summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regex-automata/src/dfa/dense.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/regex-automata/src/dfa/dense.rs')
-rw-r--r--third_party/rust/regex-automata/src/dfa/dense.rs5139
1 files changed, 5139 insertions, 0 deletions
diff --git a/third_party/rust/regex-automata/src/dfa/dense.rs b/third_party/rust/regex-automata/src/dfa/dense.rs
new file mode 100644
index 0000000000..6da865f977
--- /dev/null
+++ b/third_party/rust/regex-automata/src/dfa/dense.rs
@@ -0,0 +1,5139 @@
+/*!
+Types and routines specific to dense DFAs.
+
+This module is the home of [`dense::DFA`](DFA).
+
+This module also contains a [`dense::Builder`](Builder) and a
+[`dense::Config`](Config) for building and configuring a dense DFA.
+*/
+
+#[cfg(feature = "dfa-build")]
+use core::cmp;
+use core::{convert::TryFrom, fmt, iter, mem::size_of, slice};
+
+#[cfg(feature = "dfa-build")]
+use alloc::{
+ collections::{BTreeMap, BTreeSet},
+ vec,
+ vec::Vec,
+};
+
+#[cfg(feature = "dfa-build")]
+use crate::{
+ dfa::{
+ accel::Accel, determinize, minimize::Minimizer, remapper::Remapper,
+ sparse,
+ },
+ nfa::thompson,
+ util::{look::LookMatcher, search::MatchKind},
+};
+use crate::{
+ dfa::{
+ accel::Accels,
+ automaton::{fmt_state_indicator, Automaton},
+ special::Special,
+ start::StartKind,
+ DEAD,
+ },
+ util::{
+ alphabet::{self, ByteClasses, ByteSet},
+ int::{Pointer, Usize},
+ prefilter::Prefilter,
+ primitives::{PatternID, StateID},
+ search::{Anchored, Input, MatchError},
+ start::{Start, StartByteMap},
+ wire::{self, DeserializeError, Endian, SerializeError},
+ },
+};
+
+/// The label that is pre-pended to a serialized DFA.
+const LABEL: &str = "rust-regex-automata-dfa-dense";
+
+/// The format version of dense regexes. This version gets incremented when a
+/// change occurs. A change may not necessarily be a breaking change, but the
+/// version does permit good error messages in the case where a breaking change
+/// is made.
+const VERSION: u32 = 2;
+
+/// The configuration used for compiling a dense DFA.
+///
+/// As a convenience, [`DFA::config`] is an alias for [`Config::new`]. The
+/// advantage of the former is that it often lets you avoid importing the
+/// `Config` type directly.
+///
+/// A dense DFA configuration is a simple data object that is typically used
+/// with [`dense::Builder::configure`](self::Builder::configure).
+///
+/// The default configuration guarantees that a search will never return
+/// a "quit" error, although it is possible for a search to fail if
+/// [`Config::starts_for_each_pattern`] wasn't enabled (which it is not by
+/// default) and an [`Anchored::Pattern`] mode is requested via [`Input`].
+#[cfg(feature = "dfa-build")]
+#[derive(Clone, Debug, Default)]
+pub struct Config {
+ // As with other configuration types in this crate, we put all our knobs
+ // in options so that we can distinguish between "default" and "not set."
+ // This makes it possible to easily combine multiple configurations
+ // without default values overwriting explicitly specified values. See the
+ // 'overwrite' method.
+ //
+ // For docs on the fields below, see the corresponding method setters.
+ accelerate: Option<bool>,
+ pre: Option<Option<Prefilter>>,
+ minimize: Option<bool>,
+ match_kind: Option<MatchKind>,
+ start_kind: Option<StartKind>,
+ starts_for_each_pattern: Option<bool>,
+ byte_classes: Option<bool>,
+ unicode_word_boundary: Option<bool>,
+ quitset: Option<ByteSet>,
+ specialize_start_states: Option<bool>,
+ dfa_size_limit: Option<Option<usize>>,
+ determinize_size_limit: Option<Option<usize>>,
+}
+
+#[cfg(feature = "dfa-build")]
+impl Config {
+ /// Return a new default dense DFA compiler configuration.
+ pub fn new() -> Config {
+ Config::default()
+ }
+
+ /// Enable state acceleration.
+ ///
+ /// When enabled, DFA construction will analyze each state to determine
+ /// whether it is eligible for simple acceleration. Acceleration typically
+ /// occurs when most of a state's transitions loop back to itself, leaving
+ /// only a select few bytes that will exit the state. When this occurs,
+ /// other routines like `memchr` can be used to look for those bytes which
+ /// may be much faster than traversing the DFA.
+ ///
+ /// Callers may elect to disable this if consistent performance is more
+ /// desirable than variable performance. Namely, acceleration can sometimes
+ /// make searching slower than it otherwise would be if the transitions
+ /// that leave accelerated states are traversed frequently.
+ ///
+ /// See [`Automaton::accelerator`](crate::dfa::Automaton::accelerator) for
+ /// an example.
+ ///
+ /// This is enabled by default.
+ pub fn accelerate(mut self, yes: bool) -> Config {
+ self.accelerate = Some(yes);
+ self
+ }
+
+ /// Set a prefilter to be used whenever a start state is entered.
+ ///
+ /// A [`Prefilter`] in this context is meant to accelerate searches by
+ /// looking for literal prefixes that every match for the corresponding
+ /// pattern (or patterns) must start with. Once a prefilter produces a
+ /// match, the underlying search routine continues on to try and confirm
+ /// the match.
+ ///
+ /// Be warned that setting a prefilter does not guarantee that the search
+ /// will be faster. While it's usually a good bet, if the prefilter
+ /// produces a lot of false positive candidates (i.e., positions matched
+ /// by the prefilter but not by the regex), then the overall result can
+ /// be slower than if you had just executed the regex engine without any
+ /// prefilters.
+ ///
+ /// Note that unless [`Config::specialize_start_states`] has been
+ /// explicitly set, then setting this will also enable (when `pre` is
+ /// `Some`) or disable (when `pre` is `None`) start state specialization.
+ /// This occurs because without start state specialization, a prefilter
+ /// is likely to be less effective. And without a prefilter, start state
+ /// specialization is usually pointless.
+ ///
+ /// **WARNING:** Note that prefilters are not preserved as part of
+ /// serialization. Serializing a DFA will drop its prefilter.
+ ///
+ /// By default no prefilter is set.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// dfa::{dense::DFA, Automaton},
+ /// util::prefilter::Prefilter,
+ /// Input, HalfMatch, MatchKind,
+ /// };
+ ///
+ /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]);
+ /// let re = DFA::builder()
+ /// .configure(DFA::config().prefilter(pre))
+ /// .build(r"(foo|bar)[a-z]+")?;
+ /// let input = Input::new("foo1 barfox bar");
+ /// assert_eq!(
+ /// Some(HalfMatch::must(0, 11)),
+ /// re.try_search_fwd(&input)?,
+ /// );
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// Be warned though that an incorrect prefilter can lead to incorrect
+ /// results!
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// dfa::{dense::DFA, Automaton},
+ /// util::prefilter::Prefilter,
+ /// Input, HalfMatch, MatchKind,
+ /// };
+ ///
+ /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]);
+ /// let re = DFA::builder()
+ /// .configure(DFA::config().prefilter(pre))
+ /// .build(r"(foo|bar)[a-z]+")?;
+ /// let input = Input::new("foo1 barfox bar");
+ /// assert_eq!(
+ /// // No match reported even though there clearly is one!
+ /// None,
+ /// re.try_search_fwd(&input)?,
+ /// );
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config {
+ self.pre = Some(pre);
+ if self.specialize_start_states.is_none() {
+ self.specialize_start_states =
+ Some(self.get_prefilter().is_some());
+ }
+ self
+ }
+
+ /// Minimize the DFA.
+ ///
+ /// When enabled, the DFA built will be minimized such that it is as small
+ /// as possible.
+ ///
+ /// Whether one enables minimization or not depends on the types of costs
+ /// you're willing to pay and how much you care about its benefits. In
+ /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
+ /// space, where `n` is the number of DFA states and `k` is the alphabet
+ /// size. In practice, minimization can be quite costly in terms of both
+ /// space and time, so it should only be done if you're willing to wait
+ /// longer to produce a DFA. In general, you might want a minimal DFA in
+ /// the following circumstances:
+ ///
+ /// 1. You would like to optimize for the size of the automaton. This can
+ /// manifest in one of two ways. Firstly, if you're converting the
+ /// DFA into Rust code (or a table embedded in the code), then a minimal
+ /// DFA will translate into a corresponding reduction in code size, and
+ /// thus, also the final compiled binary size. Secondly, if you are
+ /// building many DFAs and putting them on the heap, you'll be able to
+ /// fit more if they are smaller. Note though that building a minimal
+ /// DFA itself requires additional space; you only realize the space
+ /// savings once the minimal DFA is constructed (at which point, the
+ /// space used for minimization is freed).
+ /// 2. You've observed that a smaller DFA results in faster match
+ /// performance. Naively, this isn't guaranteed since there is no
+ /// inherent difference between matching with a bigger-than-minimal
+ /// DFA and a minimal DFA. However, a smaller DFA may make use of your
+ /// CPU's cache more efficiently.
+ /// 3. You are trying to establish an equivalence between regular
+ /// languages. The standard method for this is to build a minimal DFA
+ /// for each language and then compare them. If the DFAs are equivalent
+ /// (up to state renaming), then the languages are equivalent.
+ ///
+ /// Typically, minimization only makes sense as an offline process. That
+ /// is, one might minimize a DFA before serializing it to persistent
+ /// storage. In practical terms, minimization can take around an order of
+ /// magnitude more time than compiling the initial DFA via determinization.
+ ///
+ /// This option is disabled by default.
+ pub fn minimize(mut self, yes: bool) -> Config {
+ self.minimize = Some(yes);
+ self
+ }
+
+ /// Set the desired match semantics.
+ ///
+ /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
+ /// match semantics of Perl-like regex engines. That is, when multiple
+ /// patterns would match at the same leftmost position, the pattern that
+ /// appears first in the concrete syntax is chosen.
+ ///
+ /// Currently, the only other kind of match semantics supported is
+ /// [`MatchKind::All`]. This corresponds to classical DFA construction
+ /// where all possible matches are added to the DFA.
+ ///
+ /// Typically, `All` is used when one wants to execute an overlapping
+ /// search and `LeftmostFirst` otherwise. In particular, it rarely makes
+ /// sense to use `All` with the various "leftmost" find routines, since the
+ /// leftmost routines depend on the `LeftmostFirst` automata construction
+ /// strategy. Specifically, `LeftmostFirst` adds dead states to the DFA
+ /// as a way to terminate the search and report a match. `LeftmostFirst`
+ /// also supports non-greedy matches using this strategy where as `All`
+ /// does not.
+ ///
+ /// # Example: overlapping search
+ ///
+ /// This example shows the typical use of `MatchKind::All`, which is to
+ /// report overlapping matches.
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// use regex_automata::{
+ /// dfa::{Automaton, OverlappingState, dense},
+ /// HalfMatch, Input, MatchKind,
+ /// };
+ ///
+ /// let dfa = dense::Builder::new()
+ /// .configure(dense::Config::new().match_kind(MatchKind::All))
+ /// .build_many(&[r"\w+$", r"\S+$"])?;
+ /// let input = Input::new("@foo");
+ /// let mut state = OverlappingState::start();
+ ///
+ /// let expected = Some(HalfMatch::must(1, 4));
+ /// dfa.try_search_overlapping_fwd(&input, &mut state)?;
+ /// assert_eq!(expected, state.get_match());
+ ///
+ /// // The first pattern also matches at the same position, so re-running
+ /// // the search will yield another match. Notice also that the first
+ /// // pattern is returned after the second. This is because the second
+ /// // pattern begins its match before the first, is therefore an earlier
+ /// // match and is thus reported first.
+ /// let expected = Some(HalfMatch::must(0, 4));
+ /// dfa.try_search_overlapping_fwd(&input, &mut state)?;
+ /// assert_eq!(expected, state.get_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// # Example: reverse automaton to find start of match
+ ///
+ /// Another example for using `MatchKind::All` is for constructing a
+ /// reverse automaton to find the start of a match. `All` semantics are
+ /// used for this in order to find the longest possible match, which
+ /// corresponds to the leftmost starting position.
+ ///
+ /// Note that if you need the starting position then
+ /// [`dfa::regex::Regex`](crate::dfa::regex::Regex) will handle this for
+ /// you, so it's usually not necessary to do this yourself.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// dfa::{dense, Automaton, StartKind},
+ /// nfa::thompson::NFA,
+ /// Anchored, HalfMatch, Input, MatchKind,
+ /// };
+ ///
+ /// let haystack = "123foobar456".as_bytes();
+ /// let pattern = r"[a-z]+r";
+ ///
+ /// let dfa_fwd = dense::DFA::new(pattern)?;
+ /// let dfa_rev = dense::Builder::new()
+ /// .thompson(NFA::config().reverse(true))
+ /// .configure(dense::Config::new()
+ /// // This isn't strictly necessary since both anchored and
+ /// // unanchored searches are supported by default. But since
+ /// // finding the start-of-match only requires anchored searches,
+ /// // we can get rid of the unanchored configuration and possibly
+ /// // slim down our DFA considerably.
+ /// .start_kind(StartKind::Anchored)
+ /// .match_kind(MatchKind::All)
+ /// )
+ /// .build(pattern)?;
+ /// let expected_fwd = HalfMatch::must(0, 9);
+ /// let expected_rev = HalfMatch::must(0, 3);
+ /// let got_fwd = dfa_fwd.try_search_fwd(&Input::new(haystack))?.unwrap();
+ /// // Here we don't specify the pattern to search for since there's only
+ /// // one pattern and we're doing a leftmost search. But if this were an
+ /// // overlapping search, you'd need to specify the pattern that matched
+ /// // in the forward direction. (Otherwise, you might wind up finding the
+ /// // starting position of a match of some other pattern.) That in turn
+ /// // requires building the reverse automaton with starts_for_each_pattern
+ /// // enabled. Indeed, this is what Regex does internally.
+ /// let input = Input::new(haystack)
+ /// .range(..got_fwd.offset())
+ /// .anchored(Anchored::Yes);
+ /// let got_rev = dfa_rev.try_search_rev(&input)?.unwrap();
+ /// assert_eq!(expected_fwd, got_fwd);
+ /// assert_eq!(expected_rev, got_rev);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn match_kind(mut self, kind: MatchKind) -> Config {
+ self.match_kind = Some(kind);
+ self
+ }
+
+ /// The type of starting state configuration to use for a DFA.
+ ///
+ /// By default, the starting state configuration is [`StartKind::Both`].
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// dfa::{dense::DFA, Automaton, StartKind},
+ /// Anchored, HalfMatch, Input,
+ /// };
+ ///
+ /// let haystack = "quux foo123";
+ /// let expected = HalfMatch::must(0, 11);
+ ///
+ /// // By default, DFAs support both anchored and unanchored searches.
+ /// let dfa = DFA::new(r"[0-9]+")?;
+ /// let input = Input::new(haystack);
+ /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
+ ///
+ /// // But if we only need anchored searches, then we can build a DFA
+ /// // that only supports anchored searches. This leads to a smaller DFA
+ /// // (potentially significantly smaller in some cases), but a DFA that
+ /// // will panic if you try to use it with an unanchored search.
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().start_kind(StartKind::Anchored))
+ /// .build(r"[0-9]+")?;
+ /// let input = Input::new(haystack)
+ /// .range(8..)
+ /// .anchored(Anchored::Yes);
+ /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn start_kind(mut self, kind: StartKind) -> Config {
+ self.start_kind = Some(kind);
+ self
+ }
+
+ /// Whether to compile a separate start state for each pattern in the
+ /// automaton.
+ ///
+ /// When enabled, a separate **anchored** start state is added for each
+ /// pattern in the DFA. When this start state is used, then the DFA will
+ /// only search for matches for the pattern specified, even if there are
+ /// other patterns in the DFA.
+ ///
+ /// The main downside of this option is that it can potentially increase
+ /// the size of the DFA and/or increase the time it takes to build the DFA.
+ ///
+ /// There are a few reasons one might want to enable this (it's disabled
+ /// by default):
+ ///
+ /// 1. When looking for the start of an overlapping match (using a
+ /// reverse DFA), doing it correctly requires starting the reverse search
+ /// using the starting state of the pattern that matched in the forward
+ /// direction. Indeed, when building a [`Regex`](crate::dfa::regex::Regex),
+ /// it will automatically enable this option when building the reverse DFA
+ /// internally.
+ /// 2. When you want to use a DFA with multiple patterns to both search
+ /// for matches of any pattern or to search for anchored matches of one
+ /// particular pattern while using the same DFA. (Otherwise, you would need
+ /// to compile a new DFA for each pattern.)
+ /// 3. Since the start states added for each pattern are anchored, if you
+ /// compile an unanchored DFA with one pattern while also enabling this
+ /// option, then you can use the same DFA to perform anchored or unanchored
+ /// searches. The latter you get with the standard search APIs. The former
+ /// you get from the various `_at` search methods that allow you specify a
+ /// pattern ID to search for.
+ ///
+ /// By default this is disabled.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to use this option to permit the same DFA to
+ /// run both anchored and unanchored searches for a single pattern.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// dfa::{dense, Automaton},
+ /// Anchored, HalfMatch, PatternID, Input,
+ /// };
+ ///
+ /// let dfa = dense::Builder::new()
+ /// .configure(dense::Config::new().starts_for_each_pattern(true))
+ /// .build(r"foo[0-9]+")?;
+ /// let haystack = "quux foo123";
+ ///
+ /// // Here's a normal unanchored search. Notice that we use 'None' for the
+ /// // pattern ID. Since the DFA was built as an unanchored machine, it
+ /// // use its default unanchored starting state.
+ /// let expected = HalfMatch::must(0, 11);
+ /// let input = Input::new(haystack);
+ /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
+ /// // But now if we explicitly specify the pattern to search ('0' being
+ /// // the only pattern in the DFA), then it will use the starting state
+ /// // for that specific pattern which is always anchored. Since the
+ /// // pattern doesn't have a match at the beginning of the haystack, we
+ /// // find nothing.
+ /// let input = Input::new(haystack)
+ /// .anchored(Anchored::Pattern(PatternID::must(0)));
+ /// assert_eq!(None, dfa.try_search_fwd(&input)?);
+ /// // And finally, an anchored search is not the same as putting a '^' at
+ /// // beginning of the pattern. An anchored search can only match at the
+ /// // beginning of the *search*, which we can change:
+ /// let input = Input::new(haystack)
+ /// .anchored(Anchored::Pattern(PatternID::must(0)))
+ /// .range(5..);
+ /// assert_eq!(Some(expected), dfa.try_search_fwd(&input)?);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
+ self.starts_for_each_pattern = Some(yes);
+ self
+ }
+
+ /// Whether to attempt to shrink the size of the DFA's alphabet or not.
+ ///
+ /// This option is enabled by default and should never be disabled unless
+ /// one is debugging a generated DFA.
+ ///
+ /// When enabled, the DFA will use a map from all possible bytes to their
+ /// corresponding equivalence class. Each equivalence class represents a
+ /// set of bytes that does not discriminate between a match and a non-match
+ /// in the DFA. For example, the pattern `[ab]+` has at least two
+ /// equivalence classes: a set containing `a` and `b` and a set containing
+ /// every byte except for `a` and `b`. `a` and `b` are in the same
+ /// equivalence class because they never discriminate between a match and a
+ /// non-match.
+ ///
+ /// The advantage of this map is that the size of the transition table
+ /// can be reduced drastically from `#states * 256 * sizeof(StateID)` to
+ /// `#states * k * sizeof(StateID)` where `k` is the number of equivalence
+ /// classes (rounded up to the nearest power of 2). As a result, total
+ /// space usage can decrease substantially. Moreover, since a smaller
+ /// alphabet is used, DFA compilation becomes faster as well.
+ ///
+ /// **WARNING:** This is only useful for debugging DFAs. Disabling this
+ /// does not yield any speed advantages. Namely, even when this is
+ /// disabled, a byte class map is still used while searching. The only
+ /// difference is that every byte will be forced into its own distinct
+ /// equivalence class. This is useful for debugging the actual generated
+ /// transitions because it lets one see the transitions defined on actual
+ /// bytes instead of the equivalence classes.
+ pub fn byte_classes(mut self, yes: bool) -> Config {
+ self.byte_classes = Some(yes);
+ self
+ }
+
+ /// Heuristically enable Unicode word boundaries.
+ ///
+ /// When set, this will attempt to implement Unicode word boundaries as if
+ /// they were ASCII word boundaries. This only works when the search input
+ /// is ASCII only. If a non-ASCII byte is observed while searching, then a
+ /// [`MatchError::quit`](crate::MatchError::quit) error is returned.
+ ///
+ /// A possible alternative to enabling this option is to simply use an
+ /// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this
+ /// option is if you absolutely need Unicode support. This option lets one
+ /// use a fast search implementation (a DFA) for some potentially very
+ /// common cases, while providing the option to fall back to some other
+ /// regex engine to handle the general case when an error is returned.
