summaryrefslogtreecommitdiffstats
path: root/third_party/rust/aho-corasick/src/nfa/contiguous.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/aho-corasick/src/nfa/contiguous.rs')
-rw-r--r--third_party/rust/aho-corasick/src/nfa/contiguous.rs1141
1 files changed, 1141 insertions, 0 deletions
diff --git a/third_party/rust/aho-corasick/src/nfa/contiguous.rs b/third_party/rust/aho-corasick/src/nfa/contiguous.rs
new file mode 100644
index 0000000000..29c162107d
--- /dev/null
+++ b/third_party/rust/aho-corasick/src/nfa/contiguous.rs
@@ -0,0 +1,1141 @@
+/*!
+Provides a contiguous NFA implementation of Aho-Corasick.
+
+This is a low-level API that generally only needs to be used in niche
+circumstances. When possible, prefer using [`AhoCorasick`](crate::AhoCorasick)
+instead of a contiguous NFA directly. Using an `NFA` directly is typically only
+necessary when one needs access to the [`Automaton`] trait implementation.
+*/
+
+use alloc::{vec, vec::Vec};
+
+use crate::{
+ automaton::Automaton,
+ nfa::noncontiguous,
+ util::{
+ alphabet::ByteClasses,
+ error::{BuildError, MatchError},
+ int::{Usize, U16, U32},
+ prefilter::Prefilter,
+ primitives::{IteratorIndexExt, PatternID, SmallIndex, StateID},
+ search::{Anchored, MatchKind},
+ special::Special,
+ },
+};
+
+/// A contiguous NFA implementation of Aho-Corasick.
+///
+/// When possible, prefer using [`AhoCorasick`](crate::AhoCorasick) instead of
+/// this type directly. Using an `NFA` directly is typically only necessary
+/// when one needs access to the [`Automaton`] trait implementation.
+///
+/// This NFA can only be built by first constructing a [`noncontiguous::NFA`].
+/// Both [`NFA::new`] and [`Builder::build`] do this for you automatically, but
+/// [`Builder::build_from_noncontiguous`] permits doing it explicitly.
+///
+/// The main difference between a noncontiguous NFA and a contiguous NFA is
+/// that the latter represents all of its states and transitions in a single
+/// allocation, where as the former uses a separate allocation for each state.
+/// Doing this at construction time while keeping a low memory footprint isn't
+/// feasible, which is primarily why there are two different NFA types: one
+/// that does the least amount of work possible to build itself, and another
+/// that does a little extra work to compact itself and make state transitions
+/// faster by making some states use a dense representation.
+///
+/// Because a contiguous NFA uses a single allocation, there is a lot more
+/// opportunity for compression tricks to reduce the heap memory used. Indeed,
+/// it is not uncommon for a contiguous NFA to use an order of magnitude less
+/// heap memory than a noncontiguous NFA. Since building a contiguous NFA
+/// usually only takes a fraction of the time it takes to build a noncontiguous
+/// NFA, the overall build time is not much slower. Thus, in most cases, a
+/// contiguous NFA is the best choice.
+///
+/// Since a contiguous NFA uses various tricks for compression and to achieve
+/// faster state transitions, currently, its limit on the number of states
+/// is somewhat smaller than what a noncontiguous NFA can achieve. Generally
+/// speaking, you shouldn't expect to run into this limit if the number of
+/// patterns is under 1 million. It is plausible that this limit will be
+/// increased in the future. If the limit is reached, building a contiguous NFA
+/// will return an error. Often, since building a contiguous NFA is relatively
+/// cheap, it can make sense to always try it even if you aren't sure if it
+/// will fail or not. If it does, you can always fall back to a noncontiguous
+/// NFA. (Indeed, the main [`AhoCorasick`](crate::AhoCorasick) type employs a
+/// strategy similar to this at construction time.)
+///
+/// # Example
+///
+/// This example shows how to build an `NFA` directly and use it to execute
+/// [`Automaton::try_find`]:
+///
+/// ```
+/// use aho_corasick::{
+/// automaton::Automaton,
+/// nfa::contiguous::NFA,
+/// Input, Match,
+/// };
+///
+/// let patterns = &["b", "abc", "abcd"];
+/// let haystack = "abcd";
+///
+/// let nfa = NFA::new(patterns).unwrap();
+/// assert_eq!(
+/// Some(Match::must(0, 1..2)),
+/// nfa.try_find(&Input::new(haystack))?,
+/// );
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+///
+/// It is also possible to implement your own version of `try_find`. See the
+/// [`Automaton`] documentation for an example.
+#[derive(Clone)]
+pub struct NFA {
+ /// The raw NFA representation. Each state is packed with a header
+ /// (containing the format of the state, the failure transition and, for
+ /// a sparse state, the number of transitions), its transitions and any
+ /// matching pattern IDs for match states.
+ repr: Vec<u32>,
+ /// The length of each pattern. This is used to compute the start offset
+ /// of a match.
+ pattern_lens: Vec<SmallIndex>,
+ /// The total number of states in this NFA.
+ state_len: usize,
+ /// A prefilter for accelerating searches, if one exists.
+ prefilter: Option<Prefilter>,
+ /// The match semantics built into this NFA.
+ match_kind: MatchKind,
+ /// The alphabet size, or total number of equivalence classes, for this
+ /// NFA. Dense states always have this many transitions.
+ alphabet_len: usize,
+ /// The equivalence classes for this NFA. All transitions, dense and
+ /// sparse, are defined on equivalence classes and not on the 256 distinct
+ /// byte values.
+ byte_classes: ByteClasses,
+ /// The length of the shortest pattern in this automaton.
+ min_pattern_len: usize,
+ /// The length of the longest pattern in this automaton.
