summaryrefslogtreecommitdiffstats
path: root/third_party/rust/owning_ref/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/owning_ref/src/lib.rs')
-rw-r--r--third_party/rust/owning_ref/src/lib.rs2016
1 files changed, 0 insertions, 2016 deletions
diff --git a/third_party/rust/owning_ref/src/lib.rs b/third_party/rust/owning_ref/src/lib.rs
deleted file mode 100644
index fa2f15a220..0000000000
--- a/third_party/rust/owning_ref/src/lib.rs
+++ /dev/null
@@ -1,2016 +0,0 @@
-#![warn(missing_docs)]
-
-/*!
-# An owning reference.
-
-This crate provides the _owning reference_ types `OwningRef` and `OwningRefMut`
-that enables it to bundle a reference together with the owner of the data it points to.
-This allows moving and dropping of a `OwningRef` without needing to recreate the reference.
-
-This can sometimes be useful because Rust borrowing rules normally prevent
-moving a type that has been moved from. For example, this kind of code gets rejected:
-
-```rust,ignore
-fn return_owned_and_referenced<'a>() -> (Vec<u8>, &'a [u8]) {
- let v = vec![1, 2, 3, 4];
- let s = &v[1..3];
- (v, s)
-}
-```
-
-Even though, from a memory-layout point of view, this can be entirely safe
-if the new location of the vector still lives longer than the lifetime `'a`
-of the reference because the backing allocation of the vector does not change.
-
-This library enables this safe usage by keeping the owner and the reference
-bundled together in a wrapper type that ensure that lifetime constraint:
-
-```rust
-# extern crate owning_ref;
-# use owning_ref::OwningRef;
-# fn main() {
-fn return_owned_and_referenced() -> OwningRef<Vec<u8>, [u8]> {
- let v = vec![1, 2, 3, 4];
- let or = OwningRef::new(v);
- let or = or.map(|v| &v[1..3]);
- or
-}
-# }
-```
-
-It works by requiring owner types to dereference to stable memory locations
-and preventing mutable access to root containers, which in practice requires heap allocation
-as provided by `Box<T>`, `Rc<T>`, etc.
-
-Also provided are typedefs for common owner type combinations,
-which allow for less verbose type signatures. For example, `BoxRef<T>` instead of `OwningRef<Box<T>, T>`.
-
-The crate also provides the more advanced `OwningHandle` type,
-which allows more freedom in bundling a dependent handle object
-along with the data it depends on, at the cost of some unsafe needed in the API.
-See the documentation around `OwningHandle` for more details.
-
-# Examples
-
-## Basics
-
-```
-extern crate owning_ref;
-use owning_ref::BoxRef;
-
-fn main() {
- // Create an array owned by a Box.
- let arr = Box::new([1, 2, 3, 4]) as Box<[i32]>;
-
- // Transfer into a BoxRef.
- let arr: BoxRef<[i32]> = BoxRef::new(arr);
- assert_eq!(&*arr, &[1, 2, 3, 4]);
-
- // We can slice the array without losing ownership or changing type.
- let arr: BoxRef<[i32]> = arr.map(|arr| &arr[1..3]);
- assert_eq!(&*arr, &[2, 3]);
-
- // Also works for Arc, Rc, String and Vec!
-}
-```
-
-## Caching a reference to a struct field
-
-```
-extern crate owning_ref;
-use owning_ref::BoxRef;
-
-fn main() {
- struct Foo {
- tag: u32,
- x: u16,
- y: u16,
- z: u16,
- }
- let foo = Foo { tag: 1, x: 100, y: 200, z: 300 };
-
- let or = BoxRef::new(Box::new(foo)).map(|foo| {
- match foo.tag {
- 0 => &foo.x,
- 1 => &foo.y,
- 2 => &foo.z,
- _ => panic!(),
- }
- });
-
- assert_eq!(*or, 200);
-}
-```
-
-## Caching a reference to an entry in a vector
-
-```
-extern crate owning_ref;
-use owning_ref::VecRef;
-
-fn main() {
- let v = VecRef::new(vec![1, 2, 3, 4, 5]).map(|v| &v[3]);
- assert_eq!(*v, 4);
-}
-```
-
-## Caching a subslice of a String
-
-```
-extern crate owning_ref;
-use owning_ref::StringRef;
-
-fn main() {
- let s = StringRef::new("hello world".to_owned())
- .map(|s| s.split(' ').nth(1).unwrap());
-
- assert_eq!(&*s, "world");
-}
-```
-
-## Reference counted slices that share ownership of the backing storage
-
-```
-extern crate owning_ref;
-use owning_ref::RcRef;
-use std::rc::Rc;
-
-fn main() {
- let rc: RcRef<[i32]> = RcRef::new(Rc::new([1, 2, 3, 4]) as Rc<[i32]>);
- assert_eq!(&*rc, &[1, 2, 3, 4]);
-
- let rc_a: RcRef<[i32]> = rc.clone().map(|s| &s[0..2]);
- let rc_b = rc.clone().map(|s| &s[1..3]);
- let rc_c = rc.clone().map(|s| &s[2..4]);
- assert_eq!(&*rc_a, &[1, 2]);
- assert_eq!(&*rc_b, &[2, 3]);
- assert_eq!(&*rc_c, &[3, 4]);
-
- let rc_c_a = rc_c.clone().map(|s| &s[1]);
- assert_eq!(&*rc_c_a, &4);
-}
-```
-
-## Atomic reference counted slices that share ownership of the backing storage
-
-```
-extern crate owning_ref;
-use owning_ref::ArcRef;
-use std::sync::Arc;
-
-fn main() {
- use std::thread;
-
- fn par_sum(rc: ArcRef<[i32]>) -> i32 {
- if rc.len() == 0 {
- return 0;
- } else if rc.len() == 1 {
- return rc[0];
- }
- let mid = rc.len() / 2;
- let left = rc.clone().map(|s| &s[..mid]);
- let right = rc.map(|s| &s[mid..]);
-
- let left = thread::spawn(move || par_sum(left));
- let right = thread::spawn(move || par_sum(right));
-
- left.join().unwrap() + right.join().unwrap()
- }
-
- let rc: Arc<[i32]> = Arc::new([1, 2, 3, 4]);
- let rc: ArcRef<[i32]> = rc.into();
-
- assert_eq!(par_sum(rc), 10);
-}
-```
-
-## References into RAII locks
-
-```
-extern crate owning_ref;
-use owning_ref::RefRef;
-use std::cell::{RefCell, Ref};
-
-fn main() {
- let refcell = RefCell::new((1, 2, 3, 4));
- // Also works with Mutex and RwLock
-
- let refref = {
- let refref = RefRef::new(refcell.borrow()).map(|x| &x.3);
- assert_eq!(*refref, 4);
-
- // We move the RAII lock and the reference to one of
- // the subfields in the data it guards here:
- refref
- };
-
- assert_eq!(*refref, 4);
-
- drop(refref);
-
- assert_eq!(*refcell.borrow(), (1, 2, 3, 4));
-}
-```
-
-## Mutable reference
-
-When the owned container implements `DerefMut`, it is also possible to make
-a _mutable owning reference_. (E.g. with `Box`, `RefMut`, `MutexGuard`)
-
-```
-extern crate owning_ref;
-use owning_ref::RefMutRefMut;
-use std::cell::{RefCell, RefMut};
-
-fn main() {
- let refcell = RefCell::new((1, 2, 3, 4));
-
- let mut refmut_refmut = {
- let mut refmut_refmut = RefMutRefMut::new(refcell.borrow_mut()).map_mut(|x| &mut x.3);
- assert_eq!(*refmut_refmut, 4);
- *refmut_refmut *= 2;
-
- refmut_refmut
- };
-
- assert_eq!(*refmut_refmut, 8);
- *refmut_refmut *= 2;
-
- drop(refmut_refmut);
-
- assert_eq!(*refcell.borrow(), (1, 2, 3, 16));
-}
-```
-*/
-
-extern crate stable_deref_trait;
-pub use stable_deref_trait::{StableDeref as StableAddress, CloneStableDeref as CloneStableAddress};
-
-/// An owning reference.
-///
-/// This wraps an owner `O` and a reference `&T` pointing
-/// at something reachable from `O::Target` while keeping
-/// the ability to move `self` around.
-///
-/// The owner is usually a pointer that points at some base type.
-///
-/// For more details and examples, see the module and method docs.
-pub struct OwningRef<O, T: ?Sized> {
- owner: O,
- reference: *const T,
-}
-
-/// An mutable owning reference.
-///
-/// This wraps an owner `O` and a reference `&mut T` pointing
-/// at something reachable from `O::Target` while keeping
-/// the ability to move `self` around.