+ ///
+ /// If the pattern provided has no Unicode word boundary in it, then this
+ /// option has no effect. (That is, quitting on a non-ASCII byte only
+ /// occurs when this option is enabled _and_ a Unicode word boundary is
+ /// present in the pattern.)
+ ///
+ /// This is almost equivalent to setting all non-ASCII bytes to be quit
+ /// bytes. The only difference is that this will cause non-ASCII bytes to
+ /// be quit bytes _only_ when a Unicode word boundary is present in the
+ /// pattern.
+ ///
+ /// When enabling this option, callers _must_ be prepared to handle
+ /// a [`MatchError`](crate::MatchError) error during search.
+ /// When using a [`Regex`](crate::dfa::regex::Regex), this corresponds
+ /// to using the `try_` suite of methods. Alternatively, if
+ /// callers can guarantee that their input is ASCII only, then a
+ /// [`MatchError::quit`](crate::MatchError::quit) error will never be
+ /// returned while searching.
+ ///
+ /// This is disabled by default.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to heuristically enable Unicode word boundaries
+ /// in a pattern. It also shows what happens when a search comes across a
+ /// non-ASCII byte.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// dfa::{Automaton, dense},
+ /// HalfMatch, Input, MatchError,
+ /// };
+ ///
+ /// let dfa = dense::Builder::new()
+ /// .configure(dense::Config::new().unicode_word_boundary(true))
+ /// .build(r"\b[0-9]+\b")?;
+ ///
+ /// // The match occurs before the search ever observes the snowman
+ /// // character, so no error occurs.
+ /// let haystack = "foo 123 ☃".as_bytes();
+ /// let expected = Some(HalfMatch::must(0, 7));
+ /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
+ /// assert_eq!(expected, got);
+ ///
+ /// // Notice that this search fails, even though the snowman character
+ /// // occurs after the ending match offset. This is because search
+ /// // routines read one byte past the end of the search to account for
+ /// // look-around, and indeed, this is required here to determine whether
+ /// // the trailing \b matches.
+ /// let haystack = "foo 123 ☃".as_bytes();
+ /// let expected = MatchError::quit(0xE2, 8);
+ /// let got = dfa.try_search_fwd(&Input::new(haystack));
+ /// assert_eq!(Err(expected), got);
+ ///
+ /// // Another example is executing a search where the span of the haystack
+ /// // we specify is all ASCII, but there is non-ASCII just before it. This
+ /// // correctly also reports an error.
+ /// let input = Input::new("β123").range(2..);
+ /// let expected = MatchError::quit(0xB2, 1);
+ /// let got = dfa.try_search_fwd(&input);
+ /// assert_eq!(Err(expected), got);
+ ///
+ /// // And similarly for the trailing word boundary.
+ /// let input = Input::new("123β").range(..3);
+ /// let expected = MatchError::quit(0xCE, 3);
+ /// let got = dfa.try_search_fwd(&input);
+ /// assert_eq!(Err(expected), got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn unicode_word_boundary(mut self, yes: bool) -> Config {
+ // We have a separate option for this instead of just setting the
+ // appropriate quit bytes here because we don't want to set quit bytes
+ // for every regex. We only want to set them when the regex contains a
+ // Unicode word boundary.
+ self.unicode_word_boundary = Some(yes);
+ self
+ }
+
+ /// Add a "quit" byte to the DFA.
+ ///
+ /// When a quit byte is seen during search time, then search will return
+ /// a [`MatchError::quit`](crate::MatchError::quit) error indicating the
+ /// offset at which the search stopped.
+ ///
+ /// A quit byte will always overrule any other aspects of a regex. For
+ /// example, if the `x` byte is added as a quit byte and the regex `\w` is
+ /// used, then observing `x` will cause the search to quit immediately
+ /// despite the fact that `x` is in the `\w` class.
+ ///
+ /// This mechanism is primarily useful for heuristically enabling certain
+ /// features like Unicode word boundaries in a DFA. Namely, if the input
+ /// to search is ASCII, then a Unicode word boundary can be implemented
+ /// via an ASCII word boundary with no change in semantics. Thus, a DFA
+ /// can attempt to match a Unicode word boundary but give up as soon as it
+ /// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes
+ /// to be quit bytes, then Unicode word boundaries will be permitted when
+ /// building DFAs. Of course, callers should enable
+ /// [`Config::unicode_word_boundary`] if they want this behavior instead.
+ /// (The advantage being that non-ASCII quit bytes will only be added if a
+ /// Unicode word boundary is in the pattern.)
+ ///
+ /// When enabling this option, callers _must_ be prepared to handle a
+ /// [`MatchError`](crate::MatchError) error during search. When using a
+ /// [`Regex`](crate::dfa::regex::Regex), this corresponds to using the
+ /// `try_` suite of methods.
+ ///
+ /// By default, there are no quit bytes set.
+ ///
+ /// # Panics
+ ///
+ /// This panics if heuristic Unicode word boundaries are enabled and any
+ /// non-ASCII byte is removed from the set of quit bytes. Namely, enabling
+ /// Unicode word boundaries requires setting every non-ASCII byte to a quit
+ /// byte. So if the caller attempts to undo any of that, then this will
+ /// panic.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to cause a search to terminate if it sees a
+ /// `\n` byte. This could be useful if, for example, you wanted to prevent
+ /// a user supplied pattern from matching across a line boundary.
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// use regex_automata::{dfa::{Automaton, dense}, Input, MatchError};
+ ///
+ /// let dfa = dense::Builder::new()
+ /// .configure(dense::Config::new().quit(b'\n', true))
+ /// .build(r"foo\p{any}+bar")?;
+ ///
+ /// let haystack = "foo\nbar".as_bytes();
+ /// // Normally this would produce a match, since \p{any} contains '\n'.
+ /// // But since we instructed the automaton to enter a quit state if a
+ /// // '\n' is observed, this produces a match error instead.
+ /// let expected = MatchError::quit(b'\n', 3);
+ /// let got = dfa.try_search_fwd(&Input::new(haystack)).unwrap_err();
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn quit(mut self, byte: u8, yes: bool) -> Config {
+ if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes {
+ panic!(
+ "cannot set non-ASCII byte to be non-quit when \
+ Unicode word boundaries are enabled"
+ );
+ }
+ if self.quitset.is_none() {
+ self.quitset = Some(ByteSet::empty());
+ }
+ if yes {
+ self.quitset.as_mut().unwrap().add(byte);
+ } else {
+ self.quitset.as_mut().unwrap().remove(byte);
+ }
+ self
+ }
+
+ /// Enable specializing start states in the DFA.
+ ///
+ /// When start states are specialized, an implementor of a search routine
+ /// using a lazy DFA can tell when the search has entered a starting state.
+ /// When start states aren't specialized, then it is impossible to know
+ /// whether the search has entered a start state.
+ ///
+ /// Ideally, this option wouldn't need to exist and we could always
+ /// specialize start states. The problem is that start states can be quite
+ /// active. This in turn means that an efficient search routine is likely
+ /// to ping-pong between a heavily optimized hot loop that handles most
+ /// states and to a less optimized specialized handling of start states.
+ /// This causes branches to get heavily mispredicted and overall can
+ /// materially decrease throughput. Therefore, specializing start states
+ /// should only be enabled when it is needed.
+ ///
+ /// Knowing whether a search is in a start state is typically useful when a
+ /// prefilter is active for the search. A prefilter is typically only run
+ /// when in a start state and a prefilter can greatly accelerate a search.
+ /// Therefore, the possible cost of specializing start states is worth it
+ /// in this case. Otherwise, if you have no prefilter, there is likely no
+ /// reason to specialize start states.
+ ///
+ /// This is disabled by default, but note that it is automatically
+ /// enabled (or disabled) if [`Config::prefilter`] is set. Namely, unless
+ /// `specialize_start_states` has already been set, [`Config::prefilter`]
+ /// will automatically enable or disable it based on whether a prefilter
+ /// is present or not, respectively. This is done because a prefilter's
+ /// effectiveness is rooted in being executed whenever the DFA is in a
+ /// start state, and that's only possible to do when they are specialized.
+ ///
+ /// Note that it is plausibly reasonable to _disable_ this option
+ /// explicitly while _enabling_ a prefilter. In that case, a prefilter
+ /// will still be run at the beginning of a search, but never again. This
+ /// in theory could strike a good balance if you're in a situation where a
+ /// prefilter is likely to produce many false positive candidates.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to enable start state specialization and then
+ /// shows how to check whether a state is a start state or not.
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input};
+ ///
+ /// let dfa = DFA::builder()
+ /// .configure(DFA::config().specialize_start_states(true))
+ /// .build(r"[a-z]+")?;
+ ///
+ /// let haystack = "123 foobar 4567".as_bytes();
+ /// let sid = dfa.start_state_forward(&Input::new(haystack))?;
+ /// // The ID returned by 'start_state_forward' will always be tagged as
+ /// // a start state when start state specialization is enabled.
+ /// assert!(dfa.is_special_state(sid));
+ /// assert!(dfa.is_start_state(sid));
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// Compare the above with the default DFA configuration where start states
+ /// are _not_ specialized. In this case, the start state is not tagged at
+ /// all:
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, Input};
+ ///
+ /// let dfa = DFA::new(r"[a-z]+")?;
+ ///
+ /// let haystack = "123 foobar 4567";
+ /// let sid = dfa.start_state_forward(&Input::new(haystack))?;
+ /// // Start states are not special in the default configuration!
+ /// assert!(!dfa.is_special_state(sid));
+ /// assert!(!dfa.is_start_state(sid));
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn specialize_start_states(mut self, yes: bool) -> Config {
+ self.specialize_start_states = Some(yes);
+ self
+ }
+
+ /// Set a size limit on the total heap used by a DFA.
+ ///
+ /// This size limit is expressed in bytes and is applied during
+ /// determinization of an NFA into a DFA. If the DFA's heap usage, and only
+ /// the DFA, exceeds this configured limit, then determinization is stopped
+ /// and an error is returned.
+ ///
+ /// This limit does not apply to auxiliary storage used during
+ /// determinization that isn't part of the generated DFA.
+ ///
+ /// This limit is only applied during determinization. Currently, there is
+ /// no way to post-pone this check to after minimization if minimization
+ /// was enabled.
+ ///
+ /// The total limit on heap used during determinization is the sum of the
+ /// DFA and determinization size limits.
+ ///
+ /// The default is no limit.
+ ///
+ /// # Example
+ ///
+ /// This example shows a DFA that fails to build because of a configured
+ /// size limit. This particular example also serves as a cautionary tale
+ /// demonstrating just how big DFAs with large Unicode character classes
+ /// can get.
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// use regex_automata::{dfa::{dense, Automaton}, Input};
+ ///
+ /// // 6MB isn't enough!
+ /// dense::Builder::new()
+ /// .configure(dense::Config::new().dfa_size_limit(Some(6_000_000)))
+ /// .build(r"\w{20}")
+ /// .unwrap_err();
+ ///
+ /// // ... but 7MB probably is!
+ /// // (Note that DFA sizes aren't necessarily stable between releases.)
+ /// let dfa = dense::Builder::new()
+ /// .configure(dense::Config::new().dfa_size_limit(Some(7_000_000)))
+ /// .build(r"\w{20}")?;
+ /// let haystack = "A".repeat(20).into_bytes();
+ /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// While one needs a little more than 6MB to represent `\w{20}`, it
+ /// turns out that you only need a little more than 6KB to represent
+ /// `(?-u:\w{20})`. So only use Unicode if you need it!
+ ///
+ /// As with [`Config::determinize_size_limit`], the size of a DFA is
+ /// influenced by other factors, such as what start state configurations
+ /// to support. For example, if you only need unanchored searches and not
+ /// anchored searches, then configuring the DFA to only support unanchored
+ /// searches can reduce its size. By default, DFAs support both unanchored
+ /// and anchored searches.
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// use regex_automata::{dfa::{dense, Automaton, StartKind}, Input};
+ ///
+ /// // 3MB isn't enough!
+ /// dense::Builder::new()
+ /// .configure(dense::Config::new()
+ /// .dfa_size_limit(Some(3_000_000))
+ /// .start_kind(StartKind::Unanchored)
+ /// )
+ /// .build(r"\w{20}")
+ /// .unwrap_err();
+ ///
+ /// // ... but 4MB probably is!
+ /// // (Note that DFA sizes aren't necessarily stable between releases.)
+ /// let dfa = dense::Builder::new()
+ /// .configure(dense::Config::new()
+ /// .dfa_size_limit(Some(4_000_000))
+ /// .start_kind(StartKind::Unanchored)
+ /// )
+ /// .build(r"\w{20}")?;
+ /// let haystack = "A".repeat(20).into_bytes();
+ /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn dfa_size_limit(mut self, bytes: Option<usize>) -> Config {
+ self.dfa_size_limit = Some(bytes);
+ self
+ }
+
+ /// Set a size limit on the total heap used by determinization.
+ ///
+ /// This size limit is expressed in bytes and is applied during
+ /// determinization of an NFA into a DFA. If the heap used for auxiliary
+ /// storage during determinization (memory that is not in the DFA but
+ /// necessary for building the DFA) exceeds this configured limit, then
+ /// determinization is stopped and an error is returned.
+ ///
+ /// This limit does not apply to heap used by the DFA itself.
+ ///
+ /// The total limit on heap used during determinization is the sum of the
+ /// DFA and determinization size limits.
+ ///
+ /// The default is no limit.
+ ///
+ /// # Example
+ ///
+ /// This example shows a DFA that fails to build because of a
+ /// configured size limit on the amount of heap space used by
+ /// determinization. This particular example complements the example for
+ /// [`Config::dfa_size_limit`] by demonstrating that not only does Unicode
+ /// potentially make DFAs themselves big, but it also results in more
+ /// auxiliary storage during determinization. (Although, auxiliary storage
+ /// is still not as much as the DFA itself.)
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
+ /// use regex_automata::{dfa::{dense, Automaton}, Input};
+ ///
+ /// // 600KB isn't enough!
+ /// dense::Builder::new()
+ /// .configure(dense::Config::new()
+ /// .determinize_size_limit(Some(600_000))
+ /// )
+ /// .build(r"\w{20}")
+ /// .unwrap_err();
+ ///
+ /// // ... but 700KB probably is!
+ /// // (Note that auxiliary storage sizes aren't necessarily stable between
+ /// // releases.)
+ /// let dfa = dense::Builder::new()
+ /// .configure(dense::Config::new()
+ /// .determinize_size_limit(Some(700_000))
+ /// )
+ /// .build(r"\w{20}")?;
+ /// let haystack = "A".repeat(20).into_bytes();
+ /// assert!(dfa.try_search_fwd(&Input::new(&haystack))?.is_some());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// Note that some parts of the configuration on a DFA can have a
+ /// big impact on how big the DFA is, and thus, how much memory is
+ /// used. For example, the default setting for [`Config::start_kind`] is
+ /// [`StartKind::Both`]. But if you only need an anchored search, for
+ /// example, then it can be much cheaper to build a DFA that only supports
+ /// anchored searches. (Running an unanchored search with it would panic.)
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// # if !cfg!(target_pointer_width = "64") { return Ok(()); } // see #1039
+ /// use regex_automata::{
+ /// dfa::{dense, Automaton, StartKind},
+ /// Anchored, Input,
+ /// };
+ ///
+ /// // 200KB isn't enough!
+ /// dense::Builder::new()
+ /// .configure(dense::Config::new()
+ /// .determinize_size_limit(Some(200_000))
+ /// .start_kind(StartKind::Anchored)
+ /// )
+ /// .build(r"\w{20}")
+ /// .unwrap_err();
+ ///
+ /// // ... but 300KB probably is!
+ /// // (Note that auxiliary storage sizes aren't necessarily stable between
+ /// // releases.)
+ /// let dfa = dense::Builder::new()
+ /// .configure(dense::Config::new()
+ /// .determinize_size_limit(Some(300_000))
+ /// .start_kind(StartKind::Anchored)
+ /// )
+ /// .build(r"\w{20}")?;
+ /// let haystack = "A".repeat(20).into_bytes();
+ /// let input = Input::new(&haystack).anchored(Anchored::Yes);
+ /// assert!(dfa.try_search_fwd(&input)?.is_some());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn determinize_size_limit(mut self, bytes: Option<usize>) -> Config {
+ self.determinize_size_limit = Some(bytes);
+ self
+ }
+
+ /// Returns whether this configuration has enabled simple state
+ /// acceleration.
+ pub fn get_accelerate(&self) -> bool {
+ self.accelerate.unwrap_or(true)
+ }
+
+ /// Returns the prefilter attached to this configuration, if any.
+ pub fn get_prefilter(&self) -> Option<&Prefilter> {
+ self.pre.as_ref().unwrap_or(&None).as_ref()
+ }
+
+ /// Returns whether this configuration has enabled the expensive process
+ /// of minimizing a DFA.
+ pub fn get_minimize(&self) -> bool {
+ self.minimize.unwrap_or(false)
+ }
+
+ /// Returns the match semantics set in this configuration.
+ pub fn get_match_kind(&self) -> MatchKind {
+ self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
+ }
+
+ /// Returns the starting state configuration for a DFA.
+ pub fn get_starts(&self) -> StartKind {
+ self.start_kind.unwrap_or(StartKind::Both)
+ }
+
+ /// Returns whether this configuration has enabled anchored starting states
+ /// for every pattern in the DFA.
+ pub fn get_starts_for_each_pattern(&self) -> bool {
+ self.starts_for_each_pattern.unwrap_or(false)
+ }
+
+ /// Returns whether this configuration has enabled byte classes or not.
+ /// This is typically a debugging oriented option, as disabling it confers
+ /// no speed benefit.
+ pub fn get_byte_classes(&self) -> bool {
+ self.byte_classes.unwrap_or(true)
+ }
+
+ /// Returns whether this configuration has enabled heuristic Unicode word
+ /// boundary support. When enabled, it is possible for a search to return
+ /// an error.
+ pub fn get_unicode_word_boundary(&self) -> bool {
+ self.unicode_word_boundary.unwrap_or(false)
+ }
+
+ /// Returns whether this configuration will instruct the DFA to enter a
+ /// quit state whenever the given byte is seen during a search. When at
+ /// least one byte has this enabled, it is possible for a search to return
+ /// an error.
+ pub fn get_quit(&self, byte: u8) -> bool {
+ self.quitset.map_or(false, |q| q.contains(byte))
+ }
+
+ /// Returns whether this configuration will instruct the DFA to
+ /// "specialize" start states. When enabled, the DFA will mark start states
+ /// as "special" so that search routines using the DFA can detect when
+ /// it's in a start state and do some kind of optimization (like run a
+ /// prefilter).
+ pub fn get_specialize_start_states(&self) -> bool {
+ self.specialize_start_states.unwrap_or(false)
+ }
+
+ /// Returns the DFA size limit of this configuration if one was set.
+ /// The size limit is total number of bytes on the heap that a DFA is
+ /// permitted to use. If the DFA exceeds this limit during construction,
+ /// then construction is stopped and an error is returned.
+ pub fn get_dfa_size_limit(&self) -> Option<usize> {
+ self.dfa_size_limit.unwrap_or(None)
+ }
+
+ /// Returns the determinization size limit of this configuration if one
+ /// was set. The size limit is total number of bytes on the heap that
+ /// determinization is permitted to use. If determinization exceeds this
+ /// limit during construction, then construction is stopped and an error is
+ /// returned.
+ ///
+ /// This is different from the DFA size limit in that this only applies to
+ /// the auxiliary storage used during determinization. Once determinization
+ /// is complete, this memory is freed.
+ ///
+ /// The limit on the total heap memory used is the sum of the DFA and
+ /// determinization size limits.
+ pub fn get_determinize_size_limit(&self) -> Option<usize> {
+ self.determinize_size_limit.unwrap_or(None)
+ }
+
+ /// Overwrite the default configuration such that the options in `o` are
+ /// always used. If an option in `o` is not set, then the corresponding
+ /// option in `self` is used. If it's not set in `self` either, then it
+ /// remains not set.
+ pub(crate) fn overwrite(&self, o: Config) -> Config {
+ Config {
+ accelerate: o.accelerate.or(self.accelerate),
+ pre: o.pre.or_else(|| self.pre.clone()),
+ minimize: o.minimize.or(self.minimize),
+ match_kind: o.match_kind.or(self.match_kind),
+ start_kind: o.start_kind.or(self.start_kind),
+ starts_for_each_pattern: o
+ .starts_for_each_pattern
+ .or(self.starts_for_each_pattern),
+ byte_classes: o.byte_classes.or(self.byte_classes),
+ unicode_word_boundary: o
+ .unicode_word_boundary
+ .or(self.unicode_word_boundary),
+ quitset: o.quitset.or(self.quitset),
+ specialize_start_states: o
+ .specialize_start_states
+ .or(self.specialize_start_states),
+ dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
+ determinize_size_limit: o
+ .determinize_size_limit
+ .or(self.determinize_size_limit),
+ }
+ }
+}
+
+/// A builder for constructing a deterministic finite automaton from regular
+/// expressions.