+ max_pattern_len: usize,
+ /// The information required to deduce which states are "special" in this
+ /// NFA.
+ special: Special,
+}
+
+impl NFA {
+ /// Create a new Aho-Corasick contiguous NFA using the default
+ /// configuration.
+ ///
+ /// Use a [`Builder`] if you want to change the configuration.
+ pub fn new<I, P>(patterns: I) -> Result<NFA, BuildError>
+ where
+ I: IntoIterator<Item = P>,
+ P: AsRef<[u8]>,
+ {
+ NFA::builder().build(patterns)
+ }
+
+ /// A convenience method for returning a new Aho-Corasick contiguous NFA
+ /// builder.
+ ///
+ /// This usually permits one to just import the `NFA` type.
+ pub fn builder() -> Builder {
+ Builder::new()
+ }
+}
+
+impl NFA {
+ /// A sentinel state ID indicating that a search should stop once it has
+ /// entered this state. When a search stops, it returns a match if one
+ /// has been found, otherwise no match. A contiguous NFA always has an
+ /// actual dead state at this ID.
+ const DEAD: StateID = StateID::new_unchecked(0);
+ /// Another sentinel state ID indicating that a search should move through
+ /// current state's failure transition.
+ ///
+ /// Note that unlike DEAD, this does not actually point to a valid state
+ /// in a contiguous NFA. (noncontiguous::NFA::FAIL does point to a valid
+ /// state.) Instead, this points to the position that is guaranteed to
+ /// never be a valid state ID (by making sure it points to a place in the
+ /// middle of the encoding of the DEAD state). Since we never need to
+ /// actually look at the FAIL state itself, this works out.
+ ///
+ /// By why do it this way? So that FAIL is a constant. I don't have any
+ /// concrete evidence that this materially helps matters, but it's easy to
+ /// do. The alternative would be making the FAIL ID point to the second
+ /// state, which could be made a constant but is a little trickier to do.
+ /// The easiest path is to just make the FAIL state a runtime value, but
+ /// since comparisons with FAIL occur in perf critical parts of the search,
+ /// we want it to be as tight as possible and not waste any registers.
+ ///
+ /// Very hand wavy... But the code complexity that results from this is
+ /// very mild.
+ const FAIL: StateID = StateID::new_unchecked(1);
+}
+
+// SAFETY: 'start_state' always returns a valid state ID, 'next_state' always
+// returns a valid state ID given a valid state ID. We otherwise claim that
+// all other methods are correct as well.
+unsafe impl Automaton for NFA {
+ #[inline(always)]
+ fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError> {
+ match anchored {
+ Anchored::No => Ok(self.special.start_unanchored_id),
+ Anchored::Yes => Ok(self.special.start_anchored_id),
+ }
+ }
+
+ #[inline(always)]
+ fn next_state(
+ &self,
+ anchored: Anchored,
+ mut sid: StateID,
+ byte: u8,
+ ) -> StateID {
+ let repr = &self.repr;
+ let class = self.byte_classes.get(byte);
+ let u32tosid = StateID::from_u32_unchecked;
+ loop {
+ let o = sid.as_usize();
+ let kind = repr[o] & 0xFF;
+ // I tried to encapsulate the "next transition" logic into its own
+ // function, but it seemed to always result in sub-optimal codegen
+ // that led to real and significant slowdowns. So we just inline
+ // the logic here.
+ //
+ // I've also tried a lot of different ways to speed up this
+ // routine, and most of them have failed.
+ if kind == State::KIND_DENSE {
+ let next = u32tosid(repr[o + 2 + usize::from(class)]);
+ if next != NFA::FAIL {
+ return next;
+ }
+ } else if kind == State::KIND_ONE {
+ if class == repr[o].low_u16().high_u8() {
+ return u32tosid(repr[o + 2]);
+ }
+ } else {
+ // NOTE: I tried a SWAR technique in the loop below, but found
+ // it slower. See the 'swar' test in the tests for this module.
+ let trans_len = kind.as_usize();
+ let classes_len = u32_len(trans_len);
+ let trans_offset = o + 2 + classes_len;
+ for (i, &chunk) in
+ repr[o + 2..][..classes_len].iter().enumerate()
+ {
+ let classes = chunk.to_ne_bytes();
+ if classes[0] == class {
+ return u32tosid(repr[trans_offset + i * 4]);
+ }
+ if classes[1] == class {
+ return u32tosid(repr[trans_offset + i * 4 + 1]);
+ }
+ if classes[2] == class {
+ return u32tosid(repr[trans_offset + i * 4 + 2]);
+ }
+ if classes[3] == class {
+ return u32tosid(repr[trans_offset + i * 4 + 3]);
+ }
+ }
+ }
+ // For an anchored search, we never follow failure transitions
+ // because failure transitions lead us down a path to matching
+ // a *proper* suffix of the path we were on. Thus, it can only
+ // produce matches that appear after the beginning of the search.