-///
-/// The owner is usually a pointer that points at some base type.
-///
-/// For more details and examples, see the module and method docs.
-pub struct OwningRefMut<O, T: ?Sized> {
- owner: O,
- reference: *mut T,
-}
-
-/// Helper trait for an erased concrete type an owner dereferences to.
-/// This is used in form of a trait object for keeping
-/// something around to (virtually) call the destructor.
-pub trait Erased {}
-impl<T> Erased for T {}
-
-/// Helper trait for erasing the concrete type of what an owner derferences to,
-/// for example `Box<T> -> Box<dyn Erased>`. This would be unneeded with
-/// higher kinded types support in the language.
-pub unsafe trait IntoErased<'a> {
- /// Owner with the dereference type substituted to `Erased`.
- type Erased;
- /// Perform the type erasure.
- fn into_erased(self) -> Self::Erased;
-}
-
-/////////////////////////////////////////////////////////////////////////////
-// OwningRef
-/////////////////////////////////////////////////////////////////////////////
-
-impl<O, T: ?Sized> OwningRef<O, T> {
- /// Creates a new owning reference from a owner
- /// initialized to the direct dereference of it.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::OwningRef;
- ///
- /// fn main() {
- /// let owning_ref = OwningRef::new(Box::new(42));
- /// assert_eq!(*owning_ref, 42);
- /// }
- /// ```
- pub fn new(o: O) -> Self
- where O: StableAddress,
- O: Deref<Target = T>,
- {
- OwningRef {
- reference: &*o,
- owner: o,
- }
- }
-
- /// Like `new`, but doesn’t require `O` to implement the `StableAddress` trait.
- /// Instead, the caller is responsible to make the same promises as implementing the trait.
- ///
- /// This is useful for cases where coherence rules prevents implementing the trait
- /// without adding a dependency to this crate in a third-party library.
- pub unsafe fn new_assert_stable_address(o: O) -> Self
- where O: Deref<Target = T>,
- {
- OwningRef {
- reference: &*o,
- owner: o,
- }
- }
-
- /// Converts `self` into a new owning reference that points at something reachable
- /// from the previous one.
- ///
- /// This can be a reference to a field of `U`, something reachable from a field of
- /// `U`, or even something unrelated with a `'static` lifetime.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::OwningRef;
- ///
- /// fn main() {
- /// let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
- ///
- /// // create a owning reference that points at the
- /// // third element of the array.
- /// let owning_ref = owning_ref.map(|array| &array[2]);
- /// assert_eq!(*owning_ref, 3);
- /// }
- /// ```
- pub fn map<F, U: ?Sized>(self, f: F) -> OwningRef<O, U>
- where O: StableAddress,
- F: FnOnce(&T) -> &U
- {
- OwningRef {
- reference: f(&self),
- owner: self.owner,
- }
- }
-
- /// Converts `self` into a new owning reference that points at something reachable
- /// from the previous one or from the owner itself.
- ///
- /// This can be a reference to a field of `U`, something reachable from a field of
- /// `U` or from the owner `O`, or even something unrelated with a `'static` lifetime.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::OwningRef;
- ///
- /// fn main() {
- /// let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
- /// let owning_ref = owning_ref.map(|array| &array[2]);
- /// assert_eq!(*owning_ref, 3);
- ///
- /// // create a owning reference that points at the
- /// // second element of the array from the owning ref that was pointing to the third
- /// let owning_ref = owning_ref.map_with_owner(|array, _prev| &array[1]);
- /// assert_eq!(*owning_ref, 2);
- /// }
- /// ```
- pub fn map_with_owner<F, U: ?Sized>(self, f: F) -> OwningRef<O, U>
- where O: StableAddress,
- F: for<'a> FnOnce(&'a O, &'a T) -> &'a U
- {
- OwningRef {
- reference: f(&self.owner, &self),
- owner: self.owner,
- }
- }
-
- /// Tries to convert `self` into a new owning reference that points
- /// at something reachable from the previous one.
- ///
- /// This can be a reference to a field of `U`, something reachable from a field of
- /// `U`, or even something unrelated with a `'static` lifetime.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::OwningRef;
- ///
- /// fn main() {
- /// let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
- ///
- /// // create a owning reference that points at the
- /// // third element of the array.
- /// let owning_ref = owning_ref.try_map(|array| {
- /// if array[2] == 3 { Ok(&array[2]) } else { Err(()) }
- /// });
- /// assert_eq!(*owning_ref.unwrap(), 3);
- /// }
- /// ```
- pub fn try_map<F, U: ?Sized, E>(self, f: F) -> Result<OwningRef<O, U>, E>
- where O: StableAddress,
- F: FnOnce(&T) -> Result<&U, E>
- {
- Ok(OwningRef {
- reference: f(&self)?,
- owner: self.owner,
- })
- }
-
- /// Tries to convert `self` into a new owning reference that points
- /// at something reachable from the previous one.
- ///
- /// This can be a reference to a field of `U`, something reachable from a field of
- /// `U`, or even something unrelated with a `'static` lifetime.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::OwningRef;
- ///
- /// fn main() {
- /// let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
- /// let owning_ref = owning_ref.map(|array| &array[2]);
- ///
- /// // create a owning reference that points at the
- /// // second element of the array from the owning ref that was pointing to the third
- /// let owning_ref = owning_ref.try_map_with_owner(|array, _prev| {
- /// if array[1] == 2 { Ok(&array[1]) } else { Err(()) }
- /// });
- /// assert_eq!(*owning_ref.unwrap(), 2);
- /// }
- /// ```
- pub fn try_map_with_owner<F, U: ?Sized, E>(self, f: F) -> Result<OwningRef<O, U>, E>
- where O: StableAddress,
- F: for<'a> FnOnce(&'a O, &'a T) -> Result<&'a U, E>
- {
- Ok(OwningRef {
- reference: f(&self.owner, &self)?,
- owner: self.owner,
- })
- }
-
- /// Converts `self` into a new owning reference with a different owner type.
- ///
- /// The new owner type needs to still contain the original owner in some way
- /// so that the reference into it remains valid. This function is marked unsafe
- /// because the user needs to manually uphold this guarantee.
- pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRef<P, T>
- where O: StableAddress,
- P: StableAddress,
- F: FnOnce(O) -> P
- {
- OwningRef {
- reference: self.reference,
- owner: f(self.owner),
- }
- }
-
- /// Converts `self` into a new owning reference where the owner is wrapped
- /// in an additional `Box<O>`.
- ///
- /// This can be used to safely erase the owner of any `OwningRef<O, T>`
- /// to a `OwningRef<Box<dyn Erased>, T>`.
- pub fn map_owner_box(self) -> OwningRef<Box<O>, T> {
- OwningRef {
- reference: self.reference,
- owner: Box::new(self.owner),
- }
- }
-
- /// Erases the concrete base type of the owner with a trait object.
- ///
- /// This allows mixing of owned references with different owner base types.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::{OwningRef, Erased};
- ///
- /// fn main() {
- /// // NB: Using the concrete types here for explicitnes.
- /// // For less verbose code type aliases like `BoxRef` are provided.
- ///
- /// let owning_ref_a: OwningRef<Box<[i32; 4]>, [i32; 4]>
- /// = OwningRef::new(Box::new([1, 2, 3, 4]));
- ///
- /// let owning_ref_b: OwningRef<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>>
- /// = OwningRef::new(Box::new(vec![(0, false), (1, true)]));
- ///
- /// let owning_ref_a: OwningRef<Box<[i32; 4]>, i32>
- /// = owning_ref_a.map(|a| &a[0]);
- ///
- /// let owning_ref_b: OwningRef<Box<Vec<(i32, bool)>>, i32>
- /// = owning_ref_b.map(|a| &a[1].0);
- ///
- /// let owning_refs: [OwningRef<Box<dyn Erased>, i32>; 2]
- /// = [owning_ref_a.erase_owner(), owning_ref_b.erase_owner()];
- ///
- /// assert_eq!(*owning_refs[0], 1);
- /// assert_eq!(*owning_refs[1], 1);
- /// }
- /// ```
- pub fn erase_owner<'a>(self) -> OwningRef<O::Erased, T>
- where O: IntoErased<'a>,
- {
- OwningRef {
- reference: self.reference,
- owner: self.owner.into_erased(),
- }
- }
-
- // TODO: wrap_owner
-
- /// A reference to the underlying owner.
- pub fn as_owner(&self) -> &O {
- &self.owner
- }
-
- /// Discards the reference and retrieves the owner.
