 1);
+ int layer_height = height >> (num_spatial_layers - sidx - 1);
+ for (int tidx = 0; tidx < num_temporal_layers; ++tidx) {
+ double layer_framerate_fps =
+ framerate_fps / (1 << (num_temporal_layers - tidx - 1));
+ layers_settings.emplace(
+ LayerId{.spatial_idx = sidx, .temporal_idx = tidx},
+ LayerSettings{
+ .resolution = {.width = layer_width, .height = layer_height},
+ .framerate = Frequency::MilliHertz(1000 * layer_framerate_fps),
+ .bitrate = layer_bitrates[sidx * num_temporal_layers + tidx]});
+ }
+ }
+
+ std::map<uint32_t, EncodingSettings> frames_settings;
+ uint32_t timestamp_rtp = first_timestamp_rtp;
+ for (int frame_num = 0; frame_num < num_frames; ++frame_num) {
+ frames_settings.emplace(
+ timestamp_rtp,
+ EncodingSettings{.sdp_video_format = SdpVideoFormat(codec_type),
+ .scalability_mode = scalability_mode,
+ .layers_settings = layers_settings});
+
+ timestamp_rtp += k90kHz / Frequency::MilliHertz(1000 * framerate_fps);
+ }
+
+ return frames_settings;
+}
+
+std::unique_ptr<VideoCodecTester::VideoCodecStats>
+VideoCodecTester::RunDecodeTest(CodedVideoSource* video_source,
+ VideoDecoderFactory* decoder_factory,
+ const DecoderSettings& decoder_settings,
+ const SdpVideoFormat& sdp_video_format) {
+ std::unique_ptr<VideoCodecAnalyzer> analyzer =
+ std::make_unique<VideoCodecAnalyzer>(/*video_source=*/nullptr);
+ Decoder decoder(decoder_factory, decoder_settings, analyzer.get());
+ decoder.Initialize(sdp_video_format);
+
+ while (auto frame = video_source->PullFrame()) {
+ decoder.Decode(*frame);
+ }
+
+ decoder.Flush();
+ analyzer->Flush();
+ return std::move(analyzer);
+}
+
+std::unique_ptr<VideoCodecTester::VideoCodecStats>
+VideoCodecTester::RunEncodeTest(
+ const VideoSourceSettings& source_settings,
+ VideoEncoderFactory* encoder_factory,
+ const EncoderSettings& encoder_settings,
+ const std::map<uint32_t, EncodingSettings>& encoding_settings) {
+ VideoSource video_source(source_settings);
+ std::unique_ptr<VideoCodecAnalyzer> analyzer =
+ std::make_unique<VideoCodecAnalyzer>(/*video_source=*/nullptr);
+ Encoder encoder(encoder_factory, encoder_settings, analyzer.get());
+ encoder.Initialize(encoding_settings.begin()->second);
+
+ for (const auto& [timestamp_rtp, frame_settings] : encoding_settings) {
+ const EncodingSettings::LayerSettings& top_layer =
+ frame_settings.layers_settings.rbegin()->second;
+ VideoFrame source_frame = video_source.PullFrame(
+ timestamp_rtp, top_layer.resolution, top_layer.framerate);
+ encoder.Encode(source_frame, frame_settings,
+ [](const EncodedImage& encoded_frame) {});
+ }
+
+ encoder.Flush();
+ analyzer->Flush();
+ return std::move(analyzer);
+}
+
+std::unique_ptr<VideoCodecTester::VideoCodecStats>
+VideoCodecTester::RunEncodeDecodeTest(
+ const VideoSourceSettings& source_settings,
+ VideoEncoderFactory* encoder_factory,
+ VideoDecoderFactory* decoder_factory,
+ const EncoderSettings& encoder_settings,
+ const DecoderSettings& decoder_settings,
+ const std::map<uint32_t, EncodingSettings>& encoding_settings) {
+ VideoSource video_source(source_settings);
+ std::unique_ptr<VideoCodecAnalyzer> analyzer =
+ std::make_unique<VideoCodecAnalyzer>(&video_source);
+ Decoder decoder(decoder_factory, decoder_settings, analyzer.get());
+ Encoder encoder(encoder_factory, encoder_settings, analyzer.get());
+ encoder.Initialize(encoding_settings.begin()->second);
+ decoder.Initialize(encoding_settings.begin()->second.sdp_video_format);
+
+ for (const auto& [timestamp_rtp, frame_settings] : encoding_settings) {
+ const EncodingSettings::LayerSettings& top_layer =
+ frame_settings.layers_settings.rbegin()->second;
+ VideoFrame source_frame = video_source.PullFrame(
+ timestamp_rtp, top_layer.resolution, top_layer.framerate);
+ encoder.Encode(source_frame, frame_settings,
+ [&decoder](const EncodedImage& encoded_frame) {
+ decoder.Decode(encoded_frame);
+ });
+ }
+
+ encoder.Flush();
+ decoder.Flush();
+ analyzer->Flush();
+ return std::move(analyzer);
+}
+
+} // namespace test
+} // namespace webrtc