+ if anchored.is_anchored() {
+ return NFA::DEAD;
+ }
+ sid = u32tosid(repr[o + 1]);
+ }
+ }
+
+ #[inline(always)]
+ fn is_special(&self, sid: StateID) -> bool {
+ sid <= self.special.max_special_id
+ }
+
+ #[inline(always)]
+ fn is_dead(&self, sid: StateID) -> bool {
+ sid == NFA::DEAD
+ }
+
+ #[inline(always)]
+ fn is_match(&self, sid: StateID) -> bool {
+ !self.is_dead(sid) && sid <= self.special.max_match_id
+ }
+
+ #[inline(always)]
+ fn is_start(&self, sid: StateID) -> bool {
+ sid == self.special.start_unanchored_id
+ || sid == self.special.start_anchored_id
+ }
+
+ #[inline(always)]
+ fn match_kind(&self) -> MatchKind {
+ self.match_kind
+ }
+
+ #[inline(always)]
+ fn patterns_len(&self) -> usize {
+ self.pattern_lens.len()
+ }
+
+ #[inline(always)]
+ fn pattern_len(&self, pid: PatternID) -> usize {
+ self.pattern_lens[pid].as_usize()
+ }
+
+ #[inline(always)]
+ fn min_pattern_len(&self) -> usize {
+ self.min_pattern_len
+ }
+
+ #[inline(always)]
+ fn max_pattern_len(&self) -> usize {
+ self.max_pattern_len
+ }
+
+ #[inline(always)]
+ fn match_len(&self, sid: StateID) -> usize {
+ State::match_len(self.alphabet_len, &self.repr[sid.as_usize()..])
+ }
+
+ #[inline(always)]
+ fn match_pattern(&self, sid: StateID, index: usize) -> PatternID {
+ State::match_pattern(
+ self.alphabet_len,
+ &self.repr[sid.as_usize()..],
+ index,
+ )
+ }
+
+ #[inline(always)]
+ fn memory_usage(&self) -> usize {
+ use core::mem::size_of;
+
+ (self.repr.len() * size_of::<u32>())
+ + (self.pattern_lens.len() * size_of::<SmallIndex>())
+ + self.prefilter.as_ref().map_or(0, |p| p.memory_usage())
+ }
+
+ #[inline(always)]
+ fn prefilter(&self) -> Option<&Prefilter> {
+ self.prefilter.as_ref()
+ }
+}
+
+impl core::fmt::Debug for NFA {
+ fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+ use crate::automaton::fmt_state_indicator;
+
+ writeln!(f, "contiguous::NFA(")?;
+ let mut sid = NFA::DEAD; // always the first state and always present
+ loop {
+ let raw = &self.repr[sid.as_usize()..];
+ if raw.is_empty() {
+ break;
+ }
+ let is_match = self.is_match(sid);
+ let state = State::read(self.alphabet_len, is_match, raw);
+ fmt_state_indicator(f, self, sid)?;
+ write!(
+ f,
+ "{:06}({:06}): ",
+ sid.as_usize(),
+ state.fail.as_usize()
+ )?;
+ state.fmt(f)?;
+ write!(f, "\n")?;
+ if self.is_match(sid) {
+ write!(f, " matches: ")?;
+ for i in 0..state.match_len {
+ let pid = State::match_pattern(self.alphabet_len, raw, i);
+ if i > 0 {
+ write!(f, ", ")?;
+ }
+ write!(f, "{}", pid.as_usize())?;
+ }
+ write!(f, "\n")?;
+ }
+ // The FAIL state doesn't actually have space for a state allocated
+ // for it, so we have to treat it as a special case. write below
+ // the DEAD state.
+ if sid == NFA::DEAD {
+ writeln!(f, "F {:06}:", NFA::FAIL.as_usize())?;
+ }
+ let len = State::len(self.alphabet_len, is_match, raw);
+ sid = StateID::new(sid.as_usize().checked_add(len).unwrap())
+ .unwrap();
+ }
+ writeln!(f, "match kind: {:?}", self.match_kind)?;
+ writeln!(f, "prefilter: {:?}", self.prefilter.is_some())?;
+ writeln!(f, "state length: {:?}", self.state_len)?;
+ writeln!(f, "pattern length: {:?}", self.patterns_len())?;
+ writeln!(f, "shortest pattern length: {:?}", self.min_pattern_len)?;
+ writeln!(f, "longest pattern length: {:?}", self.max_pattern_len)?;
+ writeln!(f, "alphabet length: {:?}", self.alphabet_len)?;
+ writeln!(f, "byte classes: {:?}", self.byte_classes)?;
+ writeln!(f, "memory usage: {:?}", self.memory_usage())?;
+ writeln!(f, ")")?;
+
+ Ok(())
+ }
+}
+
+/// The "in memory" representation a single dense or sparse state.
+///
+/// A `State`'s in memory representation is not ever actually materialized
+/// during a search with a contiguous NFA. Doing so would be too slow. (Indeed,
+/// the only time a `State` is actually constructed is in `Debug` impls.)
+/// Instead, a `State` exposes a number of static methods for reading certain
+/// things from the raw binary encoding of the state.
+#[derive(Clone)]
+struct State<'a> {
+ /// The state to transition to when 'class_to_next' yields a transition
+ /// to the FAIL state.
+ fail: StateID,
+ /// The number of pattern IDs in this state. For a non-match state, this is
+ /// always zero. Otherwise it is always bigger than zero.
+ match_len: usize,
+ /// The sparse or dense representation of the transitions for this state.
+ trans: StateTrans<'a>,
+}
+
+/// The underlying representation of sparse or dense transitions for a state.
+///
+/// Note that like `State`, we don't typically construct values of this type
+/// during a search since we don't always need all values and thus would
+/// represent a lot of wasteful work.
+#[derive(Clone)]
+enum StateTrans<'a> {
+ /// A sparse representation of transitions for a state, where only non-FAIL
+ /// transitions are explicitly represented.
+ Sparse {
+ classes: &'a [u32],
+ /// The transitions for this state, where each transition is packed
+ /// into a u32. The low 8 bits correspond to the byte class for the
+ /// transition, and the high 24 bits correspond to the next state ID.
+ ///
+ /// This packing is why the max state ID allowed for a contiguous
+ /// NFA is 2^24-1.
+ nexts: &'a [u32],
+ },
+ /// A "one transition" state that is never a match state.
+ ///
+ /// These are by far the most common state, so we use a specialized and
+ /// very compact representation for them.