+///
+/// This builder provides two main things:
+///
+/// 1. It provides a few different `build` routines for actually constructing
+/// a DFA from different kinds of inputs. The most convenient is
+/// [`Builder::build`], which builds a DFA directly from a pattern string. The
+/// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight
+/// from an NFA.
+/// 2. The builder permits configuring a number of things.
+/// [`Builder::configure`] is used with [`Config`] to configure aspects of
+/// the DFA and the construction process itself. [`Builder::syntax`] and
+/// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA
+/// construction, respectively. The syntax and thompson configurations only
+/// apply when building from a pattern string.
+///
+/// This builder always constructs a *single* DFA. As such, this builder
+/// can only be used to construct regexes that either detect the presence
+/// of a match or find the end location of a match. A single DFA cannot
+/// produce both the start and end of a match. For that information, use a
+/// [`Regex`](crate::dfa::regex::Regex), which can be similarly configured
+/// using [`regex::Builder`](crate::dfa::regex::Builder). The main reason to
+/// use a DFA directly is if the end location of a match is enough for your use
+/// case. Namely, a `Regex` will construct two DFAs instead of one, since a
+/// second reverse DFA is needed to find the start of a match.
+///
+/// Note that if one wants to build a sparse DFA, you must first build a dense
+/// DFA and convert that to a sparse DFA. There is no way to build a sparse
+/// DFA without first building a dense DFA.
+///
+/// # Example
+///
+/// This example shows how to build a minimized DFA that completely disables
+/// Unicode. That is:
+///
+/// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w`
+/// and `\b` are ASCII-only while `.` matches any byte except for `\n`
+/// (instead of any UTF-8 encoding of a Unicode scalar value except for
+/// `\n`). Things that are Unicode only, such as `\pL`, are not allowed.
+/// * The pattern itself is permitted to match invalid UTF-8. For example,
+/// things like `[^a]` that match any byte except for `a` are permitted.
+///
+/// ```
+/// use regex_automata::{
+/// dfa::{Automaton, dense},
+/// util::syntax,
+/// HalfMatch, Input,
+/// };
+///
+/// let dfa = dense::Builder::new()
+/// .configure(dense::Config::new().minimize(false))
+/// .syntax(syntax::Config::new().unicode(false).utf8(false))
+/// .build(r"foo[^b]ar.*")?;
+///
+/// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n";
+/// let expected = Some(HalfMatch::must(0, 10));
+/// let got = dfa.try_search_fwd(&Input::new(haystack))?;
+/// assert_eq!(expected, got);
+///
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+#[cfg(feature = "dfa-build")]
+#[derive(Clone, Debug)]
+pub struct Builder {
+ config: Config,
+ #[cfg(feature = "syntax")]
+ thompson: thompson::Compiler,
+}
+
+#[cfg(feature = "dfa-build")]
+impl Builder {
+ /// Create a new dense DFA builder with the default configuration.
+ pub fn new() -> Builder {
+ Builder {
+ config: Config::default(),
+ #[cfg(feature = "syntax")]
+ thompson: thompson::Compiler::new(),
+ }
+ }
+
+ /// Build a DFA from the given pattern.
+ ///
+ /// If there was a problem parsing or compiling the pattern, then an error
+ /// is returned.
+ #[cfg(feature = "syntax")]
+ pub fn build(&self, pattern: &str) -> Result<OwnedDFA, BuildError> {
+ self.build_many(&[pattern])
+ }
+
+ /// Build a DFA from the given patterns.
+ ///
+ /// When matches are returned, the pattern ID corresponds to the index of
+ /// the pattern in the slice given.
+ #[cfg(feature = "syntax")]
+ pub fn build_many<P: AsRef<str>>(
+ &self,
+ patterns: &[P],
+ ) -> Result<OwnedDFA, BuildError> {
+ let nfa = self
+ .thompson
+ .clone()
+ // We can always forcefully disable captures because DFAs do not
+ // support them.
+ .configure(
+ thompson::Config::new()
+ .which_captures(thompson::WhichCaptures::None),
+ )
+ .build_many(patterns)
+ .map_err(BuildError::nfa)?;
+ self.build_from_nfa(&nfa)
+ }
+
+ /// Build a DFA from the given NFA.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to build a DFA if you already have an NFA in
+ /// hand.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// dfa::{Automaton, dense},
+ /// nfa::thompson::NFA,
+ /// HalfMatch, Input,
+ /// };
+ ///
+ /// let haystack = "foo123bar".as_bytes();
+ ///
+ /// // This shows how to set non-default options for building an NFA.
+ /// let nfa = NFA::compiler()
+ /// .configure(NFA::config().shrink(true))
+ /// .build(r"[0-9]+")?;
+ /// let dfa = dense::Builder::new().build_from_nfa(&nfa)?;
+ /// let expected = Some(HalfMatch::must(0, 6));
+ /// let got = dfa.try_search_fwd(&Input::new(haystack))?;
+ /// assert_eq!(expected, got);
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn build_from_nfa(
+ &self,
+ nfa: &thompson::NFA,
+ ) -> Result<OwnedDFA, BuildError> {
+ let mut quitset = self.config.quitset.unwrap_or(ByteSet::empty());
+ if self.config.get_unicode_word_boundary()
+ && nfa.look_set_any().contains_word_unicode()
+ {
+ for b in 0x80..=0xFF {
+ quitset.add(b);
+ }
+ }
+ let classes = if !self.config.get_byte_classes() {
+ // DFAs will always use the equivalence class map, but enabling
+ // this option is useful for debugging. Namely, this will cause all
+ // transitions to be defined over their actual bytes instead of an
+ // opaque equivalence class identifier. The former is much easier
+ // to grok as a human.
+ ByteClasses::singletons()
+ } else {
+ let mut set = nfa.byte_class_set().clone();
+ // It is important to distinguish any "quit" bytes from all other
+ // bytes. Otherwise, a non-quit byte may end up in the same class
+ // as a quit byte, and thus cause the DFA stop when it shouldn't.
+ //
+ // Test case:
+ //
+ // regex-cli find hybrid regex -w @conn.json.1000x.log \
+ // '^#' '\b10\.55\.182\.100\b'
+ if !quitset.is_empty() {
+ set.add_set(&quitset);
+ }
+ set.byte_classes()
+ };
+
+ let mut dfa = DFA::initial(
+ classes,
+ nfa.pattern_len(),
+ self.config.get_starts(),
+ nfa.look_matcher(),
+ self.config.get_starts_for_each_pattern(),
+ self.config.get_prefilter().map(|p| p.clone()),
+ quitset,
+ Flags::from_nfa(&nfa),
+ )?;
+ determinize::Config::new()
+ .match_kind(self.config.get_match_kind())
+ .quit(quitset)
+ .dfa_size_limit(self.config.get_dfa_size_limit())
+ .determinize_size_limit(self.config.get_determinize_size_limit())
+ .run(nfa, &mut dfa)?;
+ if self.config.get_minimize() {
+ dfa.minimize();
+ }
+ if self.config.get_accelerate() {
+ dfa.accelerate();
+ }
+ // The state shuffling done before this point always assumes that start
+ // states should be marked as "special," even though it isn't the
+ // default configuration. State shuffling is complex enough as it is,
+ // so it's simpler to just "fix" our special state ID ranges to not
+ // include starting states after-the-fact.
+ if !self.config.get_specialize_start_states() {
+ dfa.special.set_no_special_start_states();
+ }
+ // Look for and set the universal starting states.
+ dfa.set_universal_starts();
+ Ok(dfa)
+ }
+
+ /// Apply the given dense DFA configuration options to this builder.
+ pub fn configure(&mut self, config: Config) -> &mut Builder {
+ self.config = self.config.overwrite(config);
+ self
+ }
+
+ /// Set the syntax configuration for this builder using
+ /// [`syntax::Config`](crate::util::syntax::Config).
+ ///
+ /// This permits setting things like case insensitivity, Unicode and multi
+ /// line mode.
+ ///
+ /// These settings only apply when constructing a DFA directly from a
+ /// pattern.
+ #[cfg(feature = "syntax")]
+ pub fn syntax(
+ &mut self,
+ config: crate::util::syntax::Config,
+ ) -> &mut Builder {
+ self.thompson.syntax(config);
+ self
+ }
+
+ /// Set the Thompson NFA configuration for this builder using
+ /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
+ ///
+ /// This permits setting things like whether the DFA should match the regex
+ /// in reverse or if additional time should be spent shrinking the size of
+ /// the NFA.
+ ///
+ /// These settings only apply when constructing a DFA directly from a
+ /// pattern.
+ #[cfg(feature = "syntax")]
+ pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
+ self.thompson.configure(config);
+ self
+ }
+}
+
+#[cfg(feature = "dfa-build")]
+impl Default for Builder {
+ fn default() -> Builder {
+ Builder::new()
+ }
+}
+
+/// A convenience alias for an owned DFA. We use this particular instantiation
+/// a lot in this crate, so it's worth giving it a name. This instantiation
+/// is commonly used for mutable APIs on the DFA while building it. The main
+/// reason for making DFAs generic is no_std support, and more generally,
+/// making it possible to load a DFA from an arbitrary slice of bytes.
+#[cfg(feature = "alloc")]
+pub(crate) type OwnedDFA = DFA<alloc::vec::Vec<u32>>;
+
+/// A dense table-based deterministic finite automaton (DFA).
+///
+/// All dense DFAs have one or more start states, zero or more match states
+/// and a transition table that maps the current state and the current byte
+/// of input to the next state. A DFA can use this information to implement
+/// fast searching. In particular, the use of a dense DFA generally makes the
+/// trade off that match speed is the most valuable characteristic, even if
+/// building the DFA may take significant time *and* space. (More concretely,
+/// building a DFA takes time and space that is exponential in the size of the
+/// pattern in the worst case.) As such, the processing of every byte of input
+/// is done with a small constant number of operations that does not vary with
+/// the pattern, its size or the size of the alphabet. If your needs don't line
+/// up with this trade off, then a dense DFA may not be an adequate solution to
+/// your problem.
+///
+/// In contrast, a [`sparse::DFA`] makes the opposite
+/// trade off: it uses less space but will execute a variable number of
+/// instructions per byte at match time, which makes it slower for matching.
+/// (Note that space usage is still exponential in the size of the pattern in
+/// the worst case.)
+///
+/// A DFA can be built using the default configuration via the
+/// [`DFA::new`] constructor. Otherwise, one can
+/// configure various aspects via [`dense::Builder`](Builder).
+///
+/// A single DFA fundamentally supports the following operations:
+///
+/// 1. Detection of a match.
+/// 2. Location of the end of a match.
+/// 3. In the case of a DFA with multiple patterns, which pattern matched is
+/// reported as well.
+///
+/// A notable absence from the above list of capabilities is the location of
+/// the *start* of a match. In order to provide both the start and end of
+/// a match, *two* DFAs are required. This functionality is provided by a
+/// [`Regex`](crate::dfa::regex::Regex).
+///
+/// # Type parameters
+///
+/// A `DFA` has one type parameter, `T`, which is used to represent state IDs,
+/// pattern IDs and accelerators. `T` is typically a `Vec<u32>` or a `&[u32]`.
+///
+/// # The `Automaton` trait
+///
+/// This type implements the [`Automaton`] trait, which means it can be used
+/// for searching. For example:
+///
+/// ```
+/// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+///
+/// let dfa = DFA::new("foo[0-9]+")?;
+/// let expected = HalfMatch::must(0, 8);
+/// assert_eq!(Some(expected), dfa.try_search_fwd(&Input::new("foo12345"))?);
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+#[derive(Clone)]
+pub struct DFA<T> {
+ /// The transition table for this DFA. This includes the transitions
+ /// themselves, along with the stride, number of states and the equivalence
+ /// class mapping.
+ tt: TransitionTable<T>,
+ /// The set of starting state identifiers for this DFA. The starting state
+ /// IDs act as pointers into the transition table. The specific starting
+ /// state chosen for each search is dependent on the context at which the
+ /// search begins.
+ st: StartTable<T>,
+ /// The set of match states and the patterns that match for each
+ /// corresponding match state.
+ ///
+ /// This structure is technically only needed because of support for
+ /// multi-regexes. Namely, multi-regexes require answering not just whether
+ /// a match exists, but _which_ patterns match. So we need to store the
+ /// matching pattern IDs for each match state. We do this even when there
+ /// is only one pattern for the sake of simplicity. In practice, this uses
+ /// up very little space for the case of one pattern.
+ ms: MatchStates<T>,
+ /// Information about which states are "special." Special states are states
+ /// that are dead, quit, matching, starting or accelerated. For more info,
+ /// see the docs for `Special`.
+ special: Special,
+ /// The accelerators for this DFA.
+ ///
+ /// If a state is accelerated, then there exist only a small number of
+ /// bytes that can cause the DFA to leave the state. This permits searching
+ /// to use optimized routines to find those specific bytes instead of using
+ /// the transition table.
+ ///
+ /// All accelerated states exist in a contiguous range in the DFA's
+ /// transition table. See dfa/special.rs for more details on how states are
+ /// arranged.
+ accels: Accels<T>,
+ /// Any prefilter attached to this DFA.
+ ///
+ /// Note that currently prefilters are not serialized. When deserializing
+ /// a DFA from bytes, this is always set to `None`.
+ pre: Option<Prefilter>,
+ /// The set of "quit" bytes for this DFA.
+ ///
+ /// This is only used when computing the start state for a particular
+ /// position in a haystack. Namely, in the case where there is a quit
+ /// byte immediately before the start of the search, this set needs to be
+ /// explicitly consulted. In all other cases, quit bytes are detected by
+ /// the DFA itself, by transitioning all quit bytes to a special "quit
+ /// state."
+ quitset: ByteSet,
+ /// Various flags describing the behavior of this DFA.
+ flags: Flags,
+}
+
+#[cfg(feature = "dfa-build")]
+impl OwnedDFA {
+ /// Parse the given regular expression using a default configuration and
+ /// return the corresponding DFA.
+ ///
+ /// If you want a non-default configuration, then use the
+ /// [`dense::Builder`](Builder) to set your own configuration.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
+ ///
+ /// let dfa = dense::DFA::new("foo[0-9]+bar")?;
+ /// let expected = Some(HalfMatch::must(0, 11));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[cfg(feature = "syntax")]
+ pub fn new(pattern: &str) -> Result<OwnedDFA, BuildError> {
+ Builder::new().build(pattern)
+ }
+
+ /// Parse the given regular expressions using a default configuration and
+ /// return the corresponding multi-DFA.
+ ///
+ /// If you want a non-default configuration, then use the
+ /// [`dense::Builder`](Builder) to set your own configuration.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
+ ///
+ /// let dfa = dense::DFA::new_many(&["[0-9]+", "[a-z]+"])?;
+ /// let expected = Some(HalfMatch::must(1, 3));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345bar"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[cfg(feature = "syntax")]
+ pub fn new_many<P: AsRef<str>>(
+ patterns: &[P],
+ ) -> Result<OwnedDFA, BuildError> {
+ Builder::new().build_many(patterns)
+ }
+}
+
+#[cfg(feature = "dfa-build")]
+impl OwnedDFA {
+ /// Create a new DFA that matches every input.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
+ ///
+ /// let dfa = dense::DFA::always_match()?;
+ ///
+ /// let expected = Some(HalfMatch::must(0, 0));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new(""))?);
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn always_match() -> Result<OwnedDFA, BuildError> {
+ let nfa = thompson::NFA::always_match();
+ Builder::new().build_from_nfa(&nfa)
+ }
+
+ /// Create a new DFA that never matches any input.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense}, Input};
+ ///
+ /// let dfa = dense::DFA::never_match()?;
+ /// assert_eq!(None, dfa.try_search_fwd(&Input::new(""))?);
+ /// assert_eq!(None, dfa.try_search_fwd(&Input::new("foo"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn never_match() -> Result<OwnedDFA, BuildError> {
+ let nfa = thompson::NFA::never_match();
+ Builder::new().build_from_nfa(&nfa)
+ }
+
+ /// Create an initial DFA with the given equivalence classes, pattern
+ /// length and whether anchored starting states are enabled for each
+ /// pattern. An initial DFA can be further mutated via determinization.
+ fn initial(
+ classes: ByteClasses,
+ pattern_len: usize,
+ starts: StartKind,
+ lookm: &LookMatcher,
+ starts_for_each_pattern: bool,
+ pre: Option<Prefilter>,
+ quitset: ByteSet,
+ flags: Flags,
+ ) -> Result<OwnedDFA, BuildError> {
+ let start_pattern_len =
+ if starts_for_each_pattern { Some(pattern_len) } else { None };
+ Ok(DFA {
+ tt: TransitionTable::minimal(classes),
+ st: StartTable::dead(starts, lookm, start_pattern_len)?,
+ ms: MatchStates::empty(pattern_len),
+ special: Special::new(),
+ accels: Accels::empty(),
+ pre,
+ quitset,
+ flags,
+ })
+ }
+}
+
+#[cfg(feature = "dfa-build")]
+impl DFA<&[u32]> {
+ /// Return a new default dense DFA compiler configuration.
+ ///
+ /// This is a convenience routine to avoid needing to import the [`Config`]
+ /// type when customizing the construction of a dense DFA.
+ pub fn config() -> Config {
+ Config::new()
+ }
+
+ /// Create a new dense DFA builder with the default configuration.
+ ///
+ /// This is a convenience routine to avoid needing to import the
+ /// [`Builder`] type in common cases.
+ pub fn builder() -> Builder {
+ Builder::new()
+ }
+}
+
+impl<T: AsRef<[u32]>> DFA<T> {
+ /// Cheaply return a borrowed version of this dense DFA. Specifically,
+ /// the DFA returned always uses `&[u32]` for its transition table.
+ pub fn as_ref(&self) -> DFA<&'_ [u32]> {
+ DFA {
+ tt: self.tt.as_ref(),
+ st: self.st.as_ref(),
+ ms: self.ms.as_ref(),
+ special: self.special,
+ accels: self.accels(),
+ pre: self.pre.clone(),
+ quitset: self.quitset,
+ flags: self.flags,
+ }
+ }
+
+ /// Return an owned version of this sparse DFA. Specifically, the DFA
+ /// returned always uses `Vec<u32>` for its transition table.
+ ///
+ /// Effectively, this returns a dense DFA whose transition table lives on
+ /// the heap.
+ #[cfg(feature = "alloc")]
+ pub fn to_owned(&self) -> OwnedDFA {
+ DFA {
+ tt: self.tt.to_owned(),
+ st: self.st.to_owned(),
+ ms: self.ms.to_owned(),
+ special: self.special,
+ accels: self.accels().to_owned(),
+ pre: self.pre.clone(),
+ quitset: self.quitset,
+ flags: self.flags,
+ }
+ }
+
+ /// Returns the starting state configuration for this DFA.
+ ///
+ /// The default is [`StartKind::Both`], which means the DFA supports both
+ /// unanchored and anchored searches. However, this can generally lead to
+ /// bigger DFAs. Therefore, a DFA might be compiled with support for just
+ /// unanchored or anchored searches. In that case, running a search with
+ /// an unsupported configuration will panic.
+ pub fn start_kind(&self) -> StartKind {
+ self.st.kind
+ }
+
+ /// Returns the start byte map used for computing the `Start` configuration
+ /// at the beginning of a search.
+ pub(crate) fn start_map(&self) -> &StartByteMap {
+ &self.st.start_map
+ }
+
+ /// Returns true only if this DFA has starting states for each pattern.
+ ///
+ /// When a DFA has starting states for each pattern, then a search with the
+ /// DFA can be configured to only look for anchored matches of a specific
+ /// pattern. Specifically, APIs like [`Automaton::try_search_fwd`] can
+ /// accept a non-None `pattern_id` if and only if this method returns true.
+ /// Otherwise, calling `try_search_fwd` will panic.
+ ///
+ /// Note that if the DFA has no patterns, this always returns false.
+ pub fn starts_for_each_pattern(&self) -> bool {
+ self.st.pattern_len.is_some()
+ }
+
+ /// Returns the equivalence classes that make up the alphabet for this DFA.
+ ///
+ /// Unless [`Config::byte_classes`] was disabled, it is possible that
+ /// multiple distinct bytes are grouped into the same equivalence class
+ /// if it is impossible for them to discriminate between a match and a
+ /// non-match. This has the effect of reducing the overall alphabet size
+ /// and in turn potentially substantially reducing the size of the DFA's
+ /// transition table.
+ ///
+ /// The downside of using equivalence classes like this is that every state
+ /// transition will automatically use this map to convert an arbitrary
+ /// byte to its corresponding equivalence class. In practice this has a
+ /// negligible impact on performance.
+ pub fn byte_classes(&self) -> &ByteClasses {
+ &self.tt.classes
+ }
+
+ /// Returns the total number of elements in the alphabet for this DFA.