- pub fn into_owner(self) -> O {
- self.owner
- }
-}
-
-impl<O, T: ?Sized> OwningRefMut<O, T> {
- /// Creates a new owning reference from a owner
- /// initialized to the direct dereference of it.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::OwningRefMut;
- ///
- /// fn main() {
- /// let owning_ref_mut = OwningRefMut::new(Box::new(42));
- /// assert_eq!(*owning_ref_mut, 42);
- /// }
- /// ```
- pub fn new(mut o: O) -> Self
- where O: StableAddress,
- O: DerefMut<Target = T>,
- {
- OwningRefMut {
- reference: &mut *o,
- owner: o,
- }
- }
-
- /// Like `new`, but doesn’t require `O` to implement the `StableAddress` trait.
- /// Instead, the caller is responsible to make the same promises as implementing the trait.
- ///
- /// This is useful for cases where coherence rules prevents implementing the trait
- /// without adding a dependency to this crate in a third-party library.
- pub unsafe fn new_assert_stable_address(mut o: O) -> Self
- where O: DerefMut<Target = T>,
- {
- OwningRefMut {
- reference: &mut *o,
- owner: o,
- }
- }
-
- /// Converts `self` into a new _shared_ owning reference that points at
- /// something reachable from the previous one.
- ///
- /// This can be a reference to a field of `U`, something reachable from a field of
- /// `U`, or even something unrelated with a `'static` lifetime.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::OwningRefMut;
- ///
- /// fn main() {
- /// let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
- ///
- /// // create a owning reference that points at the
- /// // third element of the array.
- /// let owning_ref = owning_ref_mut.map(|array| &array[2]);
- /// assert_eq!(*owning_ref, 3);
- /// }
- /// ```
- pub fn map<F, U: ?Sized>(mut self, f: F) -> OwningRef<O, U>
- where O: StableAddress,
- F: FnOnce(&mut T) -> &U
- {
- OwningRef {
- reference: f(&mut self),
- owner: self.owner,
- }
- }
-
- /// Converts `self` into a new _mutable_ owning reference that points at
- /// something reachable from the previous one.
- ///
- /// This can be a reference to a field of `U`, something reachable from a field of
- /// `U`, or even something unrelated with a `'static` lifetime.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::OwningRefMut;
- ///
- /// fn main() {
- /// let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
- ///
- /// // create a owning reference that points at the
- /// // third element of the array.
- /// let owning_ref_mut = owning_ref_mut.map_mut(|array| &mut array[2]);
- /// assert_eq!(*owning_ref_mut, 3);
- /// }
- /// ```
- pub fn map_mut<F, U: ?Sized>(mut self, f: F) -> OwningRefMut<O, U>
- where O: StableAddress,
- F: FnOnce(&mut T) -> &mut U
- {
- OwningRefMut {
- reference: f(&mut self),
- owner: self.owner,
- }
- }
-
- /// Tries to convert `self` into a new _shared_ owning reference that points
- /// at something reachable from the previous one.
- ///
- /// This can be a reference to a field of `U`, something reachable from a field of
- /// `U`, or even something unrelated with a `'static` lifetime.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::OwningRefMut;
- ///
- /// fn main() {
- /// let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
- ///
- /// // create a owning reference that points at the
- /// // third element of the array.
- /// let owning_ref = owning_ref_mut.try_map(|array| {
- /// if array[2] == 3 { Ok(&array[2]) } else { Err(()) }
- /// });
- /// assert_eq!(*owning_ref.unwrap(), 3);
- /// }
- /// ```
- pub fn try_map<F, U: ?Sized, E>(mut self, f: F) -> Result<OwningRef<O, U>, E>
- where O: StableAddress,
- F: FnOnce(&mut T) -> Result<&U, E>
- {
- Ok(OwningRef {
- reference: f(&mut self)?,
- owner: self.owner,
- })
- }
-
- /// Tries to convert `self` into a new _mutable_ owning reference that points
- /// at something reachable from the previous one.
- ///
- /// This can be a reference to a field of `U`, something reachable from a field of
- /// `U`, or even something unrelated with a `'static` lifetime.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::OwningRefMut;
- ///
- /// fn main() {
- /// let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
- ///
- /// // create a owning reference that points at the
- /// // third element of the array.
- /// let owning_ref_mut = owning_ref_mut.try_map_mut(|array| {
- /// if array[2] == 3 { Ok(&mut array[2]) } else { Err(()) }
- /// });
- /// assert_eq!(*owning_ref_mut.unwrap(), 3);
- /// }
- /// ```
- pub fn try_map_mut<F, U: ?Sized, E>(mut self, f: F) -> Result<OwningRefMut<O, U>, E>
- where O: StableAddress,
- F: FnOnce(&mut T) -> Result<&mut U, E>
- {
- Ok(OwningRefMut {
- reference: f(&mut self)?,
- owner: self.owner,
- })
- }
-
- /// Converts `self` into a new owning reference with a different owner type.
- ///
- /// The new owner type needs to still contain the original owner in some way
- /// so that the reference into it remains valid. This function is marked unsafe
- /// because the user needs to manually uphold this guarantee.
- pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRefMut<P, T>
- where O: StableAddress,
- P: StableAddress,
- F: FnOnce(O) -> P
- {
- OwningRefMut {
- reference: self.reference,
- owner: f(self.owner),
- }
- }
-
- /// Converts `self` into a new owning reference where the owner is wrapped
- /// in an additional `Box<O>`.
- ///
- /// This can be used to safely erase the owner of any `OwningRefMut<O, T>`
- /// to a `OwningRefMut<Box<dyn Erased>, T>`.
- pub fn map_owner_box(self) -> OwningRefMut<Box<O>, T> {
- OwningRefMut {
- reference: self.reference,
- owner: Box::new(self.owner),
- }
- }
-
- /// Erases the concrete base type of the owner with a trait object.
- ///
- /// This allows mixing of owned references with different owner base types.
- ///
- /// # Example
- /// ```
- /// extern crate owning_ref;
- /// use owning_ref::{OwningRefMut, Erased};
- ///
- /// fn main() {
- /// // NB: Using the concrete types here for explicitnes.
- /// // For less verbose code type aliases like `BoxRef` are provided.
- ///
- /// let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, [i32; 4]>
- /// = OwningRefMut::new(Box::new([1, 2, 3, 4]));
- ///
- /// let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>>
- /// = OwningRefMut::new(Box::new(vec![(0, false), (1, true)]));
- ///
- /// let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, i32>
- /// = owning_ref_mut_a.map_mut(|a| &mut a[0]);
- ///
- /// let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, i32>
- /// = owning_ref_mut_b.map_mut(|a| &mut a[1].0);
- ///
- /// let owning_refs_mut: [OwningRefMut<Box<dyn Erased>, i32>; 2]
- /// = [owning_ref_mut_a.erase_owner(), owning_ref_mut_b.erase_owner()];
- ///
- /// assert_eq!(*owning_refs_mut[0], 1);
- /// assert_eq!(*owning_refs_mut[1], 1);
- /// }
- /// ```
- pub fn erase_owner<'a>(self) -> OwningRefMut<O::Erased, T>
- where O: IntoErased<'a>,
- {
- OwningRefMut {
- reference: self.reference,
- owner: self.owner.into_erased(),
- }
- }
-
- // TODO: wrap_owner
-
- /// A reference to the underlying owner.
- pub fn as_owner(&self) -> &O {
- &self.owner
- }
-
- /// A mutable reference to the underlying owner.
- pub fn as_owner_mut(&mut self) -> &mut O {
- &mut self.owner
- }
-
- /// Discards the reference and retrieves the owner.
- pub fn into_owner(self) -> O {
- self.owner
- }
-}
-
-/////////////////////////////////////////////////////////////////////////////
-// OwningHandle
-/////////////////////////////////////////////////////////////////////////////
-
-use std::ops::{Deref, DerefMut};
-
-/// `OwningHandle` is a complement to `OwningRef`. Where `OwningRef` allows
-/// consumers to pass around an owned object and a dependent reference,
-/// `OwningHandle` contains an owned object and a dependent _object_.
-///
-/// `OwningHandle` can encapsulate a `RefMut` along with its associated
-/// `RefCell`, or an `RwLockReadGuard` along with its associated `RwLock`.
-/// However, the API is completely generic and there are no restrictions on
-/// what types of owning and dependent objects may be used.
-///
-/// `OwningHandle` is created by passing an owner object (which dereferences
-/// to a stable address) along with a callback which receives a pointer to
-/// that stable location. The callback may then dereference the pointer and
-/// mint a dependent object, with the guarantee that the returned object will
-/// not outlive the referent of the pointer.
-///
-/// Since the callback needs to dereference a raw pointer, it requires `unsafe`
-/// code. To avoid forcing this unsafety on most callers, the `ToHandle` trait is
-/// implemented for common data structures. Types that implement `ToHandle` can
-/// be wrapped into an `OwningHandle` without passing a callback.