+ One {
+ /// The element of this NFA's alphabet that this transition is
+ /// defined for.
+ class: u8,
+ /// The state this should transition to if the current symbol is
+ /// equal to 'class'.
+ next: u32,
+ },
+ /// A dense representation of transitions for a state, where all
+ /// transitions are explicitly represented, including transitions to the
+ /// FAIL state.
+ Dense {
+ /// A dense set of transitions to other states. The transitions may
+ /// point to a FAIL state, in which case, the search should try the
+ /// same transition lookup at 'fail'.
+ ///
+ /// Note that this is indexed by byte equivalence classes and not
+ /// byte values. That means 'class_to_next[byte]' is wrong and
+ /// 'class_to_next[classes.get(byte)]' is correct. The number of
+ /// transitions is always equivalent to 'classes.alphabet_len()'.
+ class_to_next: &'a [u32],
+ },
+}
+
+impl<'a> State<'a> {
+ /// The offset of where the "kind" of a state is stored. If it isn't one
+ /// of the sentinel values below, then it's a sparse state and the kind
+ /// corresponds to the number of transitions in the state.
+ const KIND: usize = 0;
+
+ /// A sentinel value indicating that the state uses a dense representation.
+ const KIND_DENSE: u32 = 0xFF;
+ /// A sentinel value indicating that the state uses a special "one
+ /// transition" encoding. In practice, non-match states with one transition
+ /// make up the overwhelming majority of all states in any given
+ /// Aho-Corasick automaton, so we can specialize them using a very compact
+ /// representation.
+ const KIND_ONE: u32 = 0xFE;
+
+ /// The maximum number of transitions to encode as a sparse state. Usually
+ /// states with a lot of transitions are either very rare, or occur near
+ /// the start state. In the latter case, they are probably dense already
+ /// anyway. In the former case, making them dense is fine because they're
+ /// rare.
+ ///
+ /// This needs to be small enough to permit each of the sentinel values for
+ /// 'KIND' above. Namely, a sparse state embeds the number of transitions
+ /// into the 'KIND'. Basically, "sparse" is a state kind too, but it's the
+ /// "else" branch.
+ ///
+ /// N.B. There isn't anything particularly magical about 127 here. I
+ /// just picked it because I figured any sparse state with this many
+ /// transitions is going to be exceptionally rare, and if it did have this
+ /// many transitions, then it would be quite slow to do a linear scan on
+ /// the transitions during a search anyway.
+ const MAX_SPARSE_TRANSITIONS: usize = 127;
+
+ /// Remap state IDs in-place.
+ ///
+ /// `state` should be the the raw binary encoding of a state. (The start
+ /// of the slice must correspond to the start of the state, but the slice
+ /// may extend past the end of the encoding of the state.)
+ fn remap(
+ alphabet_len: usize,
+ old_to_new: &[StateID],
+ state: &mut [u32],
+ ) -> Result<(), BuildError> {
+ let kind = State::kind(state);
+ if kind == State::KIND_DENSE {
+ state[1] = old_to_new[state[1].as_usize()].as_u32();
+ for next in state[2..][..alphabet_len].iter_mut() {
+ *next = old_to_new[next.as_usize()].as_u32();
+ }
+ } else if kind == State::KIND_ONE {
+ state[1] = old_to_new[state[1].as_usize()].as_u32();
+ state[2] = old_to_new[state[2].as_usize()].as_u32();
+ } else {
+ let trans_len = State::sparse_trans_len(state);
+ let classes_len = u32_len(trans_len);
+ state[1] = old_to_new[state[1].as_usize()].as_u32();
+ for next in state[2 + classes_len..][..trans_len].iter_mut() {
+ *next = old_to_new[next.as_usize()].as_u32();
+ }
+ }
+ Ok(())
+ }
+
+ /// Returns the length, in number of u32s, of this state.
+ ///
+ /// This is useful for reading states consecutively, e.g., in the Debug
+ /// impl without needing to store a separate map from state index to state
+ /// identifier.
+ ///
+ /// `state` should be the the raw binary encoding of a state. (The start
+ /// of the slice must correspond to the start of the state, but the slice
+ /// may extend past the end of the encoding of the state.)
+ fn len(alphabet_len: usize, is_match: bool, state: &[u32]) -> usize {
+ let kind_len = 1;
+ let fail_len = 1;
+ let kind = State::kind(state);
+ let (classes_len, trans_len) = if kind == State::KIND_DENSE {
+ (0, alphabet_len)
+ } else if kind == State::KIND_ONE {
+ (0, 1)
+ } else {
+ let trans_len = State::sparse_trans_len(state);
+ let classes_len = u32_len(trans_len);
+ (classes_len, trans_len)
+ };
+ let match_len = if !is_match {
+ 0
+ } else if State::match_len(alphabet_len, state) == 1 {
+ // This is a special case because when there is one pattern ID for
+ // a match state, it is represented by a single u32 with its high
+ // bit set (which is impossible for a valid pattern ID).
+ 1
+ } else {
+ // We add 1 to include the u32 that indicates the number of
+ // pattern IDs that follow.
+ 1 + State::match_len(alphabet_len, state)
+ };
+ kind_len + fail_len + classes_len + trans_len + match_len
+ }
+
+ /// Returns the kind of this state.
+ ///
+ /// This only includes the low byte.
+ #[inline(always)]
+ fn kind(state: &[u32]) -> u32 {
+ state[State::KIND] & 0xFF
+ }
+
+ /// Get the number of sparse transitions in this state. This can never
+ /// be more than State::MAX_SPARSE_TRANSITIONS, as all states with more
+ /// transitions are encoded as dense states.