+ ///
+ /// That is, this returns the total number of transitions that each state
+ /// in this DFA must have. Typically, a normal byte oriented DFA would
+ /// always have an alphabet size of 256, corresponding to the number of
+ /// unique values in a single byte. However, this implementation has two
+ /// peculiarities that impact the alphabet length:
+ ///
+ /// * Every state has a special "EOI" transition that is only followed
+ /// after the end of some haystack is reached. This EOI transition is
+ /// necessary to account for one byte of look-ahead when implementing
+ /// things like `\b` and `$`.
+ /// * Bytes are grouped into equivalence classes such that no two bytes in
+ /// the same class can distinguish a match from a non-match. For example,
+ /// in the regex `^[a-z]+$`, the ASCII bytes `a-z` could all be in the
+ /// same equivalence class. This leads to a massive space savings.
+ ///
+ /// Note though that the alphabet length does _not_ necessarily equal the
+ /// total stride space taken up by a single DFA state in the transition
+ /// table. Namely, for performance reasons, the stride is always the
+ /// smallest power of two that is greater than or equal to the alphabet
+ /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are
+ /// often more useful. The alphabet length is typically useful only for
+ /// informational purposes.
+ pub fn alphabet_len(&self) -> usize {
+ self.tt.alphabet_len()
+ }
+
+ /// Returns the total stride for every state in this DFA, expressed as the
+ /// exponent of a power of 2. The stride is the amount of space each state
+ /// takes up in the transition table, expressed as a number of transitions.
+ /// (Unused transitions map to dead states.)
+ ///
+ /// The stride of a DFA is always equivalent to the smallest power of 2
+ /// that is greater than or equal to the DFA's alphabet length. This
+ /// definition uses extra space, but permits faster translation between
+ /// premultiplied state identifiers and contiguous indices (by using shifts
+ /// instead of relying on integer division).
+ ///
+ /// For example, if the DFA's stride is 16 transitions, then its `stride2`
+ /// is `4` since `2^4 = 16`.
+ ///
+ /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
+ /// while the maximum `stride2` value is `9` (corresponding to a stride of
+ /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
+ /// when accounting for the special EOI transition. However, an alphabet
+ /// length of that size is exceptionally rare since the alphabet is shrunk
+ /// into equivalence classes.
+ pub fn stride2(&self) -> usize {
+ self.tt.stride2
+ }
+
+ /// Returns the total stride for every state in this DFA. This corresponds
+ /// to the total number of transitions used by each state in this DFA's
+ /// transition table.
+ ///
+ /// Please see [`DFA::stride2`] for more information. In particular, this
+ /// returns the stride as the number of transitions, where as `stride2`
+ /// returns it as the exponent of a power of 2.
+ pub fn stride(&self) -> usize {
+ self.tt.stride()
+ }
+
+ /// Returns the memory usage, in bytes, of this DFA.
+ ///
+ /// The memory usage is computed based on the number of bytes used to
+ /// represent this DFA.
+ ///
+ /// This does **not** include the stack size used up by this DFA. To
+ /// compute that, use `std::mem::size_of::<dense::DFA>()`.
+ pub fn memory_usage(&self) -> usize {
+ self.tt.memory_usage()
+ + self.st.memory_usage()
+ + self.ms.memory_usage()
+ + self.accels.memory_usage()
+ }
+}
+
+/// Routines for converting a dense DFA to other representations, such as
+/// sparse DFAs or raw bytes suitable for persistent storage.
+impl<T: AsRef<[u32]>> DFA<T> {
+ /// Convert this dense DFA to a sparse DFA.
+ ///
+ /// If a `StateID` is too small to represent all states in the sparse
+ /// DFA, then this returns an error. In most cases, if a dense DFA is
+ /// constructable with `StateID` then a sparse DFA will be as well.
+ /// However, it is not guaranteed.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense}, HalfMatch, Input};
+ ///
+ /// let dense = dense::DFA::new("foo[0-9]+")?;
+ /// let sparse = dense.to_sparse()?;
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, sparse.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[cfg(feature = "dfa-build")]
+ pub fn to_sparse(&self) -> Result<sparse::DFA<Vec<u8>>, BuildError> {
+ sparse::DFA::from_dense(self)
+ }
+
+ /// Serialize this DFA as raw bytes to a `Vec<u8>` in little endian
+ /// format. Upon success, the `Vec<u8>` and the initial padding length are
+ /// returned.
+ ///
+ /// The written bytes are guaranteed to be deserialized correctly and
+ /// without errors in a semver compatible release of this crate by a
+ /// `DFA`'s deserialization APIs (assuming all other criteria for the
+ /// deserialization APIs has been satisfied):
+ ///
+ /// * [`DFA::from_bytes`]
+ /// * [`DFA::from_bytes_unchecked`]
+ ///
+ /// The padding returned is non-zero if the returned `Vec<u8>` starts at
+ /// an address that does not have the same alignment as `u32`. The padding
+ /// corresponds to the number of leading bytes written to the returned
+ /// `Vec<u8>`.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to serialize and deserialize a DFA:
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+ ///
+ /// // Compile our original DFA.
+ /// let original_dfa = DFA::new("foo[0-9]+")?;
+ ///
+ /// // N.B. We use native endianness here to make the example work, but
+ /// // using to_bytes_little_endian would work on a little endian target.
+ /// let (buf, _) = original_dfa.to_bytes_native_endian();
+ /// // Even if buf has initial padding, DFA::from_bytes will automatically
+ /// // ignore it.
+ /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[cfg(feature = "dfa-build")]
+ pub fn to_bytes_little_endian(&self) -> (Vec<u8>, usize) {
+ self.to_bytes::<wire::LE>()
+ }
+
+ /// Serialize this DFA as raw bytes to a `Vec<u8>` in big endian
+ /// format. Upon success, the `Vec<u8>` and the initial padding length are
+ /// returned.
+ ///
+ /// The written bytes are guaranteed to be deserialized correctly and
+ /// without errors in a semver compatible release of this crate by a
+ /// `DFA`'s deserialization APIs (assuming all other criteria for the
+ /// deserialization APIs has been satisfied):
+ ///
+ /// * [`DFA::from_bytes`]
+ /// * [`DFA::from_bytes_unchecked`]
+ ///
+ /// The padding returned is non-zero if the returned `Vec<u8>` starts at
+ /// an address that does not have the same alignment as `u32`. The padding
+ /// corresponds to the number of leading bytes written to the returned
+ /// `Vec<u8>`.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to serialize and deserialize a DFA:
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+ ///
+ /// // Compile our original DFA.
+ /// let original_dfa = DFA::new("foo[0-9]+")?;
+ ///
+ /// // N.B. We use native endianness here to make the example work, but
+ /// // using to_bytes_big_endian would work on a big endian target.
+ /// let (buf, _) = original_dfa.to_bytes_native_endian();
+ /// // Even if buf has initial padding, DFA::from_bytes will automatically
+ /// // ignore it.
+ /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[cfg(feature = "dfa-build")]
+ pub fn to_bytes_big_endian(&self) -> (Vec<u8>, usize) {
+ self.to_bytes::<wire::BE>()
+ }
+
+ /// Serialize this DFA as raw bytes to a `Vec<u8>` in native endian
+ /// format. Upon success, the `Vec<u8>` and the initial padding length are
+ /// returned.
+ ///
+ /// The written bytes are guaranteed to be deserialized correctly and
+ /// without errors in a semver compatible release of this crate by a
+ /// `DFA`'s deserialization APIs (assuming all other criteria for the
+ /// deserialization APIs has been satisfied):
+ ///
+ /// * [`DFA::from_bytes`]
+ /// * [`DFA::from_bytes_unchecked`]
+ ///
+ /// The padding returned is non-zero if the returned `Vec<u8>` starts at
+ /// an address that does not have the same alignment as `u32`. The padding
+ /// corresponds to the number of leading bytes written to the returned
+ /// `Vec<u8>`.
+ ///
+ /// Generally speaking, native endian format should only be used when
+ /// you know that the target you're compiling the DFA for matches the
+ /// endianness of the target on which you're compiling DFA. For example,
+ /// if serialization and deserialization happen in the same process or on
+ /// the same machine. Otherwise, when serializing a DFA for use in a
+ /// portable environment, you'll almost certainly want to serialize _both_
+ /// a little endian and a big endian version and then load the correct one
+ /// based on the target's configuration.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to serialize and deserialize a DFA:
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+ ///
+ /// // Compile our original DFA.
+ /// let original_dfa = DFA::new("foo[0-9]+")?;
+ ///
+ /// let (buf, _) = original_dfa.to_bytes_native_endian();
+ /// // Even if buf has initial padding, DFA::from_bytes will automatically
+ /// // ignore it.
+ /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf)?.0;
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[cfg(feature = "dfa-build")]
+ pub fn to_bytes_native_endian(&self) -> (Vec<u8>, usize) {
+ self.to_bytes::<wire::NE>()
+ }
+
+ /// The implementation of the public `to_bytes` serialization methods,
+ /// which is generic over endianness.
+ #[cfg(feature = "dfa-build")]
+ fn to_bytes<E: Endian>(&self) -> (Vec<u8>, usize) {
+ let len = self.write_to_len();
+ let (mut buf, padding) = wire::alloc_aligned_buffer::<u32>(len);
+ // This should always succeed since the only possible serialization
+ // error is providing a buffer that's too small, but we've ensured that
+ // `buf` is big enough here.
+ self.as_ref().write_to::<E>(&mut buf[padding..]).unwrap();
+ (buf, padding)
+ }
+
+ /// Serialize this DFA as raw bytes to the given slice, in little endian
+ /// format. Upon success, the total number of bytes written to `dst` is
+ /// returned.
+ ///
+ /// The written bytes are guaranteed to be deserialized correctly and
+ /// without errors in a semver compatible release of this crate by a
+ /// `DFA`'s deserialization APIs (assuming all other criteria for the
+ /// deserialization APIs has been satisfied):
+ ///
+ /// * [`DFA::from_bytes`]
+ /// * [`DFA::from_bytes_unchecked`]
+ ///
+ /// Note that unlike the various `to_byte_*` routines, this does not write
+ /// any padding. Callers are responsible for handling alignment correctly.
+ ///
+ /// # Errors
+ ///
+ /// This returns an error if the given destination slice is not big enough
+ /// to contain the full serialized DFA. If an error occurs, then nothing
+ /// is written to `dst`.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to serialize and deserialize a DFA without
+ /// dynamic memory allocation.
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+ ///
+ /// // Compile our original DFA.
+ /// let original_dfa = DFA::new("foo[0-9]+")?;
+ ///
+ /// // Create a 4KB buffer on the stack to store our serialized DFA. We
+ /// // need to use a special type to force the alignment of our [u8; N]
+ /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
+ /// // the DFA may fail because of an alignment mismatch.
+ /// #[repr(C)]
+ /// struct Aligned<B: ?Sized> {
+ /// _align: [u32; 0],
+ /// bytes: B,
+ /// }
+ /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
+ /// // N.B. We use native endianness here to make the example work, but
+ /// // using write_to_little_endian would work on a little endian target.
+ /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
+ /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn write_to_little_endian(
+ &self,
+ dst: &mut [u8],
+ ) -> Result<usize, SerializeError> {
+ self.as_ref().write_to::<wire::LE>(dst)
+ }
+
+ /// Serialize this DFA as raw bytes to the given slice, in big endian
+ /// format. Upon success, the total number of bytes written to `dst` is
+ /// returned.
+ ///
+ /// The written bytes are guaranteed to be deserialized correctly and
+ /// without errors in a semver compatible release of this crate by a
+ /// `DFA`'s deserialization APIs (assuming all other criteria for the
+ /// deserialization APIs has been satisfied):
+ ///
+ /// * [`DFA::from_bytes`]
+ /// * [`DFA::from_bytes_unchecked`]
+ ///
+ /// Note that unlike the various `to_byte_*` routines, this does not write
+ /// any padding. Callers are responsible for handling alignment correctly.
+ ///
+ /// # Errors
+ ///
+ /// This returns an error if the given destination slice is not big enough
+ /// to contain the full serialized DFA. If an error occurs, then nothing
+ /// is written to `dst`.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to serialize and deserialize a DFA without
+ /// dynamic memory allocation.
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+ ///
+ /// // Compile our original DFA.
+ /// let original_dfa = DFA::new("foo[0-9]+")?;
+ ///
+ /// // Create a 4KB buffer on the stack to store our serialized DFA. We
+ /// // need to use a special type to force the alignment of our [u8; N]
+ /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
+ /// // the DFA may fail because of an alignment mismatch.
+ /// #[repr(C)]
+ /// struct Aligned<B: ?Sized> {
+ /// _align: [u32; 0],
+ /// bytes: B,
+ /// }
+ /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
+ /// // N.B. We use native endianness here to make the example work, but
+ /// // using write_to_big_endian would work on a big endian target.
+ /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
+ /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn write_to_big_endian(
+ &self,
+ dst: &mut [u8],
+ ) -> Result<usize, SerializeError> {
+ self.as_ref().write_to::<wire::BE>(dst)
+ }
+
+ /// Serialize this DFA as raw bytes to the given slice, in native endian
+ /// format. Upon success, the total number of bytes written to `dst` is
+ /// returned.
+ ///
+ /// The written bytes are guaranteed to be deserialized correctly and
+ /// without errors in a semver compatible release of this crate by a
+ /// `DFA`'s deserialization APIs (assuming all other criteria for the
+ /// deserialization APIs has been satisfied):
+ ///
+ /// * [`DFA::from_bytes`]
+ /// * [`DFA::from_bytes_unchecked`]
+ ///
+ /// Generally speaking, native endian format should only be used when
+ /// you know that the target you're compiling the DFA for matches the
+ /// endianness of the target on which you're compiling DFA. For example,
+ /// if serialization and deserialization happen in the same process or on
+ /// the same machine. Otherwise, when serializing a DFA for use in a
+ /// portable environment, you'll almost certainly want to serialize _both_
+ /// a little endian and a big endian version and then load the correct one
+ /// based on the target's configuration.
+ ///
+ /// Note that unlike the various `to_byte_*` routines, this does not write
+ /// any padding. Callers are responsible for handling alignment correctly.
+ ///
+ /// # Errors
+ ///
+ /// This returns an error if the given destination slice is not big enough
+ /// to contain the full serialized DFA. If an error occurs, then nothing
+ /// is written to `dst`.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to serialize and deserialize a DFA without
+ /// dynamic memory allocation.
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+ ///
+ /// // Compile our original DFA.
+ /// let original_dfa = DFA::new("foo[0-9]+")?;
+ ///
+ /// // Create a 4KB buffer on the stack to store our serialized DFA. We
+ /// // need to use a special type to force the alignment of our [u8; N]
+ /// // array to be aligned to a 4 byte boundary. Otherwise, deserializing
+ /// // the DFA may fail because of an alignment mismatch.
+ /// #[repr(C)]
+ /// struct Aligned<B: ?Sized> {
+ /// _align: [u32; 0],
+ /// bytes: B,
+ /// }
+ /// let mut buf = Aligned { _align: [], bytes: [0u8; 4 * (1<<10)] };
+ /// let written = original_dfa.write_to_native_endian(&mut buf.bytes)?;
+ /// let dfa: DFA<&[u32]> = DFA::from_bytes(&buf.bytes[..written])?.0;
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn write_to_native_endian(
+ &self,
+ dst: &mut [u8],
+ ) -> Result<usize, SerializeError> {
+ self.as_ref().write_to::<wire::NE>(dst)
+ }
+
+ /// Return the total number of bytes required to serialize this DFA.
+ ///
+ /// This is useful for determining the size of the buffer required to pass
+ /// to one of the serialization routines:
+ ///
+ /// * [`DFA::write_to_little_endian`]
+ /// * [`DFA::write_to_big_endian`]
+ /// * [`DFA::write_to_native_endian`]
+ ///
+ /// Passing a buffer smaller than the size returned by this method will
+ /// result in a serialization error. Serialization routines are guaranteed
+ /// to succeed when the buffer is big enough.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to dynamically allocate enough room to serialize
+ /// a DFA.
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+ ///
+ /// let original_dfa = DFA::new("foo[0-9]+")?;
+ ///
+ /// let mut buf = vec![0; original_dfa.write_to_len()];
+ /// // This is guaranteed to succeed, because the only serialization error
+ /// // that can occur is when the provided buffer is too small. But
+ /// // write_to_len guarantees a correct size.
+ /// let written = original_dfa.write_to_native_endian(&mut buf).unwrap();
+ /// // But this is not guaranteed to succeed! In particular,
+ /// // deserialization requires proper alignment for &[u32], but our buffer
+ /// // was allocated as a &[u8] whose required alignment is smaller than
+ /// // &[u32]. However, it's likely to work in practice because of how most
+ /// // allocators work. So if you write code like this, make sure to either
+ /// // handle the error correctly and/or run it under Miri since Miri will
+ /// // likely provoke the error by returning Vec<u8> buffers with alignment
+ /// // less than &[u32].
+ /// let dfa: DFA<&[u32]> = match DFA::from_bytes(&buf[..written]) {
+ /// // As mentioned above, it is legal for an error to be returned
+ /// // here. It is quite difficult to get a Vec<u8> with a guaranteed
+ /// // alignment equivalent to Vec<u32>.
+ /// Err(_) => return Ok(()),
+ /// Ok((dfa, _)) => dfa,
+ /// };
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// Note that this example isn't actually guaranteed to work! In
+ /// particular, if `buf` is not aligned to a 4-byte boundary, then the
+ /// `DFA::from_bytes` call will fail. If you need this to work, then you
+ /// either need to deal with adding some initial padding yourself, or use
+ /// one of the `to_bytes` methods, which will do it for you.
+ pub fn write_to_len(&self) -> usize {
+ wire::write_label_len(LABEL)
+ + wire::write_endianness_check_len()
+ + wire::write_version_len()
+ + size_of::<u32>() // unused, intended for future flexibility
+ + self.flags.write_to_len()
+ + self.tt.write_to_len()
+ + self.st.write_to_len()
+ + self.ms.write_to_len()
+ + self.special.write_to_len()
+ + self.accels.write_to_len()
+ + self.quitset.write_to_len()
+ }
+}
+
+impl<'a> DFA<&'a [u32]> {
+ /// Safely deserialize a DFA with a specific state identifier
+ /// representation. Upon success, this returns both the deserialized DFA
+ /// and the number of bytes read from the given slice. Namely, the contents
+ /// of the slice beyond the DFA are not read.
+ ///
+ /// Deserializing a DFA using this routine will never allocate heap memory.
+ /// For safety purposes, the DFA's transition table will be verified such
+ /// that every transition points to a valid state. If this verification is
+ /// too costly, then a [`DFA::from_bytes_unchecked`] API is provided, which
+ /// will always execute in constant time.
+ ///
+ /// The bytes given must be generated by one of the serialization APIs
+ /// of a `DFA` using a semver compatible release of this crate. Those
+ /// include:
+ ///
+ /// * [`DFA::to_bytes_little_endian`]
+ /// * [`DFA::to_bytes_big_endian`]
+ /// * [`DFA::to_bytes_native_endian`]
+ /// * [`DFA::write_to_little_endian`]
+ /// * [`DFA::write_to_big_endian`]
+ /// * [`DFA::write_to_native_endian`]
+ ///
+ /// The `to_bytes` methods allocate and return a `Vec<u8>` for you, along
+ /// with handling alignment correctly. The `write_to` methods do not
+ /// allocate and write to an existing slice (which may be on the stack).
+ /// Since deserialization always uses the native endianness of the target
+ /// platform, the serialization API you use should match the endianness of
+ /// the target platform. (It's often a good idea to generate serialized
+ /// DFAs for both forms of endianness and then load the correct one based
+ /// on endianness.)
+ ///
+ /// # Errors
+ ///
+ /// Generally speaking, it's easier to state the conditions in which an
+ /// error is _not_ returned. All of the following must be true:
+ ///
+ /// * The bytes given must be produced by one of the serialization APIs
+ /// on this DFA, as mentioned above.
+ /// * The endianness of the target platform matches the endianness used to
+ /// serialized the provided DFA.
+ /// * The slice given must have the same alignment as `u32`.
+ ///
+ /// If any of the above are not true, then an error will be returned.
+ ///
+ /// # Panics
+ ///
+ /// This routine will never panic for any input.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to serialize a DFA to raw bytes, deserialize it
+ /// and then use it for searching.
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+ ///
+ /// let initial = DFA::new("foo[0-9]+")?;
+ /// let (bytes, _) = initial.to_bytes_native_endian();
+ /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes)?.0;
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// # Example: dealing with alignment and padding
+ ///
+ /// In the above example, we used the `to_bytes_native_endian` method to
+ /// serialize a DFA, but we ignored part of its return value corresponding
+ /// to padding added to the beginning of the serialized DFA. This is OK
+ /// because deserialization will skip this initial padding. What matters
+ /// is that the address immediately following the padding has an alignment
+ /// that matches `u32`. That is, the following is an equivalent but
+ /// alternative way to write the above example:
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+ ///
+ /// let initial = DFA::new("foo[0-9]+")?;
+ /// // Serialization returns the number of leading padding bytes added to
+ /// // the returned Vec<u8>.