-pub struct OwningHandle<O, H>
- where O: StableAddress, H: Deref,
-{
- handle: H,
- _owner: O,
-}
-
-impl<O, H> Deref for OwningHandle<O, H>
- where O: StableAddress, H: Deref,
-{
- type Target = H::Target;
- fn deref(&self) -> &H::Target {
- self.handle.deref()
- }
-}
-
-unsafe impl<O, H> StableAddress for OwningHandle<O, H>
- where O: StableAddress, H: StableAddress,
-{}
-
-impl<O, H> DerefMut for OwningHandle<O, H>
- where O: StableAddress, H: DerefMut,
-{
- fn deref_mut(&mut self) -> &mut H::Target {
- self.handle.deref_mut()
- }
-}
-
-/// Trait to implement the conversion of owner to handle for common types.
-pub trait ToHandle {
- /// The type of handle to be encapsulated by the OwningHandle.
- type Handle: Deref;
-
- /// Given an appropriately-long-lived pointer to ourselves, create a
- /// handle to be encapsulated by the `OwningHandle`.
- unsafe fn to_handle(x: *const Self) -> Self::Handle;
-}
-
-/// Trait to implement the conversion of owner to mutable handle for common types.
-pub trait ToHandleMut {
- /// The type of handle to be encapsulated by the OwningHandle.
- type HandleMut: DerefMut;
-
- /// Given an appropriately-long-lived pointer to ourselves, create a
- /// mutable handle to be encapsulated by the `OwningHandle`.
- unsafe fn to_handle_mut(x: *const Self) -> Self::HandleMut;
-}
-
-impl<O, H> OwningHandle<O, H>
- where O: StableAddress, O::Target: ToHandle<Handle = H>, H: Deref,
-{
- /// Create a new `OwningHandle` for a type that implements `ToHandle`. For types
- /// that don't implement `ToHandle`, callers may invoke `new_with_fn`, which accepts
- /// a callback to perform the conversion.
- pub fn new(o: O) -> Self {
- OwningHandle::new_with_fn(o, |x| unsafe { O::Target::to_handle(x) })
- }
-}
-
-impl<O, H> OwningHandle<O, H>
- where O: StableAddress, O::Target: ToHandleMut<HandleMut = H>, H: DerefMut,
-{
- /// Create a new mutable `OwningHandle` for a type that implements `ToHandleMut`.
- pub fn new_mut(o: O) -> Self {
- OwningHandle::new_with_fn(o, |x| unsafe { O::Target::to_handle_mut(x) })
- }
-}
-
-impl<O, H> OwningHandle<O, H>
- where O: StableAddress, H: Deref,
-{
- /// Create a new OwningHandle. The provided callback will be invoked with
- /// a pointer to the object owned by `o`, and the returned value is stored
- /// as the object to which this `OwningHandle` will forward `Deref` and
- /// `DerefMut`.
- pub fn new_with_fn<F>(o: O, f: F) -> Self
- where F: FnOnce(*const O::Target) -> H
- {
- let h: H;
- {
- h = f(o.deref() as *const O::Target);
- }
-
- OwningHandle {
- handle: h,
- _owner: o,
- }
- }
-
- /// Create a new OwningHandle. The provided callback will be invoked with
- /// a pointer to the object owned by `o`, and the returned value is stored
- /// as the object to which this `OwningHandle` will forward `Deref` and
- /// `DerefMut`.
- pub fn try_new<F, E>(o: O, f: F) -> Result<Self, E>
- where F: FnOnce(*const O::Target) -> Result<H, E>
- {
- let h: H;
- {
- h = f(o.deref() as *const O::Target)?;
- }
-
- Ok(OwningHandle {
- handle: h,
- _owner: o,
- })
- }
-
- /// A getter for the underlying owner.
- pub fn as_owner(&self) -> &O {
- &self._owner
- }
-
- /// Discards the dependent object and returns the owner.
- pub fn into_owner(self) -> O {
- self._owner
- }
-}
-
-/////////////////////////////////////////////////////////////////////////////
-// std traits
-/////////////////////////////////////////////////////////////////////////////
-
-use std::convert::From;
-use std::fmt::{self, Debug};
-use std::marker::{Send, Sync};
-use std::cmp::{Eq, PartialEq, Ord, PartialOrd, Ordering};
-use std::hash::{Hash, Hasher};
-use std::borrow::Borrow;
-
-impl<O, T: ?Sized> Deref for OwningRef<O, T> {
- type Target = T;
-
- fn deref(&self) -> &T {
- unsafe {
- &*self.reference
- }
- }
-}
-
-impl<O, T: ?Sized> Deref for OwningRefMut<O, T> {
- type Target = T;
-
- fn deref(&self) -> &T {
- unsafe {
- &*self.reference
- }
- }
-}
-
-impl<O, T: ?Sized> DerefMut for OwningRefMut<O, T> {
- fn deref_mut(&mut self) -> &mut T {
- unsafe {
- &mut *self.reference
- }
- }
-}
-
-unsafe impl<O, T: ?Sized> StableAddress for OwningRef<O, T> {}
-
-unsafe impl<O, T: ?Sized> StableAddress for OwningRefMut<O, T> {}
-
-impl<O, T: ?Sized> AsRef<T> for OwningRef<O, T> {
- fn as_ref(&self) -> &T {
- &*self
- }
-}
-
-impl<O, T: ?Sized> AsRef<T> for OwningRefMut<O, T> {
- fn as_ref(&self) -> &T {
- &*self
- }
-}
-
-impl<O, T: ?Sized> AsMut<T> for OwningRefMut<O, T> {
- fn as_mut(&mut self) -> &mut T {
- &mut *self
- }
-}
-
-impl<O, T: ?Sized> Borrow<T> for OwningRef<O, T> {
- fn borrow(&self) -> &T {
- &*self
- }
-}
-
-impl<O, T: ?Sized> From<O> for OwningRef<O, T>
- where O: StableAddress,
- O: Deref<Target = T>,
-{
- fn from(owner: O) -> Self {
- OwningRef::new(owner)
- }
-}
-
-impl<O, T: ?Sized> From<O> for OwningRefMut<O, T>
- where O: StableAddress,
- O: DerefMut<Target = T>
-{
- fn from(owner: O) -> Self {
- OwningRefMut::new(owner)
- }
-}
-
-impl<O, T: ?Sized> From<OwningRefMut<O, T>> for OwningRef<O, T>
- where O: StableAddress,
- O: DerefMut<Target = T>
-{
- fn from(other: OwningRefMut<O, T>) -> Self {
- OwningRef {
- owner: other.owner,
- reference: other.reference,
- }
- }
-}
-
-// ^ FIXME: Is a Into impl for calling into_owner() possible as well?