+ ///
+ /// `state` should be the the raw binary encoding of a sparse state. (The
+ /// start of the slice must correspond to the start of the state, but the
+ /// slice may extend past the end of the encoding of the state.) If this
+ /// isn't a sparse state, then the return value is unspecified.
+ ///
+ /// Do note that this is only legal to call on a sparse state. So for
+ /// example, "one transition" state is not a sparse state, so it would not
+ /// be legal to call this method on such a state.
+ #[inline(always)]
+ fn sparse_trans_len(state: &[u32]) -> usize {
+ (state[State::KIND] & 0xFF).as_usize()
+ }
+
+ /// Returns the total number of matching pattern IDs in this state. Calling
+ /// this on a state that isn't a match results in unspecified behavior.
+ /// Thus, the returned number is never 0 for all correct calls.
+ ///
+ /// `state` should be the the raw binary encoding of a state. (The start
+ /// of the slice must correspond to the start of the state, but the slice
+ /// may extend past the end of the encoding of the state.)
+ #[inline(always)]
+ fn match_len(alphabet_len: usize, state: &[u32]) -> usize {
+ // We don't need to handle KIND_ONE here because it can never be a
+ // match state.
+ let packed = if State::kind(state) == State::KIND_DENSE {
+ let start = 2 + alphabet_len;
+ state[start].as_usize()
+ } else {
+ let trans_len = State::sparse_trans_len(state);
+ let classes_len = u32_len(trans_len);
+ let start = 2 + classes_len + trans_len;
+ state[start].as_usize()
+ };
+ if packed & (1 << 31) == 0 {
+ packed
+ } else {
+ 1
+ }
+ }
+
+ /// Returns the pattern ID corresponding to the given index for the state
+ /// given. The `index` provided must be less than the number of pattern IDs
+ /// in this state.
+ ///
+ /// `state` should be the the raw binary encoding of a state. (The start of
+ /// the slice must correspond to the start of the state, but the slice may
+ /// extend past the end of the encoding of the state.)
+ ///
+ /// If the given state is not a match state or if the index is out of
+ /// bounds, then this has unspecified behavior.
+ #[inline(always)]
+ fn match_pattern(
+ alphabet_len: usize,
+ state: &[u32],
+ index: usize,
+ ) -> PatternID {
+ // We don't need to handle KIND_ONE here because it can never be a
+ // match state.
+ let start = if State::kind(state) == State::KIND_DENSE {
+ 2 + alphabet_len
+ } else {
+ let trans_len = State::sparse_trans_len(state);
+ let classes_len = u32_len(trans_len);
+ 2 + classes_len + trans_len
+ };
+ let packed = state[start];
+ let pid = if packed & (1 << 31) == 0 {
+ state[start + 1 + index]
+ } else {
+ assert_eq!(0, index);
+ packed & !(1 << 31)
+ };
+ PatternID::from_u32_unchecked(pid)
+ }
+
+ /// Read a state's binary encoding to its in-memory representation.
+ ///
+ /// `alphabet_len` should be the total number of transitions defined for
+ /// dense states.
+ ///
+ /// `is_match` should be true if this state is a match state and false
+ /// otherwise.
+ ///
+ /// `state` should be the the raw binary encoding of a state. (The start
+ /// of the slice must correspond to the start of the state, but the slice
+ /// may extend past the end of the encoding of the state.)
+ fn read(
+ alphabet_len: usize,
+ is_match: bool,
+ state: &'a [u32],
+ ) -> State<'a> {
+ let kind = State::kind(state);
+ let match_len =
+ if !is_match { 0 } else { State::match_len(alphabet_len, state) };
+ let (trans, fail) = if kind == State::KIND_DENSE {
+ let fail = StateID::from_u32_unchecked(state[1]);
+ let class_to_next = &state[2..][..alphabet_len];
+ (StateTrans::Dense { class_to_next }, fail)
+ } else if kind == State::KIND_ONE {
+ let fail = StateID::from_u32_unchecked(state[1]);
+ let class = state[State::KIND].low_u16().high_u8();
+ let next = state[2];
+ (StateTrans::One { class, next }, fail)
+ } else {
+ let fail = StateID::from_u32_unchecked(state[1]);
+ let trans_len = State::sparse_trans_len(state);
+ let classes_len = u32_len(trans_len);
+ let classes = &state[2..][..classes_len];
+ let nexts = &state[2 + classes_len..][..trans_len];
+ (StateTrans::Sparse { classes, nexts }, fail)
+ };
+ State { fail, match_len, trans }
+ }
+
+ /// Encode the "old" state from a noncontiguous NFA to its binary
+ /// representation to the given `dst` slice. `classes` should be the byte
+ /// classes computed for the noncontiguous NFA that the given state came
+ /// from.
+ ///
+ /// This returns an error if `dst` became so big that `StateID`s can no
+ /// longer be created for new states. Otherwise, it returns the state ID of
+ /// the new state created.
+ ///
+ /// When `force_dense` is true, then the encoded state will always use a
+ /// dense format. Otherwise, the choice between dense and sparse will be
+ /// automatically chosen based on the old state.
+ fn write(
+ nnfa: &noncontiguous::NFA,
+ oldsid: StateID,
+ old: &noncontiguous::State,
+ classes: &ByteClasses,
+ dst: &mut Vec<u32>,
+ force_dense: bool,
+ ) -> Result<StateID, BuildError> {
+ let sid = StateID::new(dst.len()).map_err(|e| {
+ BuildError::state_id_overflow(StateID::MAX.as_u64(), e.attempted())
+ })?;
+ let old_len = nnfa.iter_trans(oldsid).count();
+ // For states with a lot of transitions, we might as well just make
+ // them dense. These kinds of hot states tend to be very rare, so we're
+ // okay with it. This also gives us more sentinels in the state's
+ // 'kind', which lets us create different state kinds to save on
+ // space.