+ /// let (bytes, pad) = initial.to_bytes_native_endian();
+ /// let dfa: DFA<&[u32]> = DFA::from_bytes(&bytes[pad..])?.0;
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// This padding is necessary because Rust's standard library does
+ /// not expose any safe and robust way of creating a `Vec<u8>` with a
+ /// guaranteed alignment other than 1. Now, in practice, the underlying
+ /// allocator is likely to provide a `Vec<u8>` that meets our alignment
+ /// requirements, which means `pad` is zero in practice most of the time.
+ ///
+ /// The purpose of exposing the padding like this is flexibility for the
+ /// caller. For example, if one wants to embed a serialized DFA into a
+ /// compiled program, then it's important to guarantee that it starts at a
+ /// `u32`-aligned address. The simplest way to do this is to discard the
+ /// padding bytes and set it up so that the serialized DFA itself begins at
+ /// a properly aligned address. We can show this in two parts. The first
+ /// part is serializing the DFA to a file:
+ ///
+ /// ```no_run
+ /// use regex_automata::dfa::dense::DFA;
+ ///
+ /// let dfa = DFA::new("foo[0-9]+")?;
+ ///
+ /// let (bytes, pad) = dfa.to_bytes_big_endian();
+ /// // Write the contents of the DFA *without* the initial padding.
+ /// std::fs::write("foo.bigendian.dfa", &bytes[pad..])?;
+ ///
+ /// // Do it again, but this time for little endian.
+ /// let (bytes, pad) = dfa.to_bytes_little_endian();
+ /// std::fs::write("foo.littleendian.dfa", &bytes[pad..])?;
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// And now the second part is embedding the DFA into the compiled program
+ /// and deserializing it at runtime on first use. We use conditional
+ /// compilation to choose the correct endianness.
+ ///
+ /// ```no_run
+ /// use regex_automata::{
+ /// dfa::{Automaton, dense::DFA},
+ /// util::{lazy::Lazy, wire::AlignAs},
+ /// HalfMatch, Input,
+ /// };
+ ///
+ /// // This crate provides its own "lazy" type, kind of like
+ /// // lazy_static! or once_cell::sync::Lazy. But it works in no-alloc
+ /// // no-std environments and let's us write this using completely
+ /// // safe code.
+ /// static RE: Lazy<DFA<&'static [u32]>> = Lazy::new(|| {
+ /// # const _: &str = stringify! {
+ /// // This assignment is made possible (implicitly) via the
+ /// // CoerceUnsized trait. This is what guarantees that our
+ /// // bytes are stored in memory on a 4 byte boundary. You
+ /// // *must* do this or something equivalent for correct
+ /// // deserialization.
+ /// static ALIGNED: &AlignAs<[u8], u32> = &AlignAs {
+ /// _align: [],
+ /// #[cfg(target_endian = "big")]
+ /// bytes: *include_bytes!("foo.bigendian.dfa"),
+ /// #[cfg(target_endian = "little")]
+ /// bytes: *include_bytes!("foo.littleendian.dfa"),
+ /// };
+ /// # };
+ /// # static ALIGNED: &AlignAs<[u8], u32> = &AlignAs {
+ /// # _align: [],
+ /// # bytes: [],
+ /// # };
+ ///
+ /// let (dfa, _) = DFA::from_bytes(&ALIGNED.bytes)
+ /// .expect("serialized DFA should be valid");
+ /// dfa
+ /// });
+ ///
+ /// let expected = Ok(Some(HalfMatch::must(0, 8)));
+ /// assert_eq!(expected, RE.try_search_fwd(&Input::new("foo12345")));
+ /// ```
+ ///
+ /// An alternative to [`util::lazy::Lazy`](crate::util::lazy::Lazy)
+ /// is [`lazy_static`](https://crates.io/crates/lazy_static) or
+ /// [`once_cell`](https://crates.io/crates/once_cell), which provide
+ /// stronger guarantees (like the initialization function only being
+ /// executed once). And `once_cell` in particular provides a more
+ /// expressive API. But a `Lazy` value from this crate is likely just fine
+ /// in most circumstances.
+ ///
+ /// Note that regardless of which initialization method you use, you
+ /// will still need to use the [`AlignAs`](crate::util::wire::AlignAs)
+ /// trick above to force correct alignment, but this is safe to do and
+ /// `from_bytes` will return an error if you get it wrong.
+ pub fn from_bytes(
+ slice: &'a [u8],
+ ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
+ // SAFETY: This is safe because we validate the transition table, start
+ // table, match states and accelerators below. If any validation fails,
+ // then we return an error.
+ let (dfa, nread) = unsafe { DFA::from_bytes_unchecked(slice)? };
+ dfa.tt.validate(&dfa.special)?;
+ dfa.st.validate(&dfa.tt)?;
+ dfa.ms.validate(&dfa)?;
+ dfa.accels.validate()?;
+ // N.B. dfa.special doesn't have a way to do unchecked deserialization,
+ // so it has already been validated.
+ Ok((dfa, nread))
+ }
+
+ /// Deserialize a DFA with a specific state identifier representation in
+ /// constant time by omitting the verification of the validity of the
+ /// transition table and other data inside the DFA.
+ ///
+ /// This is just like [`DFA::from_bytes`], except it can potentially return
+ /// a DFA that exhibits undefined behavior if its transition table contains
+ /// invalid state identifiers.
+ ///
+ /// This routine is useful if you need to deserialize a DFA cheaply
+ /// and cannot afford the transition table validation performed by
+ /// `from_bytes`.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{dfa::{Automaton, dense::DFA}, HalfMatch, Input};
+ ///
+ /// let initial = DFA::new("foo[0-9]+")?;
+ /// let (bytes, _) = initial.to_bytes_native_endian();
+ /// // SAFETY: This is guaranteed to be safe since the bytes given come
+ /// // directly from a compatible serialization routine.
+ /// let dfa: DFA<&[u32]> = unsafe { DFA::from_bytes_unchecked(&bytes)?.0 };
+ ///
+ /// let expected = Some(HalfMatch::must(0, 8));
+ /// assert_eq!(expected, dfa.try_search_fwd(&Input::new("foo12345"))?);
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub unsafe fn from_bytes_unchecked(
+ slice: &'a [u8],
+ ) -> Result<(DFA<&'a [u32]>, usize), DeserializeError> {
+ let mut nr = 0;
+
+ nr += wire::skip_initial_padding(slice);
+ wire::check_alignment::<StateID>(&slice[nr..])?;
+ nr += wire::read_label(&slice[nr..], LABEL)?;
+ nr += wire::read_endianness_check(&slice[nr..])?;
+ nr += wire::read_version(&slice[nr..], VERSION)?;
+
+ let _unused = wire::try_read_u32(&slice[nr..], "unused space")?;
+ nr += size_of::<u32>();
+
+ let (flags, nread) = Flags::from_bytes(&slice[nr..])?;
+ nr += nread;
+
+ let (tt, nread) = TransitionTable::from_bytes_unchecked(&slice[nr..])?;
+ nr += nread;
+
+ let (st, nread) = StartTable::from_bytes_unchecked(&slice[nr..])?;
+ nr += nread;
+
+ let (ms, nread) = MatchStates::from_bytes_unchecked(&slice[nr..])?;
+ nr += nread;
+
+ let (special, nread) = Special::from_bytes(&slice[nr..])?;
+ nr += nread;
+ special.validate_state_len(tt.len(), tt.stride2)?;
+
+ let (accels, nread) = Accels::from_bytes_unchecked(&slice[nr..])?;
+ nr += nread;
+
+ let (quitset, nread) = ByteSet::from_bytes(&slice[nr..])?;
+ nr += nread;
+
+ // Prefilters don't support serialization, so they're always absent.
+ let pre = None;
+ Ok((DFA { tt, st, ms, special, accels, pre, quitset, flags }, nr))
+ }
+
+ /// The implementation of the public `write_to` serialization methods,
+ /// which is generic over endianness.
+ ///
+ /// This is defined only for &[u32] to reduce binary size/compilation time.
+ fn write_to<E: Endian>(
+ &self,
+ mut dst: &mut [u8],
+ ) -> Result<usize, SerializeError> {
+ let nwrite = self.write_to_len();
+ if dst.len() < nwrite {
+ return Err(SerializeError::buffer_too_small("dense DFA"));
+ }
+ dst = &mut dst[..nwrite];
+
+ let mut nw = 0;
+ nw += wire::write_label(LABEL, &mut dst[nw..])?;
+ nw += wire::write_endianness_check::<E>(&mut dst[nw..])?;
+ nw += wire::write_version::<E>(VERSION, &mut dst[nw..])?;
+ nw += {
+ // Currently unused, intended for future flexibility
+ E::write_u32(0, &mut dst[nw..]);
+ size_of::<u32>()
+ };
+ nw += self.flags.write_to::<E>(&mut dst[nw..])?;
+ nw += self.tt.write_to::<E>(&mut dst[nw..])?;
+ nw += self.st.write_to::<E>(&mut dst[nw..])?;
+ nw += self.ms.write_to::<E>(&mut dst[nw..])?;
+ nw += self.special.write_to::<E>(&mut dst[nw..])?;
+ nw += self.accels.write_to::<E>(&mut dst[nw..])?;
+ nw += self.quitset.write_to::<E>(&mut dst[nw..])?;
+ Ok(nw)
+ }
+}
+
+// The following methods implement mutable routines on the internal
+// representation of a DFA. As such, we must fix the first type parameter to a
+// `Vec<u32>` since a generic `T: AsRef<[u32]>` does not permit mutation. We
+// can get away with this because these methods are internal to the crate and
+// are exclusively used during construction of the DFA.
+#[cfg(feature = "dfa-build")]
+impl OwnedDFA {
+ /// Add a start state of this DFA.
+ pub(crate) fn set_start_state(
+ &mut self,
+ anchored: Anchored,
+ start: Start,
+ id: StateID,
+ ) {
+ assert!(self.tt.is_valid(id), "invalid start state");
+ self.st.set_start(anchored, start, id);
+ }
+
+ /// Set the given transition to this DFA. Both the `from` and `to` states
+ /// must already exist.
+ pub(crate) fn set_transition(
+ &mut self,
+ from: StateID,
+ byte: alphabet::Unit,
+ to: StateID,
+ ) {
+ self.tt.set(from, byte, to);
+ }
+
+ /// An an empty state (a state where all transitions lead to a dead state)
+ /// and return its identifier. The identifier returned is guaranteed to
+ /// not point to any other existing state.
+ ///
+ /// If adding a state would exceed `StateID::LIMIT`, then this returns an
+ /// error.
+ pub(crate) fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
+ self.tt.add_empty_state()
+ }
+
+ /// Swap the two states given in the transition table.
+ ///
+ /// This routine does not do anything to check the correctness of this
+ /// swap. Callers must ensure that other states pointing to id1 and id2 are
+ /// updated appropriately.
+ pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) {
+ self.tt.swap(id1, id2);
+ }
+
+ /// Remap all of the state identifiers in this DFA according to the map
+ /// function given. This includes all transitions and all starting state
+ /// identifiers.
+ pub(crate) fn remap(&mut self, map: impl Fn(StateID) -> StateID) {
+ // We could loop over each state ID and call 'remap_state' here, but
+ // this is more direct: just map every transition directly. This
+ // technically might do a little extra work since the alphabet length
+ // is likely less than the stride, but if that is indeed an issue we
+ // should benchmark it and fix it.
+ for sid in self.tt.table_mut().iter_mut() {
+ *sid = map(*sid);
+ }
+ for sid in self.st.table_mut().iter_mut() {
+ *sid = map(*sid);
+ }
+ }
+
+ /// Remap the transitions for the state given according to the function
+ /// given. This applies the given map function to every transition in the
+ /// given state and changes the transition in place to the result of the
+ /// map function for that transition.
+ pub(crate) fn remap_state(
+ &mut self,
+ id: StateID,
+ map: impl Fn(StateID) -> StateID,
+ ) {
+ self.tt.remap(id, map);
+ }
+
+ /// Truncate the states in this DFA to the given length.
+ ///
+ /// This routine does not do anything to check the correctness of this
+ /// truncation. Callers must ensure that other states pointing to truncated
+ /// states are updated appropriately.
+ pub(crate) fn truncate_states(&mut self, len: usize) {
+ self.tt.truncate(len);
+ }
+
+ /// Minimize this DFA in place using Hopcroft's algorithm.
+ pub(crate) fn minimize(&mut self) {
+ Minimizer::new(self).run();
+ }
+
+ /// Updates the match state pattern ID map to use the one provided.
+ ///
+ /// This is useful when it's convenient to manipulate matching states
+ /// (and their corresponding pattern IDs) as a map. In particular, the
+ /// representation used by a DFA for this map is not amenable to mutation,
+ /// so if things need to be changed (like when shuffling states), it's
+ /// often easier to work with the map form.
+ pub(crate) fn set_pattern_map(
+ &mut self,
+ map: &BTreeMap<StateID, Vec<PatternID>>,
+ ) -> Result<(), BuildError> {
+ self.ms = self.ms.new_with_map(map)?;
+ Ok(())
+ }
+
+ /// Find states that have a small number of non-loop transitions and mark
+ /// them as candidates for acceleration during search.
+ pub(crate) fn accelerate(&mut self) {
+ // dead and quit states can never be accelerated.
+ if self.state_len() <= 2 {
+ return;
+ }
+
+ // Go through every state and record their accelerator, if possible.
+ let mut accels = BTreeMap::new();
+ // Count the number of accelerated match, start and non-match/start
+ // states.
+ let (mut cmatch, mut cstart, mut cnormal) = (0, 0, 0);
+ for state in self.states() {
+ if let Some(accel) = state.accelerate(self.byte_classes()) {
+ debug!(
+ "accelerating full DFA state {}: {:?}",
+ state.id().as_usize(),
+ accel,
+ );
+ accels.insert(state.id(), accel);
+ if self.is_match_state(state.id()) {
+ cmatch += 1;
+ } else if self.is_start_state(state.id()) {
+ cstart += 1;
+ } else {
+ assert!(!self.is_dead_state(state.id()));
+ assert!(!self.is_quit_state(state.id()));
+ cnormal += 1;
+ }
+ }
+ }
+ // If no states were able to be accelerated, then we're done.
+ if accels.is_empty() {
+ return;
+ }
+ let original_accels_len = accels.len();
+
+ // A remapper keeps track of state ID changes. Once we're done
+ // shuffling, the remapper is used to rewrite all transitions in the
+ // DFA based on the new positions of states.
+ let mut remapper = Remapper::new(self);
+
+ // As we swap states, if they are match states, we need to swap their
+ // pattern ID lists too (for multi-regexes). We do this by converting
+ // the lists to an easily swappable map, and then convert back to
+ // MatchStates once we're done.
+ let mut new_matches = self.ms.to_map(self);
+
+ // There is at least one state that gets accelerated, so these are
+ // guaranteed to get set to sensible values below.
+ self.special.min_accel = StateID::MAX;
+ self.special.max_accel = StateID::ZERO;
+ let update_special_accel =
+ |special: &mut Special, accel_id: StateID| {
+ special.min_accel = cmp::min(special.min_accel, accel_id);
+ special.max_accel = cmp::max(special.max_accel, accel_id);
+ };
+
+ // Start by shuffling match states. Any match states that are
+ // accelerated get moved to the end of the match state range.
+ if cmatch > 0 && self.special.matches() {
+ // N.B. special.{min,max}_match do not need updating, since the
+ // range/number of match states does not change. Only the ordering
+ // of match states may change.
+ let mut next_id = self.special.max_match;
+ let mut cur_id = next_id;
+ while cur_id >= self.special.min_match {
+ if let Some(accel) = accels.remove(&cur_id) {
+ accels.insert(next_id, accel);
+ update_special_accel(&mut self.special, next_id);
+
+ // No need to do any actual swapping for equivalent IDs.
+ if cur_id != next_id {
+ remapper.swap(self, cur_id, next_id);
+
+ // Swap pattern IDs for match states.
+ let cur_pids = new_matches.remove(&cur_id).unwrap();
+ let next_pids = new_matches.remove(&next_id).unwrap();
+ new_matches.insert(cur_id, next_pids);
+ new_matches.insert(next_id, cur_pids);
+ }
+ next_id = self.tt.prev_state_id(next_id);
+ }
+ cur_id = self.tt.prev_state_id(cur_id);
+ }
+ }
+
+ // This is where it gets tricky. Without acceleration, start states
+ // normally come right after match states. But we want accelerated
+ // states to be a single contiguous range (to make it very fast
+ // to determine whether a state *is* accelerated), while also keeping
+ // match and starting states as contiguous ranges for the same reason.
+ // So what we do here is shuffle states such that it looks like this:
+ //
+ // DQMMMMAAAAASSSSSSNNNNNNN
+ // | |
+ // |---------|
+ // accelerated states
+ //
+ // Where:
+ // D - dead state
+ // Q - quit state
+ // M - match state (may be accelerated)
+ // A - normal state that is accelerated
+ // S - start state (may be accelerated)
+ // N - normal state that is NOT accelerated
+ //
+ // We implement this by shuffling states, which is done by a sequence
+ // of pairwise swaps. We start by looking at all normal states to be
+ // accelerated. When we find one, we swap it with the earliest starting
+ // state, and then swap that with the earliest normal state. This
+ // preserves the contiguous property.
+ //
+ // Once we're done looking for accelerated normal states, now we look
+ // for accelerated starting states by moving them to the beginning
+ // of the starting state range (just like we moved accelerated match
+ // states to the end of the matching state range).
+ //
+ // For a more detailed/different perspective on this, see the docs
+ // in dfa/special.rs.
+ if cnormal > 0 {
+ // our next available starting and normal states for swapping.
+ let mut next_start_id = self.special.min_start;
+ let mut cur_id = self.to_state_id(self.state_len() - 1);
+ // This is guaranteed to exist since cnormal > 0.
+ let mut next_norm_id =
+ self.tt.next_state_id(self.special.max_start);
+ while cur_id >= next_norm_id {
+ if let Some(accel) = accels.remove(&cur_id) {
+ remapper.swap(self, next_start_id, cur_id);
+ remapper.swap(self, next_norm_id, cur_id);
+ // Keep our accelerator map updated with new IDs if the
+ // states we swapped were also accelerated.
+ if let Some(accel2) = accels.remove(&next_norm_id) {
+ accels.insert(cur_id, accel2);
+ }
+ if let Some(accel2) = accels.remove(&next_start_id) {
+ accels.insert(next_norm_id, accel2);
+ }
+ accels.insert(next_start_id, accel);
+ update_special_accel(&mut self.special, next_start_id);
+ // Our start range shifts one to the right now.
+ self.special.min_start =
+ self.tt.next_state_id(self.special.min_start);
+ self.special.max_start =
+ self.tt.next_state_id(self.special.max_start);
+ next_start_id = self.tt.next_state_id(next_start_id);
+ next_norm_id = self.tt.next_state_id(next_norm_id);
+ }
+ // This is pretty tricky, but if our 'next_norm_id' state also
+ // happened to be accelerated, then the result is that it is
+ // now in the position of cur_id, so we need to consider it
+ // again. This loop is still guaranteed to terminate though,
+ // because when accels contains cur_id, we're guaranteed to
+ // increment next_norm_id even if cur_id remains unchanged.
+ if !accels.contains_key(&cur_id) {
+ cur_id = self.tt.prev_state_id(cur_id);
+ }
+ }
+ }
+ // Just like we did for match states, but we want to move accelerated
+ // start states to the beginning of the range instead of the end.
+ if cstart > 0 {
+ // N.B. special.{min,max}_start do not need updating, since the
+ // range/number of start states does not change at this point. Only
+ // the ordering of start states may change.
+ let mut next_id = self.special.min_start;
+ let mut cur_id = next_id;
+ while cur_id <= self.special.max_start {
+ if let Some(accel) = accels.remove(&cur_id) {
+ remapper.swap(self, cur_id, next_id);
+ accels.insert(next_id, accel);
+ update_special_accel(&mut self.special, next_id);
+ next_id = self.tt.next_state_id(next_id);
+ }
+ cur_id = self.tt.next_state_id(cur_id);
+ }
+ }
+
+ // Remap all transitions in our DFA and assert some things.
+ remapper.remap(self);
+ // This unwrap is OK because acceleration never changes the number of
+ // match states or patterns in those match states. Since acceleration
+ // runs after the pattern map has been set at least once, we know that
+ // our match states cannot error.
+ self.set_pattern_map(&new_matches).unwrap();
+ self.special.set_max();
+ self.special.validate().expect("special state ranges should validate");
+ self.special
+ .validate_state_len(self.state_len(), self.stride2())
+ .expect(
+ "special state ranges should be consistent with state length",
+ );
+ assert_eq!(
+ self.special.accel_len(self.stride()),
+ // We record the number of accelerated states initially detected
+ // since the accels map is itself mutated in the process above.