-
-impl<O, T: ?Sized> Debug for OwningRef<O, T>
- where O: Debug,
- T: Debug,
-{
- fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
- write!(f,
- "OwningRef {{ owner: {:?}, reference: {:?} }}",
- self.as_owner(),
- &**self)
- }
-}
-
-impl<O, T: ?Sized> Debug for OwningRefMut<O, T>
- where O: Debug,
- T: Debug,
-{
- fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
- write!(f,
- "OwningRefMut {{ owner: {:?}, reference: {:?} }}",
- self.as_owner(),
- &**self)
- }
-}
-
-impl<O, T: ?Sized> Clone for OwningRef<O, T>
- where O: CloneStableAddress,
-{
- fn clone(&self) -> Self {
- OwningRef {
- owner: self.owner.clone(),
- reference: self.reference,
- }
- }
-}
-
-unsafe impl<O, T: ?Sized> CloneStableAddress for OwningRef<O, T>
- where O: CloneStableAddress {}
-
-unsafe impl<O, T: ?Sized> Send for OwningRef<O, T>
- where O: Send, for<'a> (&'a T): Send {}
-unsafe impl<O, T: ?Sized> Sync for OwningRef<O, T>
- where O: Sync, for<'a> (&'a T): Sync {}
-
-unsafe impl<O, T: ?Sized> Send for OwningRefMut<O, T>
- where O: Send, for<'a> (&'a mut T): Send {}
-unsafe impl<O, T: ?Sized> Sync for OwningRefMut<O, T>
- where O: Sync, for<'a> (&'a mut T): Sync {}
-
-impl Debug for dyn Erased {
- fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
- write!(f, "<dyn Erased>",)
- }
-}
-
-impl<O, T: ?Sized> PartialEq for OwningRef<O, T> where T: PartialEq {
- fn eq(&self, other: &Self) -> bool {
- (&*self as &T).eq(&*other as &T)
- }
-}
-
-impl<O, T: ?Sized> Eq for OwningRef<O, T> where T: Eq {}
-
-impl<O, T: ?Sized> PartialOrd for OwningRef<O, T> where T: PartialOrd {
- fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
- (&*self as &T).partial_cmp(&*other as &T)
- }
-}
-
-impl<O, T: ?Sized> Ord for OwningRef<O, T> where T: Ord {
- fn cmp(&self, other: &Self) -> Ordering {
- (&*self as &T).cmp(&*other as &T)
- }
-}
-
-impl<O, T: ?Sized> Hash for OwningRef<O, T> where T: Hash {
- fn hash<H: Hasher>(&self, state: &mut H) {
- (&*self as &T).hash(state);
- }
-}
-
-impl<O, T: ?Sized> PartialEq for OwningRefMut<O, T> where T: PartialEq {
- fn eq(&self, other: &Self) -> bool {
- (&*self as &T).eq(&*other as &T)
- }
-}
-
-impl<O, T: ?Sized> Eq for OwningRefMut<O, T> where T: Eq {}
-
-impl<O, T: ?Sized> PartialOrd for OwningRefMut<O, T> where T: PartialOrd {
- fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
- (&*self as &T).partial_cmp(&*other as &T)
- }
-}
-
-impl<O, T: ?Sized> Ord for OwningRefMut<O, T> where T: Ord {
- fn cmp(&self, other: &Self) -> Ordering {
- (&*self as &T).cmp(&*other as &T)
- }
-}
-
-impl<O, T: ?Sized> Hash for OwningRefMut<O, T> where T: Hash {
- fn hash<H: Hasher>(&self, state: &mut H) {
- (&*self as &T).hash(state);
- }
-}
-
-/////////////////////////////////////////////////////////////////////////////
-// std types integration and convenience type defs
-/////////////////////////////////////////////////////////////////////////////
-
-use std::boxed::Box;
-use std::rc::Rc;
-use std::sync::Arc;
-use std::sync::{MutexGuard, RwLockReadGuard, RwLockWriteGuard};
-use std::cell::{Ref, RefCell, RefMut};
-
-impl<T: 'static> ToHandle for RefCell<T> {
- type Handle = Ref<'static, T>;
- unsafe fn to_handle(x: *const Self) -> Self::Handle { (*x).borrow() }
-}
-
-impl<T: 'static> ToHandleMut for RefCell<T> {
- type HandleMut = RefMut<'static, T>;
- unsafe fn to_handle_mut(x: *const Self) -> Self::HandleMut { (*x).borrow_mut() }
-}
-
-// NB: Implementing ToHandle{,Mut} for Mutex and RwLock requires a decision
-// about which handle creation to use (i.e. read() vs try_read()) as well as
-// what to do with error results.
-
-/// Typedef of a owning reference that uses a `Box` as the owner.
-pub type BoxRef<T, U = T> = OwningRef<Box<T>, U>;
-/// Typedef of a owning reference that uses a `Vec` as the owner.
-pub type VecRef<T, U = T> = OwningRef<Vec<T>, U>;
-/// Typedef of a owning reference that uses a `String` as the owner.
-pub type StringRef = OwningRef<String, str>;
-
-/// Typedef of a owning reference that uses a `Rc` as the owner.
-pub type RcRef<T, U = T> = OwningRef<Rc<T>, U>;
-/// Typedef of a owning reference that uses a `Arc` as the owner.
-pub type ArcRef<T, U = T> = OwningRef<Arc<T>, U>;
-
-/// Typedef of a owning reference that uses a `Ref` as the owner.
-pub type RefRef<'a, T, U = T> = OwningRef<Ref<'a, T>, U>;
-/// Typedef of a owning reference that uses a `RefMut` as the owner.
-pub type RefMutRef<'a, T, U = T> = OwningRef<RefMut<'a, T>, U>;
-/// Typedef of a owning reference that uses a `MutexGuard` as the owner.
-pub type MutexGuardRef<'a, T, U = T> = OwningRef<MutexGuard<'a, T>, U>;
-/// Typedef of a owning reference that uses a `RwLockReadGuard` as the owner.
-pub type RwLockReadGuardRef<'a, T, U = T> = OwningRef<RwLockReadGuard<'a, T>, U>;
-/// Typedef of a owning reference that uses a `RwLockWriteGuard` as the owner.
-pub type RwLockWriteGuardRef<'a, T, U = T> = OwningRef<RwLockWriteGuard<'a, T>, U>;
-
-/// Typedef of a mutable owning reference that uses a `Box` as the owner.
-pub type BoxRefMut<T, U = T> = OwningRefMut<Box<T>, U>;
-/// Typedef of a mutable owning reference that uses a `Vec` as the owner.
-pub type VecRefMut<T, U = T> = OwningRefMut<Vec<T>, U>;
-/// Typedef of a mutable owning reference that uses a `String` as the owner.
-pub type StringRefMut = OwningRefMut<String, str>;
-
-/// Typedef of a mutable owning reference that uses a `RefMut` as the owner.
-pub type RefMutRefMut<'a, T, U = T> = OwningRefMut<RefMut<'a, T>, U>;
-/// Typedef of a mutable owning reference that uses a `MutexGuard` as the owner.
-pub type MutexGuardRefMut<'a, T, U = T> = OwningRefMut<MutexGuard<'a, T>, U>;
-/// Typedef of a mutable owning reference that uses a `RwLockWriteGuard` as the owner.
-pub type RwLockWriteGuardRefMut<'a, T, U = T> = OwningRefMut<RwLockWriteGuard<'a, T>, U>;
-
-unsafe impl<'a, T: 'a> IntoErased<'a> for Box<T> {
- type Erased = Box<dyn Erased + 'a>;
- fn into_erased(self) -> Self::Erased {
- self
- }
-}
-unsafe impl<'a, T: 'a> IntoErased<'a> for Rc<T> {
- type Erased = Rc<dyn Erased + 'a>;
- fn into_erased(self) -> Self::Erased {
- self
- }
-}
-unsafe impl<'a, T: 'a> IntoErased<'a> for Arc<T> {
- type Erased = Arc<dyn Erased + 'a>;
- fn into_erased(self) -> Self::Erased {
- self
- }
-}
-
-/// Typedef of a owning reference that uses an erased `Box` as the owner.
-pub type ErasedBoxRef<U> = OwningRef<Box<dyn Erased>, U>;
-/// Typedef of a owning reference that uses an erased `Rc` as the owner.
-pub type ErasedRcRef<U> = OwningRef<Rc<dyn Erased>, U>;
-/// Typedef of a owning reference that uses an erased `Arc` as the owner.
-pub type ErasedArcRef<U> = OwningRef<Arc<dyn Erased>, U>;
-
-/// Typedef of a mutable owning reference that uses an erased `Box` as the owner.