+ let kind = if force_dense || old_len > State::MAX_SPARSE_TRANSITIONS {
+ State::KIND_DENSE
+ } else if old_len == 1 && !old.is_match() {
+ State::KIND_ONE
+ } else {
+ // For a sparse state, the kind is just the number of transitions.
+ u32::try_from(old_len).unwrap()
+ };
+ if kind == State::KIND_DENSE {
+ dst.push(kind);
+ dst.push(old.fail().as_u32());
+ State::write_dense_trans(nnfa, oldsid, classes, dst)?;
+ } else if kind == State::KIND_ONE {
+ let t = nnfa.iter_trans(oldsid).next().unwrap();
+ let class = u32::from(classes.get(t.byte()));
+ dst.push(kind | (class << 8));
+ dst.push(old.fail().as_u32());
+ dst.push(t.next().as_u32());
+ } else {
+ dst.push(kind);
+ dst.push(old.fail().as_u32());
+ State::write_sparse_trans(nnfa, oldsid, classes, dst)?;
+ }
+ // Now finally write the number of matches and the matches themselves.
+ if old.is_match() {
+ let matches_len = nnfa.iter_matches(oldsid).count();
+ if matches_len == 1 {
+ let pid = nnfa.iter_matches(oldsid).next().unwrap().as_u32();
+ assert_eq!(0, pid & (1 << 31));
+ dst.push((1 << 31) | pid);
+ } else {
+ assert_eq!(0, matches_len & (1 << 31));
+ dst.push(matches_len.as_u32());
+ dst.extend(nnfa.iter_matches(oldsid).map(|pid| pid.as_u32()));
+ }
+ }
+ Ok(sid)
+ }
+
+ /// Encode the "old" state transitions from a noncontiguous NFA to its
+ /// binary sparse representation to the given `dst` slice. `classes` should
+ /// be the byte classes computed for the noncontiguous NFA that the given
+ /// state came from.
+ ///
+ /// This returns an error if `dst` became so big that `StateID`s can no
+ /// longer be created for new states.
+ fn write_sparse_trans(
+ nnfa: &noncontiguous::NFA,
+ oldsid: StateID,
+ classes: &ByteClasses,
+ dst: &mut Vec<u32>,
+ ) -> Result<(), BuildError> {
+ let (mut chunk, mut len) = ([0; 4], 0);
+ for t in nnfa.iter_trans(oldsid) {
+ chunk[len] = classes.get(t.byte());
+ len += 1;
+ if len == 4 {
+ dst.push(u32::from_ne_bytes(chunk));
+ chunk = [0; 4];
+ len = 0;
+ }
+ }
+ if len > 0 {
+ // In the case where the number of transitions isn't divisible
+ // by 4, the last u32 chunk will have some left over room. In
+ // this case, we "just" repeat the last equivalence class. By
+ // doing this, we know the leftover faux transitions will never
+ // be followed because if they were, it would have been followed
+ // prior to it in the last equivalence class. This saves us some
+ // branching in the search time state transition code.
+ let repeat = chunk[len - 1];
+ while len < 4 {
+ chunk[len] = repeat;
+ len += 1;
+ }
+ dst.push(u32::from_ne_bytes(chunk));
+ }
+ for t in nnfa.iter_trans(oldsid) {
+ dst.push(t.next().as_u32());
+ }
+ Ok(())
+ }
+
+ /// Encode the "old" state transitions from a noncontiguous NFA to its
+ /// binary dense representation to the given `dst` slice. `classes` should
+ /// be the byte classes computed for the noncontiguous NFA that the given
+ /// state came from.
+ ///
+ /// This returns an error if `dst` became so big that `StateID`s can no
+ /// longer be created for new states.
+ fn write_dense_trans(
+ nnfa: &noncontiguous::NFA,
+ oldsid: StateID,
+ classes: &ByteClasses,
+ dst: &mut Vec<u32>,
+ ) -> Result<(), BuildError> {
+ // Our byte classes let us shrink the size of our dense states to the
+ // number of equivalence classes instead of just fixing it to 256.
+ // Any non-explicitly defined transition is just a transition to the
+ // FAIL state, so we fill that in first and then overwrite them with
+ // explicitly defined transitions. (Most states probably only have one
+ // or two explicitly defined transitions.)
+ //
+ // N.B. Remember that while building the contiguous NFA, we use state
+ // IDs from the noncontiguous NFA. It isn't until we've added all
+ // states that we go back and map noncontiguous IDs to contiguous IDs.
+ let start = dst.len();
+ dst.extend(
+ core::iter::repeat(noncontiguous::NFA::FAIL.as_u32())
+ .take(classes.alphabet_len()),
+ );
+ assert!(start < dst.len(), "equivalence classes are never empty");
+ for t in nnfa.iter_trans(oldsid) {
+ dst[start + usize::from(classes.get(t.byte()))] =
+ t.next().as_u32();
+ }
+ Ok(())
+ }
+
+ /// Return an iterator over every explicitly defined transition in this
+ /// state.