+ // If mutated incorrectly, its size may change, and thus can't be
+ // trusted as a source of truth of how many accelerated states we
+ // expected there to be.
+ original_accels_len,
+ "mismatch with expected number of accelerated states",
+ );
+
+ // And finally record our accelerators. We kept our accels map updated
+ // as we shuffled states above, so the accelerators should now
+ // correspond to a contiguous range in the state ID space. (Which we
+ // assert.)
+ let mut prev: Option<StateID> = None;
+ for (id, accel) in accels {
+ assert!(prev.map_or(true, |p| self.tt.next_state_id(p) == id));
+ prev = Some(id);
+ self.accels.add(accel);
+ }
+ }
+
+ /// Shuffle the states in this DFA so that starting states, match
+ /// states and accelerated states are all contiguous.
+ ///
+ /// See dfa/special.rs for more details.
+ pub(crate) fn shuffle(
+ &mut self,
+ mut matches: BTreeMap<StateID, Vec<PatternID>>,
+ ) -> Result<(), BuildError> {
+ // The determinizer always adds a quit state and it is always second.
+ self.special.quit_id = self.to_state_id(1);
+ // If all we have are the dead and quit states, then we're done and
+ // the DFA will never produce a match.
+ if self.state_len() <= 2 {
+ self.special.set_max();
+ return Ok(());
+ }
+
+ // Collect all our non-DEAD start states into a convenient set and
+ // confirm there is no overlap with match states. In the classicl DFA
+ // construction, start states can be match states. But because of
+ // look-around, we delay all matches by a byte, which prevents start
+ // states from being match states.
+ let mut is_start: BTreeSet<StateID> = BTreeSet::new();
+ for (start_id, _, _) in self.starts() {
+ // If a starting configuration points to a DEAD state, then we
+ // don't want to shuffle it. The DEAD state is always the first
+ // state with ID=0. So we can just leave it be.
+ if start_id == DEAD {
+ continue;
+ }
+ assert!(
+ !matches.contains_key(&start_id),
+ "{:?} is both a start and a match state, which is not allowed",
+ start_id,
+ );
+ is_start.insert(start_id);
+ }
+
+ // We implement shuffling by a sequence of pairwise swaps of states.
+ // Since we have a number of things referencing states via their
+ // IDs and swapping them changes their IDs, we need to record every
+ // swap we make so that we can remap IDs. The remapper handles this
+ // book-keeping for us.
+ let mut remapper = Remapper::new(self);
+
+ // Shuffle matching states.
+ if matches.is_empty() {
+ self.special.min_match = DEAD;
+ self.special.max_match = DEAD;
+ } else {
+ // The determinizer guarantees that the first two states are the
+ // dead and quit states, respectively. We want our match states to
+ // come right after quit.
+ let mut next_id = self.to_state_id(2);
+ let mut new_matches = BTreeMap::new();
+ self.special.min_match = next_id;
+ for (id, pids) in matches {
+ remapper.swap(self, next_id, id);
+ new_matches.insert(next_id, pids);
+ // If we swapped a start state, then update our set.
+ if is_start.contains(&next_id) {
+ is_start.remove(&next_id);
+ is_start.insert(id);
+ }
+ next_id = self.tt.next_state_id(next_id);
+ }
+ matches = new_matches;
+ self.special.max_match = cmp::max(
+ self.special.min_match,
+ self.tt.prev_state_id(next_id),
+ );
+ }
+
+ // Shuffle starting states.
+ {
+ let mut next_id = self.to_state_id(2);
+ if self.special.matches() {
+ next_id = self.tt.next_state_id(self.special.max_match);
+ }
+ self.special.min_start = next_id;
+ for id in is_start {
+ remapper.swap(self, next_id, id);
+ next_id = self.tt.next_state_id(next_id);
+ }
+ self.special.max_start = cmp::max(
+ self.special.min_start,
+ self.tt.prev_state_id(next_id),
+ );
+ }
+
+ // Finally remap all transitions in our DFA.
+ remapper.remap(self);
+ self.set_pattern_map(&matches)?;
+ self.special.set_max();
+ self.special.validate().expect("special state ranges should validate");
+ self.special
+ .validate_state_len(self.state_len(), self.stride2())
+ .expect(
+ "special state ranges should be consistent with state length",
+ );
+ Ok(())
+ }
+
+ /// Checks whether there are universal start states (both anchored and
+ /// unanchored), and if so, sets the relevant fields to the start state
+ /// IDs.
+ ///
+ /// Universal start states occur precisely when the all patterns in the
+ /// DFA have no look-around assertions in their prefix.
+ fn set_universal_starts(&mut self) {
+ assert_eq!(6, Start::len(), "expected 6 start configurations");
+
+ let start_id = |dfa: &mut OwnedDFA, inp: &Input<'_>, start: Start| {
+ // This OK because we only call 'start' under conditions
+ // in which we know it will succeed.
+ dfa.st.start(inp, start).expect("valid Input configuration")
+ };
+ if self.start_kind().has_unanchored() {
+ let inp = Input::new("").anchored(Anchored::No);
+ let sid = start_id(self, &inp, Start::NonWordByte);
+ if sid == start_id(self, &inp, Start::WordByte)
+ && sid == start_id(self, &inp, Start::Text)
+ && sid == start_id(self, &inp, Start::LineLF)
+ && sid == start_id(self, &inp, Start::LineCR)
+ && sid == start_id(self, &inp, Start::CustomLineTerminator)
+ {
+ self.st.universal_start_unanchored = Some(sid);
+ }
+ }
+ if self.start_kind().has_anchored() {
+ let inp = Input::new("").anchored(Anchored::Yes);
+ let sid = start_id(self, &inp, Start::NonWordByte);
+ if sid == start_id(self, &inp, Start::WordByte)
+ && sid == start_id(self, &inp, Start::Text)
+ && sid == start_id(self, &inp, Start::LineLF)
+ && sid == start_id(self, &inp, Start::LineCR)
+ && sid == start_id(self, &inp, Start::CustomLineTerminator)
+ {
+ self.st.universal_start_anchored = Some(sid);
+ }
+ }
+ }
+}
+
+// A variety of generic internal methods for accessing DFA internals.
+impl<T: AsRef<[u32]>> DFA<T> {
+ /// Return the info about special states.
+ pub(crate) fn special(&self) -> &Special {
+ &self.special
+ }
+
+ /// Return the info about special states as a mutable borrow.
+ #[cfg(feature = "dfa-build")]
+ pub(crate) fn special_mut(&mut self) -> &mut Special {
+ &mut self.special
+ }
+
+ /// Returns the quit set (may be empty) used by this DFA.
+ pub(crate) fn quitset(&self) -> &ByteSet {
+ &self.quitset
+ }
+
+ /// Returns the flags for this DFA.
+ pub(crate) fn flags(&self) -> &Flags {
+ &self.flags
+ }
+
+ /// Returns an iterator over all states in this DFA.
+ ///
+ /// This iterator yields a tuple for each state. The first element of the
+ /// tuple corresponds to a state's identifier, and the second element
+ /// corresponds to the state itself (comprised of its transitions).
+ pub(crate) fn states(&self) -> StateIter<'_, T> {
+ self.tt.states()
+ }
+
+ /// Return the total number of states in this DFA. Every DFA has at least
+ /// 1 state, even the empty DFA.
+ pub(crate) fn state_len(&self) -> usize {
+ self.tt.len()
+ }
+
+ /// Return an iterator over all pattern IDs for the given match state.
+ ///
+ /// If the given state is not a match state, then this panics.
+ #[cfg(feature = "dfa-build")]
+ pub(crate) fn pattern_id_slice(&self, id: StateID) -> &[PatternID] {
+ assert!(self.is_match_state(id));
+ self.ms.pattern_id_slice(self.match_state_index(id))
+ }
+
+ /// Return the total number of pattern IDs for the given match state.
+ ///
+ /// If the given state is not a match state, then this panics.
+ pub(crate) fn match_pattern_len(&self, id: StateID) -> usize {
+ assert!(self.is_match_state(id));
+ self.ms.pattern_len(self.match_state_index(id))
+ }
+
+ /// Returns the total number of patterns matched by this DFA.
+ pub(crate) fn pattern_len(&self) -> usize {
+ self.ms.pattern_len
+ }
+
+ /// Returns a map from match state ID to a list of pattern IDs that match
+ /// in that state.
+ #[cfg(feature = "dfa-build")]
+ pub(crate) fn pattern_map(&self) -> BTreeMap<StateID, Vec<PatternID>> {
+ self.ms.to_map(self)
+ }
+
+ /// Returns the ID of the quit state for this DFA.
+ #[cfg(feature = "dfa-build")]
+ pub(crate) fn quit_id(&self) -> StateID {
+ self.to_state_id(1)
+ }
+
+ /// Convert the given state identifier to the state's index. The state's
+ /// index corresponds to the position in which it appears in the transition
+ /// table. When a DFA is NOT premultiplied, then a state's identifier is
+ /// also its index. When a DFA is premultiplied, then a state's identifier
+ /// is equal to `index * alphabet_len`. This routine reverses that.
+ pub(crate) fn to_index(&self, id: StateID) -> usize {
+ self.tt.to_index(id)
+ }
+
+ /// Convert an index to a state (in the range 0..self.state_len()) to an
+ /// actual state identifier.
+ ///
+ /// This is useful when using a `Vec<T>` as an efficient map keyed by state
+ /// to some other information (such as a remapped state ID).
+ #[cfg(feature = "dfa-build")]
+ pub(crate) fn to_state_id(&self, index: usize) -> StateID {
+ self.tt.to_state_id(index)
+ }
+
+ /// Return the table of state IDs for this DFA's start states.
+ pub(crate) fn starts(&self) -> StartStateIter<'_> {
+ self.st.iter()
+ }
+
+ /// Returns the index of the match state for the given ID. If the
+ /// given ID does not correspond to a match state, then this may
+ /// panic or produce an incorrect result.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn match_state_index(&self, id: StateID) -> usize {
+ debug_assert!(self.is_match_state(id));
+ // This is one of the places where we rely on the fact that match
+ // states are contiguous in the transition table. Namely, that the
+ // first match state ID always corresponds to dfa.special.min_match.
+ // From there, since we know the stride, we can compute the overall
+ // index of any match state given the match state's ID.
+ let min = self.special().min_match.as_usize();
+ // CORRECTNESS: We're allowed to produce an incorrect result or panic,
+ // so both the subtraction and the unchecked StateID construction is
+ // OK.
+ self.to_index(StateID::new_unchecked(id.as_usize() - min))
+ }
+
+ /// Returns the index of the accelerator state for the given ID. If the
+ /// given ID does not correspond to an accelerator state, then this may
+ /// panic or produce an incorrect result.
+ fn accelerator_index(&self, id: StateID) -> usize {
+ let min = self.special().min_accel.as_usize();
+ // CORRECTNESS: We're allowed to produce an incorrect result or panic,
+ // so both the subtraction and the unchecked StateID construction is
+ // OK.
+ self.to_index(StateID::new_unchecked(id.as_usize() - min))
+ }
+
+ /// Return the accelerators for this DFA.
+ fn accels(&self) -> Accels<&[u32]> {
+ self.accels.as_ref()
+ }
+
+ /// Return this DFA's transition table as a slice.
+ fn trans(&self) -> &[StateID] {
+ self.tt.table()
+ }
+}
+
+impl<T: AsRef<[u32]>> fmt::Debug for DFA<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ writeln!(f, "dense::DFA(")?;
+ for state in self.states() {
+ fmt_state_indicator(f, self, state.id())?;
+ let id = if f.alternate() {
+ state.id().as_usize()
+ } else {
+ self.to_index(state.id())
+ };
+ write!(f, "{:06?}: ", id)?;
+ state.fmt(f)?;
+ write!(f, "\n")?;
+ }
+ writeln!(f, "")?;
+ for (i, (start_id, anchored, sty)) in self.starts().enumerate() {
+ let id = if f.alternate() {
+ start_id.as_usize()
+ } else {
+ self.to_index(start_id)
+ };
+ if i % self.st.stride == 0 {
+ match anchored {
+ Anchored::No => writeln!(f, "START-GROUP(unanchored)")?,
+ Anchored::Yes => writeln!(f, "START-GROUP(anchored)")?,
+ Anchored::Pattern(pid) => {
+ writeln!(f, "START_GROUP(pattern: {:?})", pid)?
+ }
+ }
+ }
+ writeln!(f, " {:?} => {:06?}", sty, id)?;
+ }
+ if self.pattern_len() > 1 {
+ writeln!(f, "")?;
+ for i in 0..self.ms.len() {
+ let id = self.ms.match_state_id(self, i);
+ let id = if f.alternate() {
+ id.as_usize()
+ } else {
+ self.to_index(id)
+ };
+ write!(f, "MATCH({:06?}): ", id)?;
+ for (i, &pid) in self.ms.pattern_id_slice(i).iter().enumerate()
+ {
+ if i > 0 {
+ write!(f, ", ")?;
+ }
+ write!(f, "{:?}", pid)?;
+ }
+ writeln!(f, "")?;
+ }
+ }
+ writeln!(f, "state length: {:?}", self.state_len())?;
+ writeln!(f, "pattern length: {:?}", self.pattern_len())?;
+ writeln!(f, "flags: {:?}", self.flags)?;
+ writeln!(f, ")")?;
+ Ok(())
+ }
+}
+
+// SAFETY: We assert that our implementation of each method is correct.
+unsafe impl<T: AsRef<[u32]>> Automaton for DFA<T> {
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn is_special_state(&self, id: StateID) -> bool {
+ self.special.is_special_state(id)
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn is_dead_state(&self, id: StateID) -> bool {
+ self.special.is_dead_state(id)
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn is_quit_state(&self, id: StateID) -> bool {
+ self.special.is_quit_state(id)
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn is_match_state(&self, id: StateID) -> bool {
+ self.special.is_match_state(id)
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn is_start_state(&self, id: StateID) -> bool {
+ self.special.is_start_state(id)
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn is_accel_state(&self, id: StateID) -> bool {
+ self.special.is_accel_state(id)
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn next_state(&self, current: StateID, input: u8) -> StateID {
+ let input = self.byte_classes().get(input);
+ let o = current.as_usize() + usize::from(input);
+ self.trans()[o]
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ unsafe fn next_state_unchecked(
+ &self,
+ current: StateID,
+ byte: u8,
+ ) -> StateID {
+ // We don't (or shouldn't) need an unchecked variant for the byte
+ // class mapping, since bound checks should be omitted automatically
+ // by virtue of its representation. If this ends up not being true as
+ // confirmed by codegen, please file an issue. ---AG
+ let class = self.byte_classes().get(byte);
+ let o = current.as_usize() + usize::from(class);
+ let next = *self.trans().get_unchecked(o);
+ next
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn next_eoi_state(&self, current: StateID) -> StateID {
+ let eoi = self.byte_classes().eoi().as_usize();
+ let o = current.as_usize() + eoi;
+ self.trans()[o]
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn pattern_len(&self) -> usize {
+ self.ms.pattern_len
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn match_len(&self, id: StateID) -> usize {
+ self.match_pattern_len(id)
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn match_pattern(&self, id: StateID, match_index: usize) -> PatternID {
+ // This is an optimization for the very common case of a DFA with a
+ // single pattern. This conditional avoids a somewhat more costly path
+ // that finds the pattern ID from the state machine, which requires
+ // a bit of slicing/pointer-chasing. This optimization tends to only
+ // matter when matches are frequent.
+ if self.ms.pattern_len == 1 {
+ return PatternID::ZERO;
+ }
+ let state_index = self.match_state_index(id);
+ self.ms.pattern_id(state_index, match_index)
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn has_empty(&self) -> bool {
+ self.flags.has_empty
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn is_utf8(&self) -> bool {
+ self.flags.is_utf8
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn is_always_start_anchored(&self) -> bool {
+ self.flags.is_always_start_anchored
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn start_state_forward(
+ &self,
+ input: &Input<'_>,
+ ) -> Result<StateID, MatchError> {
+ if !self.quitset.is_empty() && input.start() > 0 {
+ let offset = input.start() - 1;
+ let byte = input.haystack()[offset];
+ if self.quitset.contains(byte) {
+ return Err(MatchError::quit(byte, offset));
+ }
+ }
+ let start = self.st.start_map.fwd(&input);
+ self.st.start(input, start)
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn start_state_reverse(
+ &self,
+ input: &Input<'_>,
+ ) -> Result<StateID, MatchError> {
+ if !self.quitset.is_empty() && input.end() < input.haystack().len() {
+ let offset = input.end();
+ let byte = input.haystack()[offset];
+ if self.quitset.contains(byte) {
+ return Err(MatchError::quit(byte, offset));
+ }
+ }
+ let start = self.st.start_map.rev(&input);
+ self.st.start(input, start)
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn universal_start_state(&self, mode: Anchored) -> Option<StateID> {
+ match mode {
+ Anchored::No => self.st.universal_start_unanchored,
+ Anchored::Yes => self.st.universal_start_anchored,
+ Anchored::Pattern(_) => None,
+ }
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn accelerator(&self, id: StateID) -> &[u8] {
+ if !self.is_accel_state(id) {
+ return &[];
+ }
+ self.accels.needles(self.accelerator_index(id))
+ }
+
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn get_prefilter(&self) -> Option<&Prefilter> {
+ self.pre.as_ref()
+ }
+}
+
+/// The transition table portion of a dense DFA.
+///
+/// The transition table is the core part of the DFA in that it describes how
+/// to move from one state to another based on the input sequence observed.
+#[derive(Clone)]
+pub(crate) struct TransitionTable<T> {
+ /// A contiguous region of memory representing the transition table in
+ /// row-major order. The representation is dense. That is, every state
+ /// has precisely the same number of transitions. The maximum number of
+ /// transitions per state is 257 (256 for each possible byte value, plus 1
+ /// for the special EOI transition). If a DFA has been instructed to use
+ /// byte classes (the default), then the number of transitions is usually
+ /// substantially fewer.
+ ///
+ /// In practice, T is either `Vec<u32>` or `&[u32]`.
+ table: T,
+ /// A set of equivalence classes, where a single equivalence class
+ /// represents a set of bytes that never discriminate between a match
+ /// and a non-match in the DFA. Each equivalence class corresponds to a
+ /// single character in this DFA's alphabet, where the maximum number of
+ /// characters is 257 (each possible value of a byte plus the special
+ /// EOI transition). Consequently, the number of equivalence classes
+ /// corresponds to the number of transitions for each DFA state. Note
+ /// though that the *space* used by each DFA state in the transition table
+ /// may be larger. The total space used by each DFA state is known as the
+ /// stride.
+ ///
+ /// The only time the number of equivalence classes is fewer than 257 is if
+ /// the DFA's kind uses byte classes (which is the default). Equivalence
+ /// classes should generally only be disabled when debugging, so that
+ /// the transitions themselves aren't obscured. Disabling them has no
+ /// other benefit, since the equivalence class map is always used while
+ /// searching. In the vast majority of cases, the number of equivalence
+ /// classes is substantially smaller than 257, particularly when large
+ /// Unicode classes aren't used.
+ classes: ByteClasses,
+ /// The stride of each DFA state, expressed as a power-of-two exponent.
+ ///
+ /// The stride of a DFA corresponds to the total amount of space used by
+ /// each DFA state in the transition table. This may be bigger than the
+ /// size of a DFA's alphabet, since the stride is always the smallest
+ /// power of two greater than or equal to the alphabet size.
+ ///
+ /// While this wastes space, this avoids the need for integer division
+ /// to convert between premultiplied state IDs and their corresponding
+ /// indices. Instead, we can use simple bit-shifts.
+ ///
+ /// See the docs for the `stride2` method for more details.
+ ///
+ /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
+ /// while the maximum `stride2` value is `9` (corresponding to a stride of
+ /// `512`). The maximum is not `8` since the maximum alphabet size is `257`
+ /// when accounting for the special EOI transition. However, an alphabet
+ /// length of that size is exceptionally rare since the alphabet is shrunk
+ /// into equivalence classes.
+ stride2: usize,
+}
+
+impl<'a> TransitionTable<&'a [u32]> {
+ /// Deserialize a transition table starting at the beginning of `slice`.
+ /// Upon success, return the total number of bytes read along with the
+ /// transition table.
+ ///
+ /// If there was a problem deserializing any part of the transition table,
+ /// then this returns an error. Notably, if the given slice does not have
+ /// the same alignment as `StateID`, then this will return an error (among
+ /// other possible errors).
+ ///
+ /// This is guaranteed to execute in constant time.
+ ///
+ /// # Safety
+ ///
+ /// This routine is not safe because it does not check the validity of the
+ /// transition table itself. In particular, the transition table can be
+ /// quite large, so checking its validity can be somewhat expensive. An
+ /// invalid transition table is not safe because other code may rely on the
+ /// transition table being correct (such as explicit bounds check elision).
+ /// Therefore, an invalid transition table can lead to undefined behavior.
+ ///
+ /// Callers that use this function must either pass on the safety invariant
+ /// or guarantee that the bytes given contain a valid transition table.