-pub type ErasedBoxRefMut<U> = OwningRefMut<Box<dyn Erased>, U>;
-
-#[cfg(test)]
-mod tests {
- mod owning_ref {
- use super::super::OwningRef;
- use super::super::{RcRef, BoxRef, Erased, ErasedBoxRef};
- use std::cmp::{PartialEq, Ord, PartialOrd, Ordering};
- use std::hash::{Hash, Hasher};
- use std::collections::hash_map::DefaultHasher;
- use std::collections::HashMap;
- use std::rc::Rc;
-
- #[derive(Debug, PartialEq)]
- struct Example(u32, String, [u8; 3]);
- fn example() -> Example {
- Example(42, "hello world".to_string(), [1, 2, 3])
- }
-
- #[test]
- fn new_deref() {
- let or: OwningRef<Box<()>, ()> = OwningRef::new(Box::new(()));
- assert_eq!(&*or, &());
- }
-
- #[test]
- fn into() {
- let or: OwningRef<Box<()>, ()> = Box::new(()).into();
- assert_eq!(&*or, &());
- }
-
- #[test]
- fn map_offset_ref() {
- let or: BoxRef<Example> = Box::new(example()).into();
- let or: BoxRef<_, u32> = or.map(|x| &x.0);
- assert_eq!(&*or, &42);
-
- let or: BoxRef<Example> = Box::new(example()).into();
- let or: BoxRef<_, u8> = or.map(|x| &x.2[1]);
- assert_eq!(&*or, &2);
- }
-
- #[test]
- fn map_heap_ref() {
- let or: BoxRef<Example> = Box::new(example()).into();
- let or: BoxRef<_, str> = or.map(|x| &x.1[..5]);
- assert_eq!(&*or, "hello");
- }
-
- #[test]
- fn map_static_ref() {
- let or: BoxRef<()> = Box::new(()).into();
- let or: BoxRef<_, str> = or.map(|_| "hello");
- assert_eq!(&*or, "hello");
- }
-
- #[test]
- fn map_chained() {
- let or: BoxRef<String> = Box::new(example().1).into();
- let or: BoxRef<_, str> = or.map(|x| &x[1..5]);
- let or: BoxRef<_, str> = or.map(|x| &x[..2]);
- assert_eq!(&*or, "el");
- }
-
- #[test]
- fn map_chained_inference() {
- let or = BoxRef::new(Box::new(example().1))
- .map(|x| &x[..5])
- .map(|x| &x[1..3]);
- assert_eq!(&*or, "el");
- }
-
- #[test]
- fn as_owner() {
- let or: BoxRef<String> = Box::new(example().1).into();
- let or = or.map(|x| &x[..5]);
- assert_eq!(&*or, "hello");
- assert_eq!(&**or.as_owner(), "hello world");
- }
-
- #[test]
- fn into_owner() {
- let or: BoxRef<String> = Box::new(example().1).into();
- let or = or.map(|x| &x[..5]);
- assert_eq!(&*or, "hello");
- let s = *or.into_owner();
- assert_eq!(&s, "hello world");
- }
-
- #[test]
- fn fmt_debug() {
- let or: BoxRef<String> = Box::new(example().1).into();
- let or = or.map(|x| &x[..5]);
- let s = format!("{:?}", or);
- assert_eq!(&s, "OwningRef { owner: \"hello world\", reference: \"hello\" }");
- }
-
- #[test]
- fn erased_owner() {
- let o1: BoxRef<Example, str> = BoxRef::new(Box::new(example()))
- .map(|x| &x.1[..]);
-
- let o2: BoxRef<String, str> = BoxRef::new(Box::new(example().1))
- .map(|x| &x[..]);
-
- let os: Vec<ErasedBoxRef<str>> = vec![o1.erase_owner(), o2.erase_owner()];
- assert!(os.iter().all(|e| &e[..] == "hello world"));
- }
-
- #[test]
- fn non_static_erased_owner() {
- let foo = [413, 612];
- let bar = &foo;
-
- // FIXME: lifetime inference fails us, and we can't easily define a lifetime for a closure
- // (see https://github.com/rust-lang/rust/issues/22340)
- // So we use a function to identify the lifetimes instead.
- fn borrow<'a>(a: &'a &[i32; 2]) -> &'a i32 {
- &a[0]
- }
-
- let o: BoxRef<&[i32; 2]> = Box::new(bar).into();
- let o: BoxRef<&[i32; 2], i32> = o.map(borrow);
- let o: BoxRef<dyn Erased, i32> = o.erase_owner();
-
- assert_eq!(*o, 413);
- }
-
- #[test]
- fn raii_locks() {
- use super::super::{RefRef, RefMutRef};
- use std::cell::RefCell;
- use super::super::{MutexGuardRef, RwLockReadGuardRef, RwLockWriteGuardRef};
- use std::sync::{Mutex, RwLock};
-
- {
- let a = RefCell::new(1);
- let a = {
- let a = RefRef::new(a.borrow());
- assert_eq!(*a, 1);
- a
- };
- assert_eq!(*a, 1);
- drop(a);
- }
- {
- let a = RefCell::new(1);
- let a = {
- let a = RefMutRef::new(a.borrow_mut());
- assert_eq!(*a, 1);
- a
- };
- assert_eq!(*a, 1);
- drop(a);
- }
- {
- let a = Mutex::new(1);
- let a = {
- let a = MutexGuardRef::new(a.lock().unwrap());
- assert_eq!(*a, 1);
- a
- };
- assert_eq!(*a, 1);
- drop(a);
- }
- {
- let a = RwLock::new(1);
- let a = {
- let a = RwLockReadGuardRef::new(a.read().unwrap());
- assert_eq!(*a, 1);
- a
- };
- assert_eq!(*a, 1);
- drop(a);
- }
- {
- let a = RwLock::new(1);
- let a = {
- let a = RwLockWriteGuardRef::new(a.write().unwrap());
- assert_eq!(*a, 1);
- a
- };
- assert_eq!(*a, 1);
- drop(a);
- }
- }
-
- #[test]
- fn eq() {
- let or1: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
- let or2: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
- assert_eq!(or1.eq(&or2), true);
- }
-
- #[test]
- fn cmp() {
- let or1: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
- let or2: BoxRef<[u8]> = BoxRef::new(vec![4, 5, 6].into_boxed_slice());
- assert_eq!(or1.cmp(&or2), Ordering::Less);
- }
-
- #[test]
- fn partial_cmp() {
- let or1: BoxRef<[u8]> = BoxRef::new(vec![4, 5, 6].into_boxed_slice());
- let or2: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
- assert_eq!(or1.partial_cmp(&or2), Some(Ordering::Greater));
- }
-
- #[test]
- fn hash() {
- let mut h1 = DefaultHasher::new();
- let mut h2 = DefaultHasher::new();
-
- let or1: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
- let or2: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
-
- or1.hash(&mut h1);
- or2.hash(&mut h2);
-
- assert_eq!(h1.finish(), h2.finish());
- }
-
- #[test]
- fn borrow() {
- let mut hash = HashMap::new();
- let key = RcRef::<String>::new(Rc::new("foo-bar".to_string())).map(|s| &s[..]);
-
- hash.insert(key.clone().map(|s| &s[..3]), 42);
- hash.insert(key.clone().map(|s| &s[4..]), 23);
-
- assert_eq!(hash.get("foo"), Some(&42));
- assert_eq!(hash.get("bar"), Some(&23));
- }
-
- #[test]
- fn total_erase() {
- let a: OwningRef<Vec<u8>, [u8]>
- = OwningRef::new(vec![]).map(|x| &x[..]);
- let b: OwningRef<Box<[u8]>, [u8]>
- = OwningRef::new(vec![].into_boxed_slice()).map(|x| &x[..]);
-
- let c: OwningRef<Rc<Vec<u8>>, [u8]> = unsafe {a.map_owner(Rc::new)};
- let d: OwningRef<Rc<Box<[u8]>>, [u8]> = unsafe {b.map_owner(Rc::new)};
-
- let e: OwningRef<Rc<dyn Erased>, [u8]> = c.erase_owner();
- let f: OwningRef<Rc<dyn Erased>, [u8]> = d.erase_owner();
-
- let _g = e.clone();
- let _h = f.clone();
- }
-
- #[test]
- fn total_erase_box() {
- let a: OwningRef<Vec<u8>, [u8]>
- = OwningRef::new(vec![]).map(|x| &x[..]);
- let b: OwningRef<Box<[u8]>, [u8]>
- = OwningRef::new(vec![].into_boxed_slice()).map(|x| &x[..]);
-
- let c: OwningRef<Box<Vec<u8>>, [u8]> = a.map_owner_box();
- let d: OwningRef<Box<Box<[u8]>>, [u8]> = b.map_owner_box();
-
- let _e: OwningRef<Box<dyn Erased>, [u8]> = c.erase_owner();
- let _f: OwningRef<Box<dyn Erased>, [u8]> = d.erase_owner();
- }
-
- #[test]
- fn try_map1() {
- use std::any::Any;
-
- let x = Box::new(123_i32);
- let y: Box<dyn Any> = x;
-
- OwningRef::new(y).try_map(|x| x.downcast_ref::<i32>().ok_or(())).unwrap();
- }
-
- #[test]
- fn try_map2() {
- use std::any::Any;
-
- let x = Box::new(123_u32);
- let y: Box<dyn Any> = x;
-
- OwningRef::new(y).try_map(|x| x.downcast_ref::<i32>().ok_or(())).unwrap_err();
- }
-
- #[test]
- fn map_with_owner() {
- let owning_ref: BoxRef<Example> = Box::new(example()).into();
- let owning_ref = owning_ref.map(|owner| &owner.1);
-
- owning_ref.map_with_owner(|owner, ref_field| {
- assert_eq!(owner.1, *ref_field);
- ref_field
- });
- }
-
- #[test]
- fn try_map_with_owner_ok() {
- let owning_ref: BoxRef<Example> = Box::new(example()).into();
- let owning_ref = owning_ref.map(|owner| &owner.1);
-
- owning_ref.try_map_with_owner(|owner, ref_field| {
- assert_eq!(owner.1, *ref_field);
- Ok(ref_field) as Result<_, ()>
- }).unwrap();
- }
-
- #[test]
- fn try_map_with_owner_err() {