+ fn transitions<'b>(&'b self) -> impl Iterator<Item = (u8, StateID)> + 'b {
+ let mut i = 0;
+ core::iter::from_fn(move || match self.trans {
+ StateTrans::Sparse { classes, nexts } => {
+ if i >= nexts.len() {
+ return None;
+ }
+ let chunk = classes[i / 4];
+ let class = chunk.to_ne_bytes()[i % 4];
+ let next = StateID::from_u32_unchecked(nexts[i]);
+ i += 1;
+ Some((class, next))
+ }
+ StateTrans::One { class, next } => {
+ if i == 0 {
+ i += 1;
+ Some((class, StateID::from_u32_unchecked(next)))
+ } else {
+ None
+ }
+ }
+ StateTrans::Dense { class_to_next } => {
+ if i >= class_to_next.len() {
+ return None;
+ }
+ let class = i.as_u8();
+ let next = StateID::from_u32_unchecked(class_to_next[i]);
+ i += 1;
+ Some((class, next))
+ }
+ })
+ }
+}
+
+impl<'a> core::fmt::Debug for State<'a> {
+ fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
+ use crate::{automaton::sparse_transitions, util::debug::DebugByte};
+
+ let it = sparse_transitions(self.transitions())
+ // Writing out all FAIL transitions is quite noisy. Instead, we
+ // just require readers of the output to assume anything absent
+ // maps to the FAIL transition.
+ .filter(|&(_, _, sid)| sid != NFA::FAIL)
+ .enumerate();
+ for (i, (start, end, sid)) in it {
+ if i > 0 {
+ write!(f, ", ")?;
+ }
+ if start == end {
+ write!(f, "{:?} => {:?}", DebugByte(start), sid.as_usize())?;
+ } else {
+ write!(
+ f,
+ "{:?}-{:?} => {:?}",
+ DebugByte(start),
+ DebugByte(end),
+ sid.as_usize()
+ )?;
+ }
+ }
+ Ok(())
+ }
+}
+
+/// A builder for configuring an Aho-Corasick contiguous NFA.
+///
+/// This builder has a subset of the options available to a
+/// [`AhoCorasickBuilder`](crate::AhoCorasickBuilder). Of the shared options,
+/// their behavior is identical.
+#[derive(Clone, Debug)]
+pub struct Builder {
+ noncontiguous: noncontiguous::Builder,
+ dense_depth: usize,
+ byte_classes: bool,
+}
+
+impl Default for Builder {
+ fn default() -> Builder {
+ Builder {
+ noncontiguous: noncontiguous::Builder::new(),
+ dense_depth: 2,
+ byte_classes: true,
+ }
+ }
+}
+
+impl Builder {
+ /// Create a new builder for configuring an Aho-Corasick contiguous NFA.
+ pub fn new() -> Builder {
+ Builder::default()
+ }
+
+ /// Build an Aho-Corasick contiguous NFA from the given iterator of
+ /// patterns.
+ ///
+ /// A builder may be reused to create more NFAs.
+ pub fn build<I, P>(&self, patterns: I) -> Result<NFA, BuildError>
+ where
+ I: IntoIterator<Item = P>,
+ P: AsRef<[u8]>,
+ {
+ let nnfa = self.noncontiguous.build(patterns)?;
+ self.build_from_noncontiguous(&nnfa)
+ }
+
+ /// Build an Aho-Corasick contiguous NFA from the given noncontiguous NFA.
+ ///
+ /// Note that when this method is used, only the `dense_depth` and
+ /// `byte_classes` settings on this builder are respected. The other
+ /// settings only apply to the initial construction of the Aho-Corasick
+ /// automaton. Since using this method requires that initial construction
+ /// has already completed, all settings impacting only initial construction
+ /// are no longer relevant.
+ pub fn build_from_noncontiguous(
+ &self,
+ nnfa: &noncontiguous::NFA,
+ ) -> Result<NFA, BuildError> {
+ debug!("building contiguous NFA");
+ let byte_classes = if self.byte_classes {
+ nnfa.byte_classes().clone()
+ } else {
+ ByteClasses::singletons()
+ };
+ let mut index_to_state_id = vec![NFA::DEAD; nnfa.states().len()];
+ let mut nfa = NFA {
+ repr: vec![],
+ pattern_lens: nnfa.pattern_lens_raw().to_vec(),
+ state_len: nnfa.states().len(),
+ prefilter: nnfa.prefilter().map(|p| p.clone()),
+ match_kind: nnfa.match_kind(),
+ alphabet_len: byte_classes.alphabet_len(),
+ byte_classes,
+ min_pattern_len: nnfa.min_pattern_len(),
+ max_pattern_len: nnfa.max_pattern_len(),
+ // The special state IDs are set later.
+ special: Special::zero(),
+ };
+ for (oldsid, state) in nnfa.states().iter().with_state_ids() {
+ // We don't actually encode a fail state since it isn't necessary.
+ // But we still want to make sure any FAIL ids are mapped
+ // correctly.
+ if oldsid == noncontiguous::NFA::FAIL {
+ index_to_state_id[oldsid] = NFA::FAIL;
+ continue;
+ }
+ let force_dense = state.depth().as_usize() < self.dense_depth;
+ let newsid = State::write(
+ nnfa,
+ oldsid,
+ state,
+ &nfa.byte_classes,
+ &mut nfa.repr,
+ force_dense,
+ )?;
+ index_to_state_id[oldsid] = newsid;
+ }
+ for &newsid in index_to_state_id.iter() {
+ if newsid == NFA::FAIL {
+ continue;
+ }
+ let state = &mut nfa.repr[newsid.as_usize()..];
+ State::remap(nfa.alphabet_len, &index_to_state_id, state)?;
+ }
+ // Now that we've remapped all the IDs in our states, all that's left
+ // is remapping the special state IDs.
+ let remap = &index_to_state_id;
+ let old = nnfa.special();
+ let new = &mut nfa.special;
+ new.max_special_id = remap[old.max_special_id];
+ new.max_match_id = remap[old.max_match_id];
+ new.start_unanchored_id = remap[old.start_unanchored_id];
+ new.start_anchored_id = remap[old.start_anchored_id];
+ debug!(
+ "contiguous NFA built, <states: {:?}, size: {:?}, \
+ alphabet len: {:?}>",
+ nfa.state_len,
+ nfa.memory_usage(),
+ nfa.byte_classes.alphabet_len(),
+ );
+ // The vectors can grow ~twice as big during construction because a
+ // Vec amortizes growth. But here, let's shrink things back down to
+ // what we actually need since we're never going to add more to it.