+ /// This guarantee is upheld by the bytes written by `write_to`.
+ unsafe fn from_bytes_unchecked(
+ mut slice: &'a [u8],
+ ) -> Result<(TransitionTable<&'a [u32]>, usize), DeserializeError> {
+ let slice_start = slice.as_ptr().as_usize();
+
+ let (state_len, nr) =
+ wire::try_read_u32_as_usize(slice, "state length")?;
+ slice = &slice[nr..];
+
+ let (stride2, nr) = wire::try_read_u32_as_usize(slice, "stride2")?;
+ slice = &slice[nr..];
+
+ let (classes, nr) = ByteClasses::from_bytes(slice)?;
+ slice = &slice[nr..];
+
+ // The alphabet length (determined by the byte class map) cannot be
+ // bigger than the stride (total space used by each DFA state).
+ if stride2 > 9 {
+ return Err(DeserializeError::generic(
+ "dense DFA has invalid stride2 (too big)",
+ ));
+ }
+ // It also cannot be zero, since even a DFA that never matches anything
+ // has a non-zero number of states with at least two equivalence
+ // classes: one for all 256 byte values and another for the EOI
+ // sentinel.
+ if stride2 < 1 {
+ return Err(DeserializeError::generic(
+ "dense DFA has invalid stride2 (too small)",
+ ));
+ }
+ // This is OK since 1 <= stride2 <= 9.
+ let stride =
+ 1usize.checked_shl(u32::try_from(stride2).unwrap()).unwrap();
+ if classes.alphabet_len() > stride {
+ return Err(DeserializeError::generic(
+ "alphabet size cannot be bigger than transition table stride",
+ ));
+ }
+
+ let trans_len =
+ wire::shl(state_len, stride2, "dense table transition length")?;
+ let table_bytes_len = wire::mul(
+ trans_len,
+ StateID::SIZE,
+ "dense table state byte length",
+ )?;
+ wire::check_slice_len(slice, table_bytes_len, "transition table")?;
+ wire::check_alignment::<StateID>(slice)?;
+ let table_bytes = &slice[..table_bytes_len];
+ slice = &slice[table_bytes_len..];
+ // SAFETY: Since StateID is always representable as a u32, all we need
+ // to do is ensure that we have the proper length and alignment. We've
+ // checked both above, so the cast below is safe.
+ //
+ // N.B. This is the only not-safe code in this function.
+ let table = core::slice::from_raw_parts(
+ table_bytes.as_ptr().cast::<u32>(),
+ trans_len,
+ );
+ let tt = TransitionTable { table, classes, stride2 };
+ Ok((tt, slice.as_ptr().as_usize() - slice_start))
+ }
+}
+
+#[cfg(feature = "dfa-build")]
+impl TransitionTable<Vec<u32>> {
+ /// Create a minimal transition table with just two states: a dead state
+ /// and a quit state. The alphabet length and stride of the transition
+ /// table is determined by the given set of equivalence classes.
+ fn minimal(classes: ByteClasses) -> TransitionTable<Vec<u32>> {
+ let mut tt = TransitionTable {
+ table: vec![],
+ classes,
+ stride2: classes.stride2(),
+ };
+ // Two states, regardless of alphabet size, can always fit into u32.
+ tt.add_empty_state().unwrap(); // dead state
+ tt.add_empty_state().unwrap(); // quit state
+ tt
+ }
+
+ /// Set a transition in this table. Both the `from` and `to` states must
+ /// already exist, otherwise this panics. `unit` should correspond to the
+ /// transition out of `from` to set to `to`.
+ fn set(&mut self, from: StateID, unit: alphabet::Unit, to: StateID) {
+ assert!(self.is_valid(from), "invalid 'from' state");
+ assert!(self.is_valid(to), "invalid 'to' state");
+ self.table[from.as_usize() + self.classes.get_by_unit(unit)] =
+ to.as_u32();
+ }
+
+ /// Add an empty state (a state where all transitions lead to a dead state)
+ /// and return its identifier. The identifier returned is guaranteed to
+ /// not point to any other existing state.
+ ///
+ /// If adding a state would exhaust the state identifier space, then this
+ /// returns an error.
+ fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
+ // Normally, to get a fresh state identifier, we would just
+ // take the index of the next state added to the transition
+ // table. However, we actually perform an optimization here
+ // that premultiplies state IDs by the stride, such that they
+ // point immediately at the beginning of their transitions in
+ // the transition table. This avoids an extra multiplication
+ // instruction for state lookup at search time.
+ //
+ // Premultiplied identifiers means that instead of your matching
+ // loop looking something like this:
+ //
+ // state = dfa.start
+ // for byte in haystack:
+ // next = dfa.transitions[state * stride + byte]
+ // if dfa.is_match(next):
+ // return true
+ // return false
+ //
+ // it can instead look like this:
+ //
+ // state = dfa.start
+ // for byte in haystack:
+ // next = dfa.transitions[state + byte]
+ // if dfa.is_match(next):
+ // return true
+ // return false
+ //
+ // In other words, we save a multiplication instruction in the
+ // critical path. This turns out to be a decent performance win.
+ // The cost of using premultiplied state ids is that they can
+ // require a bigger state id representation. (And they also make
+ // the code a bit more complex, especially during minimization and
+ // when reshuffling states, as one needs to convert back and forth
+ // between state IDs and state indices.)
+ //
+ // To do this, we simply take the index of the state into the
+ // entire transition table, rather than the index of the state
+ // itself. e.g., If the stride is 64, then the ID of the 3rd state
+ // is 192, not 2.
+ let next = self.table.len();
+ let id =
+ StateID::new(next).map_err(|_| BuildError::too_many_states())?;
+ self.table.extend(iter::repeat(0).take(self.stride()));
+ Ok(id)
+ }
+
+ /// Swap the two states given in this transition table.
+ ///
+ /// This routine does not do anything to check the correctness of this
+ /// swap. Callers must ensure that other states pointing to id1 and id2 are
+ /// updated appropriately.
+ ///
+ /// Both id1 and id2 must point to valid states, otherwise this panics.
+ fn swap(&mut self, id1: StateID, id2: StateID) {
+ assert!(self.is_valid(id1), "invalid 'id1' state: {:?}", id1);
+ assert!(self.is_valid(id2), "invalid 'id2' state: {:?}", id2);
+ // We only need to swap the parts of the state that are used. So if the
+ // stride is 64, but the alphabet length is only 33, then we save a lot
+ // of work.
+ for b in 0..self.classes.alphabet_len() {
+ self.table.swap(id1.as_usize() + b, id2.as_usize() + b);
+ }
+ }
+
+ /// Remap the transitions for the state given according to the function
+ /// given. This applies the given map function to every transition in the
+ /// given state and changes the transition in place to the result of the
+ /// map function for that transition.
+ fn remap(&mut self, id: StateID, map: impl Fn(StateID) -> StateID) {
+ for byte in 0..self.alphabet_len() {
+ let i = id.as_usize() + byte;
+ let next = self.table()[i];
+ self.table_mut()[id.as_usize() + byte] = map(next);
+ }
+ }
+
+ /// Truncate the states in this transition table to the given length.
+ ///
+ /// This routine does not do anything to check the correctness of this
+ /// truncation. Callers must ensure that other states pointing to truncated
+ /// states are updated appropriately.
+ fn truncate(&mut self, len: usize) {
+ self.table.truncate(len << self.stride2);
+ }
+}
+
+impl<T: AsRef<[u32]>> TransitionTable<T> {
+ /// Writes a serialized form of this transition table to the buffer given.
+ /// If the buffer is too small, then an error is returned. To determine
+ /// how big the buffer must be, use `write_to_len`.
+ fn write_to<E: Endian>(
+ &self,
+ mut dst: &mut [u8],
+ ) -> Result<usize, SerializeError> {
+ let nwrite = self.write_to_len();
+ if dst.len() < nwrite {
+ return Err(SerializeError::buffer_too_small("transition table"));
+ }
+ dst = &mut dst[..nwrite];
+
+ // write state length
+ // Unwrap is OK since number of states is guaranteed to fit in a u32.
+ E::write_u32(u32::try_from(self.len()).unwrap(), dst);
+ dst = &mut dst[size_of::<u32>()..];
+
+ // write state stride (as power of 2)
+ // Unwrap is OK since stride2 is guaranteed to be <= 9.
+ E::write_u32(u32::try_from(self.stride2).unwrap(), dst);
+ dst = &mut dst[size_of::<u32>()..];
+
+ // write byte class map
+ let n = self.classes.write_to(dst)?;
+ dst = &mut dst[n..];
+
+ // write actual transitions
+ for &sid in self.table() {
+ let n = wire::write_state_id::<E>(sid, &mut dst);
+ dst = &mut dst[n..];
+ }
+ Ok(nwrite)
+ }
+
+ /// Returns the number of bytes the serialized form of this transition
+ /// table will use.
+ fn write_to_len(&self) -> usize {
+ size_of::<u32>() // state length
+ + size_of::<u32>() // stride2
+ + self.classes.write_to_len()
+ + (self.table().len() * StateID::SIZE)
+ }
+
+ /// Validates that every state ID in this transition table is valid.
+ ///
+ /// That is, every state ID can be used to correctly index a state in this
+ /// table.
+ fn validate(&self, sp: &Special) -> Result<(), DeserializeError> {
+ for state in self.states() {
+ // We check that the ID itself is well formed. That is, if it's
+ // a special state then it must actually be a quit, dead, accel,
+ // match or start state.
+ if sp.is_special_state(state.id()) {
+ let is_actually_special = sp.is_dead_state(state.id())
+ || sp.is_quit_state(state.id())
+ || sp.is_match_state(state.id())
+ || sp.is_start_state(state.id())
+ || sp.is_accel_state(state.id());
+ if !is_actually_special {
+ // This is kind of a cryptic error message...
+ return Err(DeserializeError::generic(
+ "found dense state tagged as special but \
+ wasn't actually special",
+ ));
+ }
+ }
+ for (_, to) in state.transitions() {
+ if !self.is_valid(to) {
+ return Err(DeserializeError::generic(
+ "found invalid state ID in transition table",
+ ));
+ }
+ }
+ }
+ Ok(())
+ }
+
+ /// Converts this transition table to a borrowed value.
+ fn as_ref(&self) -> TransitionTable<&'_ [u32]> {
+ TransitionTable {
+ table: self.table.as_ref(),
+ classes: self.classes.clone(),
+ stride2: self.stride2,
+ }
+ }
+
+ /// Converts this transition table to an owned value.
+ #[cfg(feature = "alloc")]
+ fn to_owned(&self) -> TransitionTable<alloc::vec::Vec<u32>> {
+ TransitionTable {
+ table: self.table.as_ref().to_vec(),
+ classes: self.classes.clone(),
+ stride2: self.stride2,
+ }
+ }
+
+ /// Return the state for the given ID. If the given ID is not valid, then
+ /// this panics.
+ fn state(&self, id: StateID) -> State<'_> {
+ assert!(self.is_valid(id));
+
+ let i = id.as_usize();
+ State {
+ id,
+ stride2: self.stride2,
+ transitions: &self.table()[i..i + self.alphabet_len()],
+ }
+ }
+
+ /// Returns an iterator over all states in this transition table.
+ ///
+ /// This iterator yields a tuple for each state. The first element of the
+ /// tuple corresponds to a state's identifier, and the second element
+ /// corresponds to the state itself (comprised of its transitions).
+ fn states(&self) -> StateIter<'_, T> {
+ StateIter {
+ tt: self,
+ it: self.table().chunks(self.stride()).enumerate(),
+ }
+ }
+
+ /// Convert a state identifier to an index to a state (in the range
+ /// 0..self.len()).
+ ///
+ /// This is useful when using a `Vec<T>` as an efficient map keyed by state
+ /// to some other information (such as a remapped state ID).
+ ///
+ /// If the given ID is not valid, then this may panic or produce an
+ /// incorrect index.
+ fn to_index(&self, id: StateID) -> usize {
+ id.as_usize() >> self.stride2
+ }
+
+ /// Convert an index to a state (in the range 0..self.len()) to an actual
+ /// state identifier.
+ ///
+ /// This is useful when using a `Vec<T>` as an efficient map keyed by state
+ /// to some other information (such as a remapped state ID).
+ ///
+ /// If the given index is not in the specified range, then this may panic
+ /// or produce an incorrect state ID.
+ fn to_state_id(&self, index: usize) -> StateID {
+ // CORRECTNESS: If the given index is not valid, then it is not
+ // required for this to panic or return a valid state ID.
+ StateID::new_unchecked(index << self.stride2)
+ }
+
+ /// Returns the state ID for the state immediately following the one given.
+ ///
+ /// This does not check whether the state ID returned is invalid. In fact,
+ /// if the state ID given is the last state in this DFA, then the state ID
+ /// returned is guaranteed to be invalid.
+ #[cfg(feature = "dfa-build")]
+ fn next_state_id(&self, id: StateID) -> StateID {
+ self.to_state_id(self.to_index(id).checked_add(1).unwrap())
+ }
+
+ /// Returns the state ID for the state immediately preceding the one given.
+ ///
+ /// If the dead ID given (which is zero), then this panics.
+ #[cfg(feature = "dfa-build")]
+ fn prev_state_id(&self, id: StateID) -> StateID {
+ self.to_state_id(self.to_index(id).checked_sub(1).unwrap())
+ }
+
+ /// Returns the table as a slice of state IDs.
+ fn table(&self) -> &[StateID] {
+ wire::u32s_to_state_ids(self.table.as_ref())
+ }
+
+ /// Returns the total number of states in this transition table.
+ ///
+ /// Note that a DFA always has at least two states: the dead and quit
+ /// states. In particular, the dead state always has ID 0 and is
+ /// correspondingly always the first state. The dead state is never a match
+ /// state.
+ fn len(&self) -> usize {
+ self.table().len() >> self.stride2
+ }
+
+ /// Returns the total stride for every state in this DFA. This corresponds
+ /// to the total number of transitions used by each state in this DFA's
+ /// transition table.
+ fn stride(&self) -> usize {
+ 1 << self.stride2
+ }
+
+ /// Returns the total number of elements in the alphabet for this
+ /// transition table. This is always less than or equal to `self.stride()`.
+ /// It is only equal when the alphabet length is a power of 2. Otherwise,
+ /// it is always strictly less.
+ fn alphabet_len(&self) -> usize {
+ self.classes.alphabet_len()
+ }
+
+ /// Returns true if and only if the given state ID is valid for this
+ /// transition table. Validity in this context means that the given ID can
+ /// be used as a valid offset with `self.stride()` to index this transition
+ /// table.
+ fn is_valid(&self, id: StateID) -> bool {
+ let id = id.as_usize();
+ id < self.table().len() && id % self.stride() == 0
+ }
+
+ /// Return the memory usage, in bytes, of this transition table.
+ ///
+ /// This does not include the size of a `TransitionTable` value itself.
+ fn memory_usage(&self) -> usize {
+ self.table().len() * StateID::SIZE
+ }
+}
+
+#[cfg(feature = "dfa-build")]
+impl<T: AsMut<[u32]>> TransitionTable<T> {
+ /// Returns the table as a slice of state IDs.
+ fn table_mut(&mut self) -> &mut [StateID] {
+ wire::u32s_to_state_ids_mut(self.table.as_mut())
+ }
+}
+
+/// The set of all possible starting states in a DFA.
+///
+/// The set of starting states corresponds to the possible choices one can make
+/// in terms of starting a DFA. That is, before following the first transition,
+/// you first need to select the state that you start in.
+///
+/// Normally, a DFA converted from an NFA that has a single starting state
+/// would itself just have one starting state. However, our support for look
+/// around generally requires more starting states. The correct starting state
+/// is chosen based on certain properties of the position at which we begin
+/// our search.
+///
+/// Before listing those properties, we first must define two terms:
+///
+/// * `haystack` - The bytes to execute the search. The search always starts
+/// at the beginning of `haystack` and ends before or at the end of
+/// `haystack`.
+/// * `context` - The (possibly empty) bytes surrounding `haystack`. `haystack`
+/// must be contained within `context` such that `context` is at least as big
+/// as `haystack`.
+///
+/// This split is crucial for dealing with look-around. For example, consider
+/// the context `foobarbaz`, the haystack `bar` and the regex `^bar$`. This
+/// regex should _not_ match the haystack since `bar` does not appear at the
+/// beginning of the input. Similarly, the regex `\Bbar\B` should match the
+/// haystack because `bar` is not surrounded by word boundaries. But a search
+/// that does not take context into account would not permit `\B` to match
+/// since the beginning of any string matches a word boundary. Similarly, a
+/// search that does not take context into account when searching `^bar$` in
+/// the haystack `bar` would produce a match when it shouldn't.
+///
+/// Thus, it follows that the starting state is chosen based on the following
+/// criteria, derived from the position at which the search starts in the
+/// `context` (corresponding to the start of `haystack`):
+///
+/// 1. If the search starts at the beginning of `context`, then the `Text`
+/// start state is used. (Since `^` corresponds to
+/// `hir::Anchor::Start`.)
+/// 2. If the search starts at a position immediately following a line
+/// terminator, then the `Line` start state is used. (Since `(?m:^)`
+/// corresponds to `hir::Anchor::StartLF`.)
+/// 3. If the search starts at a position immediately following a byte
+/// classified as a "word" character (`[_0-9a-zA-Z]`), then the `WordByte`
+/// start state is used. (Since `(?-u:\b)` corresponds to a word boundary.)
+/// 4. Otherwise, if the search starts at a position immediately following
+/// a byte that is not classified as a "word" character (`[^_0-9a-zA-Z]`),
+/// then the `NonWordByte` start state is used. (Since `(?-u:\B)`
+/// corresponds to a not-word-boundary.)
+///
+/// (N.B. Unicode word boundaries are not supported by the DFA because they
+/// require multi-byte look-around and this is difficult to support in a DFA.)
+///
+/// To further complicate things, we also support constructing individual
+/// anchored start states for each pattern in the DFA. (Which is required to
+/// implement overlapping regexes correctly, but is also generally useful.)
+/// Thus, when individual start states for each pattern are enabled, then the
+/// total number of start states represented is `4 + (4 * #patterns)`, where
+/// the 4 comes from each of the 4 possibilities above. The first 4 represents
+/// the starting states for the entire DFA, which support searching for
+/// multiple patterns simultaneously (possibly unanchored).
+///
+/// If individual start states are disabled, then this will only store 4
+/// start states. Typically, individual start states are only enabled when
+/// constructing the reverse DFA for regex matching. But they are also useful
+/// for building DFAs that can search for a specific pattern or even to support
+/// both anchored and unanchored searches with the same DFA.
+///
+/// Note though that while the start table always has either `4` or
+/// `4 + (4 * #patterns)` starting state *ids*, the total number of states
+/// might be considerably smaller. That is, many of the IDs may be duplicative.
+/// (For example, if a regex doesn't have a `\b` sub-pattern, then there's no
+/// reason to generate a unique starting state for handling word boundaries.
+/// Similarly for start/end anchors.)
+#[derive(Clone)]
+pub(crate) struct StartTable<T> {
+ /// The initial start state IDs.
+ ///
+ /// In practice, T is either `Vec<u32>` or `&[u32]`.
+ ///
+ /// The first `2 * stride` (currently always 8) entries always correspond
+ /// to the starts states for the entire DFA, with the first 4 entries being
+ /// for unanchored searches and the second 4 entries being for anchored
+ /// searches. To keep things simple, we always use 8 entries even if the
+ /// `StartKind` is not both.
+ ///
+ /// After that, there are `stride * patterns` state IDs, where `patterns`
+ /// may be zero in the case of a DFA with no patterns or in the case where
+ /// the DFA was built without enabling starting states for each pattern.
+ table: T,
+ /// The starting state configuration supported. When 'both', both
+ /// unanchored and anchored searches work. When 'unanchored', anchored
+ /// searches panic. When 'anchored', unanchored searches panic.
+ kind: StartKind,
+ /// The start state configuration for every possible byte.
+ start_map: StartByteMap,
+ /// The number of starting state IDs per pattern.
+ stride: usize,
+ /// The total number of patterns for which starting states are encoded.
+ /// This is `None` for DFAs that were built without start states for each
+ /// pattern. Thus, one cannot use this field to say how many patterns
+ /// are in the DFA in all cases. It is specific to how many patterns are
+ /// represented in this start table.
+ pattern_len: Option<usize>,
+ /// The universal starting state for unanchored searches. This is only
+ /// present when the DFA supports unanchored searches and when all starting
+ /// state IDs for an unanchored search are equivalent.
+ universal_start_unanchored: Option<StateID>,
+ /// The universal starting state for anchored searches. This is only
+ /// present when the DFA supports anchored searches and when all starting
+ /// state IDs for an anchored search are equivalent.
+ universal_start_anchored: Option<StateID>,
+}
+
+#[cfg(feature = "dfa-build")]
+impl StartTable<Vec<u32>> {
+ /// Create a valid set of start states all pointing to the dead state.
+ ///
+ /// When the corresponding DFA is constructed with start states for each
+ /// pattern, then `patterns` should be the number of patterns. Otherwise,
+ /// it should be zero.