- let owning_ref: BoxRef<Example> = Box::new(example()).into();
- let owning_ref = owning_ref.map(|owner| &owner.1);
-
- owning_ref.try_map_with_owner(|owner, ref_field| {
- assert_eq!(owner.1, *ref_field);
- Err(()) as Result<&(), _>
- }).unwrap_err();
- }
- }
-
- mod owning_handle {
- use super::super::OwningHandle;
- use super::super::RcRef;
- use std::rc::Rc;
- use std::cell::RefCell;
- use std::sync::Arc;
- use std::sync::RwLock;
-
- #[test]
- fn owning_handle() {
- use std::cell::RefCell;
- let cell = Rc::new(RefCell::new(2));
- let cell_ref = RcRef::new(cell);
- let mut handle = OwningHandle::new_with_fn(cell_ref, |x| unsafe { x.as_ref() }.unwrap().borrow_mut());
- assert_eq!(*handle, 2);
- *handle = 3;
- assert_eq!(*handle, 3);
- }
-
- #[test]
- fn try_owning_handle_ok() {
- use std::cell::RefCell;
- let cell = Rc::new(RefCell::new(2));
- let cell_ref = RcRef::new(cell);
- let mut handle = OwningHandle::try_new::<_, ()>(cell_ref, |x| {
- Ok(unsafe {
- x.as_ref()
- }.unwrap().borrow_mut())
- }).unwrap();
- assert_eq!(*handle, 2);
- *handle = 3;
- assert_eq!(*handle, 3);
- }
-
- #[test]
- fn try_owning_handle_err() {
- use std::cell::RefCell;
- let cell = Rc::new(RefCell::new(2));
- let cell_ref = RcRef::new(cell);
- let handle = OwningHandle::try_new::<_, ()>(cell_ref, |x| {
- if false {
- return Ok(unsafe {
- x.as_ref()
- }.unwrap().borrow_mut())
- }
- Err(())
- });
- assert!(handle.is_err());
- }
-
- #[test]
- fn nested() {
- use std::cell::RefCell;
- use std::sync::{Arc, RwLock};
-
- let result = {
- let complex = Rc::new(RefCell::new(Arc::new(RwLock::new("someString"))));
- let curr = RcRef::new(complex);
- let curr = OwningHandle::new_with_fn(curr, |x| unsafe { x.as_ref() }.unwrap().borrow_mut());
- let mut curr = OwningHandle::new_with_fn(curr, |x| unsafe { x.as_ref() }.unwrap().try_write().unwrap());
- assert_eq!(*curr, "someString");
- *curr = "someOtherString";
- curr
- };
- assert_eq!(*result, "someOtherString");
- }
-
- #[test]
- fn owning_handle_safe() {
- use std::cell::RefCell;
- let cell = Rc::new(RefCell::new(2));
- let cell_ref = RcRef::new(cell);
- let handle = OwningHandle::new(cell_ref);
- assert_eq!(*handle, 2);
- }
-
- #[test]
- fn owning_handle_mut_safe() {
- use std::cell::RefCell;
- let cell = Rc::new(RefCell::new(2));
- let cell_ref = RcRef::new(cell);
- let mut handle = OwningHandle::new_mut(cell_ref);
- assert_eq!(*handle, 2);
- *handle = 3;
- assert_eq!(*handle, 3);
- }
-
- #[test]
- fn owning_handle_safe_2() {
- let result = {
- let complex = Rc::new(RefCell::new(Arc::new(RwLock::new("someString"))));
- let curr = RcRef::new(complex);
- let curr = OwningHandle::new_with_fn(curr, |x| unsafe { x.as_ref() }.unwrap().borrow_mut());
- let mut curr = OwningHandle::new_with_fn(curr, |x| unsafe { x.as_ref() }.unwrap().try_write().unwrap());
- assert_eq!(*curr, "someString");
- *curr = "someOtherString";
- curr
- };
- assert_eq!(*result, "someOtherString");
- }
- }
-
- mod owning_ref_mut {
- use super::super::{OwningRefMut, BoxRefMut, Erased, ErasedBoxRefMut};
- use super::super::BoxRef;
- use std::cmp::{PartialEq, Ord, PartialOrd, Ordering};
- use std::hash::{Hash, Hasher};
- use std::collections::hash_map::DefaultHasher;
- use std::collections::HashMap;
-
- #[derive(Debug, PartialEq)]
- struct Example(u32, String, [u8; 3]);
- fn example() -> Example {
- Example(42, "hello world".to_string(), [1, 2, 3])
- }
-
- #[test]
- fn new_deref() {
- let or: OwningRefMut<Box<()>, ()> = OwningRefMut::new(Box::new(()));
- assert_eq!(&*or, &());
- }
-
- #[test]
- fn new_deref_mut() {
- let mut or: OwningRefMut<Box<()>, ()> = OwningRefMut::new(Box::new(()));
- assert_eq!(&mut *or, &mut ());
- }
-
- #[test]
- fn mutate() {
- let mut or: OwningRefMut<Box<usize>, usize> = OwningRefMut::new(Box::new(0));
- assert_eq!(&*or, &0);
- *or = 1;
- assert_eq!(&*or, &1);
- }
-
- #[test]
- fn into() {
- let or: OwningRefMut<Box<()>, ()> = Box::new(()).into();
- assert_eq!(&*or, &());
- }
-
- #[test]
- fn map_offset_ref() {
- let or: BoxRefMut<Example> = Box::new(example()).into();
- let or: BoxRef<_, u32> = or.map(|x| &mut x.0);
- assert_eq!(&*or, &42);
-
- let or: BoxRefMut<Example> = Box::new(example()).into();
- let or: BoxRef<_, u8> = or.map(|x| &mut x.2[1]);
- assert_eq!(&*or, &2);
- }
-
- #[test]
- fn map_heap_ref() {
- let or: BoxRefMut<Example> = Box::new(example()).into();
- let or: BoxRef<_, str> = or.map(|x| &mut x.1[..5]);
- assert_eq!(&*or, "hello");
- }
-
- #[test]
- fn map_static_ref() {
- let or: BoxRefMut<()> = Box::new(()).into();
- let or: BoxRef<_, str> = or.map(|_| "hello");
- assert_eq!(&*or, "hello");
- }
-
- #[test]
- fn map_mut_offset_ref() {
- let or: BoxRefMut<Example> = Box::new(example()).into();
- let or: BoxRefMut<_, u32> = or.map_mut(|x| &mut x.0);
- assert_eq!(&*or, &42);
-
- let or: BoxRefMut<Example> = Box::new(example()).into();
- let or: BoxRefMut<_, u8> = or.map_mut(|x| &mut x.2[1]);
- assert_eq!(&*or, &2);
- }
-
- #[test]
- fn map_mut_heap_ref() {
- let or: BoxRefMut<Example> = Box::new(example()).into();
- let or: BoxRefMut<_, str> = or.map_mut(|x| &mut x.1[..5]);
- assert_eq!(&*or, "hello");
- }
-
- #[test]
- fn map_mut_static_ref() {
- static mut MUT_S: [u8; 5] = *b"hello";
-
- let mut_s: &'static mut [u8] = unsafe { &mut MUT_S };
-
- let or: BoxRefMut<()> = Box::new(()).into();
- let or: BoxRefMut<_, [u8]> = or.map_mut(move |_| mut_s);
- assert_eq!(&*or, b"hello");
- }
-
- #[test]
- fn map_mut_chained() {
- let or: BoxRefMut<String> = Box::new(example().1).into();
- let or: BoxRefMut<_, str> = or.map_mut(|x| &mut x[1..5]);
- let or: BoxRefMut<_, str> = or.map_mut(|x| &mut x[..2]);
- assert_eq!(&*or, "el");
- }
-
- #[test]
- fn map_chained_inference() {
- let or = BoxRefMut::new(Box::new(example().1))
- .map_mut(|x| &mut x[..5])
- .map_mut(|x| &mut x[1..3]);
- assert_eq!(&*or, "el");
- }
-
- #[test]
- fn try_map_mut() {
- let or: BoxRefMut<String> = Box::new(example().1).into();
- let or: Result<BoxRefMut<_, str>, ()> = or.try_map_mut(|x| Ok(&mut x[1..5]));
- assert_eq!(&*or.unwrap(), "ello");
-
- let or: BoxRefMut<String> = Box::new(example().1).into();
- let or: Result<BoxRefMut<_, str>, ()> = or.try_map_mut(|_| Err(()));
- assert!(or.is_err());
- }
-
- #[test]
- fn as_owner() {
- let or: BoxRefMut<String> = Box::new(example().1).into();
- let or = or.map_mut(|x| &mut x[..5]);
- assert_eq!(&*or, "hello");
- assert_eq!(&**or.as_owner(), "hello world");
- }
-
- #[test]
- fn into_owner() {
- let or: BoxRefMut<String> = Box::new(example().1).into();
- let or = or.map_mut(|x| &mut x[..5]);
- assert_eq!(&*or, "hello");
- let s = *or.into_owner();
- assert_eq!(&s, "hello world");
- }
-
- #[test]
- fn fmt_debug() {
- let or: BoxRefMut<String> = Box::new(example().1).into();
- let or = or.map_mut(|x| &mut x[..5]);
- let s = format!("{:?}", or);
- assert_eq!(&s,
- "OwningRefMut { owner: \"hello world\", reference: \"hello\" }");
- }
-
- #[test]
- fn erased_owner() {
- let o1: BoxRefMut<Example, str> = BoxRefMut::new(Box::new(example()))
- .map_mut(|x| &mut x.1[..]);
-
- let o2: BoxRefMut<String, str> = BoxRefMut::new(Box::new(example().1))
- .map_mut(|x| &mut x[..]);
-
- let os: Vec<ErasedBoxRefMut<str>> = vec![o1.erase_owner(), o2.erase_owner()];
- assert!(os.iter().all(|e| &e[..] == "hello world"));
- }
-
- #[test]
- fn non_static_erased_owner() {
- let mut foo = [413, 612];
- let bar = &mut foo;
-
- // FIXME: lifetime inference fails us, and we can't easily define a lifetime for a closure
- // (see https://github.com/rust-lang/rust/issues/22340)
- // So we use a function to identify the lifetimes instead.