+ nfa.repr.shrink_to_fit();
+ nfa.pattern_lens.shrink_to_fit();
+ Ok(nfa)
+ }
+
+ /// Set the desired match semantics.
+ ///
+ /// This only applies when using [`Builder::build`] and not
+ /// [`Builder::build_from_noncontiguous`].
+ ///
+ /// See
+ /// [`AhoCorasickBuilder::match_kind`](crate::AhoCorasickBuilder::match_kind)
+ /// for more documentation and examples.
+ pub fn match_kind(&mut self, kind: MatchKind) -> &mut Builder {
+ self.noncontiguous.match_kind(kind);
+ self
+ }
+
+ /// Enable ASCII-aware case insensitive matching.
+ ///
+ /// This only applies when using [`Builder::build`] and not
+ /// [`Builder::build_from_noncontiguous`].
+ ///
+ /// See
+ /// [`AhoCorasickBuilder::ascii_case_insensitive`](crate::AhoCorasickBuilder::ascii_case_insensitive)
+ /// for more documentation and examples.
+ pub fn ascii_case_insensitive(&mut self, yes: bool) -> &mut Builder {
+ self.noncontiguous.ascii_case_insensitive(yes);
+ self
+ }
+
+ /// Enable heuristic prefilter optimizations.
+ ///
+ /// This only applies when using [`Builder::build`] and not
+ /// [`Builder::build_from_noncontiguous`].
+ ///
+ /// See
+ /// [`AhoCorasickBuilder::prefilter`](crate::AhoCorasickBuilder::prefilter)
+ /// for more documentation and examples.
+ pub fn prefilter(&mut self, yes: bool) -> &mut Builder {
+ self.noncontiguous.prefilter(yes);
+ self
+ }
+
+ /// Set the limit on how many states use a dense representation for their
+ /// transitions. Other states will generally use a sparse representation.
+ ///
+ /// See
+ /// [`AhoCorasickBuilder::dense_depth`](crate::AhoCorasickBuilder::dense_depth)
+ /// for more documentation and examples.
+ pub fn dense_depth(&mut self, depth: usize) -> &mut Builder {
+ self.dense_depth = depth;
+ self
+ }
+
+ /// A debug setting for whether to attempt to shrink the size of the
+ /// automaton's alphabet or not.
+ ///
+ /// This should never be enabled unless you're debugging an automaton.
+ /// Namely, disabling byte classes makes transitions easier to reason
+ /// about, since they use the actual bytes instead of equivalence classes.
+ /// Disabling this confers no performance benefit at search time.
+ ///
+ /// See
+ /// [`AhoCorasickBuilder::byte_classes`](crate::AhoCorasickBuilder::byte_classes)
+ /// for more documentation and examples.
+ pub fn byte_classes(&mut self, yes: bool) -> &mut Builder {
+ self.byte_classes = yes;
+ self
+ }
+}
+
+/// Computes the number of u32 values needed to represent one byte per the
+/// number of transitions given.
+fn u32_len(ntrans: usize) -> usize {
+ if ntrans % 4 == 0 {
+ ntrans >> 2
+ } else {
+ (ntrans >> 2) + 1
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ // This test demonstrates a SWAR technique I tried in the sparse transition
+ // code inside of 'next_state'. Namely, sparse transitions work by
+ // iterating over u32 chunks, with each chunk containing up to 4 classes
+ // corresponding to 4 transitions. This SWAR technique lets us find a
+ // matching transition without converting the u32 to a [u8; 4].
+ //
+ // It turned out to be a little slower unfortunately, which isn't too
+ // surprising, since this is likely a throughput oriented optimization.
+ // Loop unrolling doesn't really help us because the vast majority of
+ // states have very few transitions.
+ //
+ // Anyway, this code was a little tricky to write, so I converted it to a
+ // test in case someone figures out how to use it more effectively than
+ // I could.
+ //
+ // (This also only works on little endian. So big endian would need to be
+ // accounted for if we ever decided to use this I think.)
+ #[cfg(target_endian = "little")]
+ #[test]
+ fn swar() {
+ use super::*;
+
+ fn has_zero_byte(x: u32) -> u32 {
+ const LO_U32: u32 = 0x01010101;
+ const HI_U32: u32 = 0x80808080;
+
+ x.wrapping_sub(LO_U32) & !x & HI_U32
+ }
+
+ fn broadcast(b: u8) -> u32 {
+ (u32::from(b)) * (u32::MAX / 255)
+ }
+
+ fn index_of(x: u32) -> usize {
+ let o =
+ (((x - 1) & 0x01010101).wrapping_mul(0x01010101) >> 24) - 1;
+ o.as_usize()
+ }
+
+ let bytes: [u8; 4] = [b'1', b'A', b'a', b'z'];
+ let chunk = u32::from_ne_bytes(bytes);
+
+ let needle = broadcast(b'1');
+ assert_eq!(0, index_of(has_zero_byte(needle ^ chunk)));
+ let needle = broadcast(b'A');
+ assert_eq!(1, index_of(has_zero_byte(needle ^ chunk)));
+ let needle = broadcast(b'a');
+ assert_eq!(2, index_of(has_zero_byte(needle ^ chunk)));
+ let needle = broadcast(b'z');
+ assert_eq!(3, index_of(has_zero_byte(needle ^ chunk)));
+ }
+}