- fn borrow<'a>(a: &'a mut &mut [i32; 2]) -> &'a mut i32 {
- &mut a[0]
- }
-
- let o: BoxRefMut<&mut [i32; 2]> = Box::new(bar).into();
- let o: BoxRefMut<&mut [i32; 2], i32> = o.map_mut(borrow);
- let o: BoxRefMut<dyn Erased, i32> = o.erase_owner();
-
- assert_eq!(*o, 413);
- }
-
- #[test]
- fn raii_locks() {
- use super::super::RefMutRefMut;
- use std::cell::RefCell;
- use super::super::{MutexGuardRefMut, RwLockWriteGuardRefMut};
- use std::sync::{Mutex, RwLock};
-
- {
- let a = RefCell::new(1);
- let a = {
- let a = RefMutRefMut::new(a.borrow_mut());
- assert_eq!(*a, 1);
- a
- };
- assert_eq!(*a, 1);
- drop(a);
- }
- {
- let a = Mutex::new(1);
- let a = {
- let a = MutexGuardRefMut::new(a.lock().unwrap());
- assert_eq!(*a, 1);
- a
- };
- assert_eq!(*a, 1);
- drop(a);
- }
- {
- let a = RwLock::new(1);
- let a = {
- let a = RwLockWriteGuardRefMut::new(a.write().unwrap());
- assert_eq!(*a, 1);
- a
- };
- assert_eq!(*a, 1);
- drop(a);
- }
- }
-
- #[test]
- fn eq() {
- let or1: BoxRefMut<[u8]> = BoxRefMut::new(vec![1, 2, 3].into_boxed_slice());
- let or2: BoxRefMut<[u8]> = BoxRefMut::new(vec![1, 2, 3].into_boxed_slice());
- assert_eq!(or1.eq(&or2), true);
- }
-
- #[test]
- fn cmp() {
- let or1: BoxRefMut<[u8]> = BoxRefMut::new(vec![1, 2, 3].into_boxed_slice());
- let or2: BoxRefMut<[u8]> = BoxRefMut::new(vec![4, 5, 6].into_boxed_slice());
- assert_eq!(or1.cmp(&or2), Ordering::Less);
- }
-
- #[test]
- fn partial_cmp() {
- let or1: BoxRefMut<[u8]> = BoxRefMut::new(vec![4, 5, 6].into_boxed_slice());
- let or2: BoxRefMut<[u8]> = BoxRefMut::new(vec![1, 2, 3].into_boxed_slice());
- assert_eq!(or1.partial_cmp(&or2), Some(Ordering::Greater));
- }
-
- #[test]
- fn hash() {
- let mut h1 = DefaultHasher::new();
- let mut h2 = DefaultHasher::new();
-
- let or1: BoxRefMut<[u8]> = BoxRefMut::new(vec![1, 2, 3].into_boxed_slice());
- let or2: BoxRefMut<[u8]> = BoxRefMut::new(vec![1, 2, 3].into_boxed_slice());
-
- or1.hash(&mut h1);
- or2.hash(&mut h2);
-
- assert_eq!(h1.finish(), h2.finish());
- }
-
- #[test]
- fn borrow() {
- let mut hash = HashMap::new();
- let key1 = BoxRefMut::<String>::new(Box::new("foo".to_string())).map(|s| &s[..]);
- let key2 = BoxRefMut::<String>::new(Box::new("bar".to_string())).map(|s| &s[..]);
-
- hash.insert(key1, 42);
- hash.insert(key2, 23);
-
- assert_eq!(hash.get("foo"), Some(&42));
- assert_eq!(hash.get("bar"), Some(&23));
- }
-
- #[test]
- fn total_erase() {
- let a: OwningRefMut<Vec<u8>, [u8]>
- = OwningRefMut::new(vec![]).map_mut(|x| &mut x[..]);
- let b: OwningRefMut<Box<[u8]>, [u8]>
- = OwningRefMut::new(vec![].into_boxed_slice()).map_mut(|x| &mut x[..]);
-
- let c: OwningRefMut<Box<Vec<u8>>, [u8]> = unsafe {a.map_owner(Box::new)};
- let d: OwningRefMut<Box<Box<[u8]>>, [u8]> = unsafe {b.map_owner(Box::new)};
-
- let _e: OwningRefMut<Box<dyn Erased>, [u8]> = c.erase_owner();
- let _f: OwningRefMut<Box<dyn Erased>, [u8]> = d.erase_owner();
- }
-
- #[test]
- fn total_erase_box() {
- let a: OwningRefMut<Vec<u8>, [u8]>
- = OwningRefMut::new(vec![]).map_mut(|x| &mut x[..]);
- let b: OwningRefMut<Box<[u8]>, [u8]>
- = OwningRefMut::new(vec![].into_boxed_slice()).map_mut(|x| &mut x[..]);
-
- let c: OwningRefMut<Box<Vec<u8>>, [u8]> = a.map_owner_box();
- let d: OwningRefMut<Box<Box<[u8]>>, [u8]> = b.map_owner_box();
-
- let _e: OwningRefMut<Box<dyn Erased>, [u8]> = c.erase_owner();
- let _f: OwningRefMut<Box<dyn Erased>, [u8]> = d.erase_owner();
- }
-
- #[test]
- fn try_map1() {
- use std::any::Any;
-
- let x = Box::new(123_i32);
- let y: Box<dyn Any> = x;
-
- OwningRefMut::new(y).try_map_mut(|x| x.downcast_mut::<i32>().ok_or(())).unwrap();
- }
-
- #[test]
- fn try_map2() {
- use std::any::Any;
-
- let x = Box::new(123_u32);
- let y: Box<dyn Any> = x;
-
- OwningRefMut::new(y).try_map_mut(|x| x.downcast_mut::<i32>().ok_or(())).unwrap_err();
- }
-
- #[test]
- fn try_map3() {
- use std::any::Any;
-
- let x = Box::new(123_i32);
- let y: Box<dyn Any> = x;
-
- OwningRefMut::new(y).try_map(|x| x.downcast_ref::<i32>().ok_or(())).unwrap();
- }
-
- #[test]
- fn try_map4() {
- use std::any::Any;
-
- let x = Box::new(123_u32);
- let y: Box<dyn Any> = x;
-
- OwningRefMut::new(y).try_map(|x| x.downcast_ref::<i32>().ok_or(())).unwrap_err();
- }
-
- #[test]
- fn into_owning_ref() {
- use super::super::BoxRef;
-
- let or: BoxRefMut<()> = Box::new(()).into();
- let or: BoxRef<()> = or.into();
- assert_eq!(&*or, &());
- }
-
- struct Foo {
- u: u32,
- }
- struct Bar {
- f: Foo,
- }
-
- #[test]
- fn ref_mut() {
- use std::cell::RefCell;
-
- let a = RefCell::new(Bar { f: Foo { u: 42 } });
- let mut b = OwningRefMut::new(a.borrow_mut());
- assert_eq!(b.f.u, 42);
- b.f.u = 43;
- let mut c = b.map_mut(|x| &mut x.f);
- assert_eq!(c.u, 43);
- c.u = 44;
- let mut d = c.map_mut(|x| &mut x.u);
- assert_eq!(*d, 44);
- *d = 45;
- assert_eq!(*d, 45);
- }
- }
-}