+ ///
+ /// If the total table size could exceed the allocatable limit, then this
+ /// returns an error. In practice, this is unlikely to be able to occur,
+ /// since it's likely that allocation would have failed long before it got
+ /// to this point.
+ fn dead(
+ kind: StartKind,
+ lookm: &LookMatcher,
+ pattern_len: Option<usize>,
+ ) -> Result<StartTable<Vec<u32>>, BuildError> {
+ if let Some(len) = pattern_len {
+ assert!(len <= PatternID::LIMIT);
+ }
+ let stride = Start::len();
+ // OK because 2*4 is never going to overflow anything.
+ let starts_len = stride.checked_mul(2).unwrap();
+ let pattern_starts_len =
+ match stride.checked_mul(pattern_len.unwrap_or(0)) {
+ Some(x) => x,
+ None => return Err(BuildError::too_many_start_states()),
+ };
+ let table_len = match starts_len.checked_add(pattern_starts_len) {
+ Some(x) => x,
+ None => return Err(BuildError::too_many_start_states()),
+ };
+ if let Err(_) = isize::try_from(table_len) {
+ return Err(BuildError::too_many_start_states());
+ }
+ let table = vec![DEAD.as_u32(); table_len];
+ let start_map = StartByteMap::new(lookm);
+ Ok(StartTable {
+ table,
+ kind,
+ start_map,
+ stride,
+ pattern_len,
+ universal_start_unanchored: None,
+ universal_start_anchored: None,
+ })
+ }
+}
+
+impl<'a> StartTable<&'a [u32]> {
+ /// Deserialize a table of start state IDs starting at the beginning of
+ /// `slice`. Upon success, return the total number of bytes read along with
+ /// the table of starting state IDs.
+ ///
+ /// If there was a problem deserializing any part of the starting IDs,
+ /// then this returns an error. Notably, if the given slice does not have
+ /// the same alignment as `StateID`, then this will return an error (among
+ /// other possible errors).
+ ///
+ /// This is guaranteed to execute in constant time.
+ ///
+ /// # Safety
+ ///
+ /// This routine is not safe because it does not check the validity of the
+ /// starting state IDs themselves. In particular, the number of starting
+ /// IDs can be of variable length, so it's possible that checking their
+ /// validity cannot be done in constant time. An invalid starting state
+ /// ID is not safe because other code may rely on the starting IDs being
+ /// correct (such as explicit bounds check elision). Therefore, an invalid
+ /// start ID can lead to undefined behavior.
+ ///
+ /// Callers that use this function must either pass on the safety invariant
+ /// or guarantee that the bytes given contain valid starting state IDs.
+ /// This guarantee is upheld by the bytes written by `write_to`.
+ unsafe fn from_bytes_unchecked(
+ mut slice: &'a [u8],
+ ) -> Result<(StartTable<&'a [u32]>, usize), DeserializeError> {
+ let slice_start = slice.as_ptr().as_usize();
+
+ let (kind, nr) = StartKind::from_bytes(slice)?;
+ slice = &slice[nr..];
+
+ let (start_map, nr) = StartByteMap::from_bytes(slice)?;
+ slice = &slice[nr..];
+
+ let (stride, nr) =
+ wire::try_read_u32_as_usize(slice, "start table stride")?;
+ slice = &slice[nr..];
+ if stride != Start::len() {
+ return Err(DeserializeError::generic(
+ "invalid starting table stride",
+ ));
+ }
+
+ let (maybe_pattern_len, nr) =
+ wire::try_read_u32_as_usize(slice, "start table patterns")?;
+ slice = &slice[nr..];
+ let pattern_len = if maybe_pattern_len.as_u32() == u32::MAX {
+ None
+ } else {
+ Some(maybe_pattern_len)
+ };
+ if pattern_len.map_or(false, |len| len > PatternID::LIMIT) {
+ return Err(DeserializeError::generic(
+ "invalid number of patterns",
+ ));
+ }
+
+ let (universal_unanchored, nr) =
+ wire::try_read_u32(slice, "universal unanchored start")?;
+ slice = &slice[nr..];
+ let universal_start_unanchored = if universal_unanchored == u32::MAX {
+ None
+ } else {
+ Some(StateID::try_from(universal_unanchored).map_err(|e| {
+ DeserializeError::state_id_error(
+ e,
+ "universal unanchored start",
+ )
+ })?)
+ };
+
+ let (universal_anchored, nr) =
+ wire::try_read_u32(slice, "universal anchored start")?;
+ slice = &slice[nr..];
+ let universal_start_anchored = if universal_anchored == u32::MAX {
+ None
+ } else {
+ Some(StateID::try_from(universal_anchored).map_err(|e| {
+ DeserializeError::state_id_error(e, "universal anchored start")
+ })?)
+ };
+
+ let pattern_table_size = wire::mul(
+ stride,
+ pattern_len.unwrap_or(0),
+ "invalid pattern length",
+ )?;
+ // Our start states always start with a two stride of start states for
+ // the entire automaton. The first stride is for unanchored starting
+ // states and the second stride is for anchored starting states. What
+ // follows it are an optional set of start states for each pattern.
+ let start_state_len = wire::add(
+ wire::mul(2, stride, "start state stride too big")?,
+ pattern_table_size,
+ "invalid 'any' pattern starts size",
+ )?;
+ let table_bytes_len = wire::mul(
+ start_state_len,
+ StateID::SIZE,
+ "pattern table bytes length",
+ )?;
+ wire::check_slice_len(slice, table_bytes_len, "start ID table")?;
+ wire::check_alignment::<StateID>(slice)?;
+ let table_bytes = &slice[..table_bytes_len];
+ slice = &slice[table_bytes_len..];
+ // SAFETY: Since StateID is always representable as a u32, all we need
+ // to do is ensure that we have the proper length and alignment. We've
+ // checked both above, so the cast below is safe.
+ //
+ // N.B. This is the only not-safe code in this function.
+ let table = core::slice::from_raw_parts(
+ table_bytes.as_ptr().cast::<u32>(),
+ start_state_len,
+ );
+ let st = StartTable {
+ table,
+ kind,
+ start_map,
+ stride,
+ pattern_len,
+ universal_start_unanchored,
+ universal_start_anchored,
+ };
+ Ok((st, slice.as_ptr().as_usize() - slice_start))
+ }
+}
+
+impl<T: AsRef<[u32]>> StartTable<T> {
+ /// Writes a serialized form of this start table to the buffer given. If
+ /// the buffer is too small, then an error is returned. To determine how
+ /// big the buffer must be, use `write_to_len`.
+ fn write_to<E: Endian>(
+ &self,
+ mut dst: &mut [u8],
+ ) -> Result<usize, SerializeError> {
+ let nwrite = self.write_to_len();
+ if dst.len() < nwrite {
+ return Err(SerializeError::buffer_too_small(
+ "starting table ids",
+ ));
+ }
+ dst = &mut dst[..nwrite];
+
+ // write start kind
+ let nw = self.kind.write_to::<E>(dst)?;
+ dst = &mut dst[nw..];
+ // write start byte map
+ let nw = self.start_map.write_to(dst)?;
+ dst = &mut dst[nw..];
+ // write stride
+ // Unwrap is OK since the stride is always 4 (currently).
+ E::write_u32(u32::try_from(self.stride).unwrap(), dst);
+ dst = &mut dst[size_of::<u32>()..];
+ // write pattern length
+ // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
+ E::write_u32(
+ u32::try_from(self.pattern_len.unwrap_or(0xFFFF_FFFF)).unwrap(),
+ dst,
+ );
+ dst = &mut dst[size_of::<u32>()..];
+ // write universal start unanchored state id, u32::MAX if absent
+ E::write_u32(
+ self.universal_start_unanchored
+ .map_or(u32::MAX, |sid| sid.as_u32()),
+ dst,
+ );
+ dst = &mut dst[size_of::<u32>()..];
+ // write universal start anchored state id, u32::MAX if absent
+ E::write_u32(
+ self.universal_start_anchored.map_or(u32::MAX, |sid| sid.as_u32()),
+ dst,
+ );
+ dst = &mut dst[size_of::<u32>()..];
+ // write start IDs
+ for &sid in self.table() {
+ let n = wire::write_state_id::<E>(sid, &mut dst);
+ dst = &mut dst[n..];
+ }
+ Ok(nwrite)
+ }
+
+ /// Returns the number of bytes the serialized form of this start ID table
+ /// will use.
+ fn write_to_len(&self) -> usize {
+ self.kind.write_to_len()
+ + self.start_map.write_to_len()
+ + size_of::<u32>() // stride
+ + size_of::<u32>() // # patterns
+ + size_of::<u32>() // universal unanchored start
+ + size_of::<u32>() // universal anchored start
+ + (self.table().len() * StateID::SIZE)
+ }
+
+ /// Validates that every state ID in this start table is valid by checking
+ /// it against the given transition table (which must be for the same DFA).
+ ///
+ /// That is, every state ID can be used to correctly index a state.
+ fn validate(
+ &self,
+ tt: &TransitionTable<T>,
+ ) -> Result<(), DeserializeError> {
+ if !self.universal_start_unanchored.map_or(true, |s| tt.is_valid(s)) {
+ return Err(DeserializeError::generic(
+ "found invalid universal unanchored starting state ID",
+ ));
+ }
+ if !self.universal_start_anchored.map_or(true, |s| tt.is_valid(s)) {
+ return Err(DeserializeError::generic(
+ "found invalid universal anchored starting state ID",
+ ));
+ }
+ for &id in self.table() {
+ if !tt.is_valid(id) {
+ return Err(DeserializeError::generic(
+ "found invalid starting state ID",
+ ));
+ }
+ }
+ Ok(())
+ }
+
+ /// Converts this start list to a borrowed value.
+ fn as_ref(&self) -> StartTable<&'_ [u32]> {
+ StartTable {
+ table: self.table.as_ref(),
+ kind: self.kind,
+ start_map: self.start_map.clone(),
+ stride: self.stride,
+ pattern_len: self.pattern_len,
+ universal_start_unanchored: self.universal_start_unanchored,
+ universal_start_anchored: self.universal_start_anchored,
+ }
+ }
+
+ /// Converts this start list to an owned value.
+ #[cfg(feature = "alloc")]
+ fn to_owned(&self) -> StartTable<alloc::vec::Vec<u32>> {
+ StartTable {
+ table: self.table.as_ref().to_vec(),
+ kind: self.kind,
+ start_map: self.start_map.clone(),
+ stride: self.stride,
+ pattern_len: self.pattern_len,
+ universal_start_unanchored: self.universal_start_unanchored,
+ universal_start_anchored: self.universal_start_anchored,
+ }
+ }
+
+ /// Return the start state for the given input and starting configuration.
+ /// This returns an error if the input configuration is not supported by
+ /// this DFA. For example, requesting an unanchored search when the DFA was
+ /// not built with unanchored starting states. Or asking for an anchored
+ /// pattern search with an invalid pattern ID or on a DFA that was not
+ /// built with start states for each pattern.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn start(
+ &self,
+ input: &Input<'_>,
+ start: Start,
+ ) -> Result<StateID, MatchError> {
+ let start_index = start.as_usize();
+ let mode = input.get_anchored();
+ let index = match mode {
+ Anchored::No => {
+ if !self.kind.has_unanchored() {
+ return Err(MatchError::unsupported_anchored(mode));
+ }
+ start_index
+ }
+ Anchored::Yes => {
+ if !self.kind.has_anchored() {
+ return Err(MatchError::unsupported_anchored(mode));
+ }
+ self.stride + start_index
+ }
+ Anchored::Pattern(pid) => {
+ let len = match self.pattern_len {
+ None => {
+ return Err(MatchError::unsupported_anchored(mode))
+ }
+ Some(len) => len,
+ };
+ if pid.as_usize() >= len {
+ return Ok(DEAD);
+ }
+ (2 * self.stride)
+ + (self.stride * pid.as_usize())
+ + start_index
+ }
+ };
+ Ok(self.table()[index])
+ }
+
+ /// Returns an iterator over all start state IDs in this table.
+ ///
+ /// Each item is a triple of: start state ID, the start state type and the
+ /// pattern ID (if any).
+ fn iter(&self) -> StartStateIter<'_> {
+ StartStateIter { st: self.as_ref(), i: 0 }
+ }
+
+ /// Returns the table as a slice of state IDs.
+ fn table(&self) -> &[StateID] {
+ wire::u32s_to_state_ids(self.table.as_ref())
+ }
+
+ /// Return the memory usage, in bytes, of this start list.
+ ///
+ /// This does not include the size of a `StartList` value itself.
+ fn memory_usage(&self) -> usize {
+ self.table().len() * StateID::SIZE
+ }
+}
+
+#[cfg(feature = "dfa-build")]
+impl<T: AsMut<[u32]>> StartTable<T> {
+ /// Set the start state for the given index and pattern.
+ ///
+ /// If the pattern ID or state ID are not valid, then this will panic.
+ fn set_start(&mut self, anchored: Anchored, start: Start, id: StateID) {
+ let start_index = start.as_usize();
+ let index = match anchored {
+ Anchored::No => start_index,
+ Anchored::Yes => self.stride + start_index,
+ Anchored::Pattern(pid) => {
+ let pid = pid.as_usize();
+ let len = self
+ .pattern_len
+ .expect("start states for each pattern enabled");
+ assert!(pid < len, "invalid pattern ID {:?}", pid);
+ self.stride
+ .checked_mul(pid)
+ .unwrap()
+ .checked_add(self.stride.checked_mul(2).unwrap())
+ .unwrap()
+ .checked_add(start_index)
+ .unwrap()
+ }
+ };
+ self.table_mut()[index] = id;
+ }
+
+ /// Returns the table as a mutable slice of state IDs.
+ fn table_mut(&mut self) -> &mut [StateID] {
+ wire::u32s_to_state_ids_mut(self.table.as_mut())
+ }
+}
+
+/// An iterator over start state IDs.
+///
+/// This iterator yields a triple of start state ID, the anchored mode and the
+/// start state type. If a pattern ID is relevant, then the anchored mode will
+/// contain it. Start states with an anchored mode containing a pattern ID will
+/// only occur when the DFA was compiled with start states for each pattern
+/// (which is disabled by default).
+pub(crate) struct StartStateIter<'a> {
+ st: StartTable<&'a [u32]>,
+ i: usize,
+}
+
+impl<'a> Iterator for StartStateIter<'a> {
+ type Item = (StateID, Anchored, Start);
+
+ fn next(&mut self) -> Option<(StateID, Anchored, Start)> {
+ let i = self.i;
+ let table = self.st.table();
+ if i >= table.len() {
+ return None;
+ }
+ self.i += 1;
+
+ // This unwrap is okay since the stride of the starting state table
+ // must always match the number of start state types.
+ let start_type = Start::from_usize(i % self.st.stride).unwrap();
+ let anchored = if i < self.st.stride {
+ Anchored::No
+ } else if i < (2 * self.st.stride) {
+ Anchored::Yes
+ } else {
+ let pid = (i - (2 * self.st.stride)) / self.st.stride;
+ Anchored::Pattern(PatternID::new(pid).unwrap())
+ };
+ Some((table[i], anchored, start_type))
+ }
+}
+
+/// This type represents that patterns that should be reported whenever a DFA
+/// enters a match state. This structure exists to support DFAs that search for
+/// matches for multiple regexes.
+///
+/// This structure relies on the fact that all match states in a DFA occur
+/// contiguously in the DFA's transition table. (See dfa/special.rs for a more
+/// detailed breakdown of the representation.) Namely, when a match occurs, we
+/// know its state ID. Since we know the start and end of the contiguous region
+/// of match states, we can use that to compute the position at which the match
+/// state occurs. That in turn is used as an offset into this structure.
+#[derive(Clone, Debug)]
+struct MatchStates<T> {
+ /// Slices is a flattened sequence of pairs, where each pair points to a
+ /// sub-slice of pattern_ids. The first element of the pair is an offset
+ /// into pattern_ids and the second element of the pair is the number
+ /// of 32-bit pattern IDs starting at that position. That is, each pair
+ /// corresponds to a single DFA match state and its corresponding match
+ /// IDs. The number of pairs always corresponds to the number of distinct
+ /// DFA match states.
+ ///
+ /// In practice, T is either Vec<u32> or &[u32].
+ slices: T,
+ /// A flattened sequence of pattern IDs for each DFA match state. The only
+ /// way to correctly read this sequence is indirectly via `slices`.
+ ///
+ /// In practice, T is either Vec<u32> or &[u32].
+ pattern_ids: T,
+ /// The total number of unique patterns represented by these match states.
+ pattern_len: usize,
+}
+
+impl<'a> MatchStates<&'a [u32]> {
+ unsafe fn from_bytes_unchecked(
+ mut slice: &'a [u8],
+ ) -> Result<(MatchStates<&'a [u32]>, usize), DeserializeError> {
+ let slice_start = slice.as_ptr().as_usize();
+
+ // Read the total number of match states.
+ let (state_len, nr) =
+ wire::try_read_u32_as_usize(slice, "match state length")?;
+ slice = &slice[nr..];
+
+ // Read the slice start/length pairs.
+ let pair_len = wire::mul(2, state_len, "match state offset pairs")?;
+ let slices_bytes_len = wire::mul(
+ pair_len,
+ PatternID::SIZE,
+ "match state slice offset byte length",
+ )?;
+ wire::check_slice_len(slice, slices_bytes_len, "match state slices")?;
+ wire::check_alignment::<PatternID>(slice)?;
+ let slices_bytes = &slice[..slices_bytes_len];
+ slice = &slice[slices_bytes_len..];
+ // SAFETY: Since PatternID is always representable as a u32, all we
+ // need to do is ensure that we have the proper length and alignment.
+ // We've checked both above, so the cast below is safe.
+ //
+ // N.B. This is one of the few not-safe snippets in this function,
+ // so we mark it explicitly to call it out.
+ let slices = core::slice::from_raw_parts(
+ slices_bytes.as_ptr().cast::<u32>(),
+ pair_len,
+ );
+
+ // Read the total number of unique pattern IDs (which is always 1 more
+ // than the maximum pattern ID in this automaton, since pattern IDs are
+ // handed out contiguously starting at 0).
+ let (pattern_len, nr) =
+ wire::try_read_u32_as_usize(slice, "pattern length")?;
+ slice = &slice[nr..];
+
+ // Now read the pattern ID length. We don't need to store this
+ // explicitly, but we need it to know how many pattern IDs to read.
+ let (idlen, nr) =
+ wire::try_read_u32_as_usize(slice, "pattern ID length")?;
+ slice = &slice[nr..];
+
+ // Read the actual pattern IDs.
+ let pattern_ids_len =
+ wire::mul(idlen, PatternID::SIZE, "pattern ID byte length")?;
+ wire::check_slice_len(slice, pattern_ids_len, "match pattern IDs")?;
+ wire::check_alignment::<PatternID>(slice)?;
+ let pattern_ids_bytes = &slice[..pattern_ids_len];
+ slice = &slice[pattern_ids_len..];
+ // SAFETY: Since PatternID is always representable as a u32, all we
+ // need to do is ensure that we have the proper length and alignment.
+ // We've checked both above, so the cast below is safe.
+ //
+ // N.B. This is one of the few not-safe snippets in this function,
+ // so we mark it explicitly to call it out.
+ let pattern_ids = core::slice::from_raw_parts(
+ pattern_ids_bytes.as_ptr().cast::<u32>(),
+ idlen,
+ );
+
+ let ms = MatchStates { slices, pattern_ids, pattern_len };
+ Ok((ms, slice.as_ptr().as_usize() - slice_start))
+ }
+}
+
+#[cfg(feature = "dfa-build")]
+impl MatchStates<Vec<u32>> {
+ fn empty(pattern_len: usize) -> MatchStates<Vec<u32>> {
+ assert!(pattern_len <= PatternID::LIMIT);
+ MatchStates { slices: vec![], pattern_ids: vec![], pattern_len }
+ }
+
+ fn new(
+ matches: &BTreeMap<StateID, Vec<PatternID>>,
+ pattern_len: usize,
+ ) -> Result<MatchStates<Vec<u32>>, BuildError> {
+ let mut m = MatchStates::empty(pattern_len);
+ for (_, pids) in matches.iter() {
+ let start = PatternID::new(m.pattern_ids.len())
+ .map_err(|_| BuildError::too_many_match_pattern_ids())?;
+ m.slices.push(start.as_u32());
+ // This is always correct since the number of patterns in a single
+ // match state can never exceed maximum number of allowable
+ // patterns. Why? Because a pattern can only appear once in a
+ // particular match state, by construction. (And since our pattern
+ // ID limit is one less than u32::MAX, we're guaranteed that the
+ // length fits in a u32.)
+ m.slices.push(u32::try_from(pids.len()).unwrap());
+ for &pid in pids {
+ m.pattern_ids.push(pid.as_u32());
+ }
+ }
+ m.pattern_len = pattern_len;
+ Ok(m)
+ }
+
+ fn new_with_map(
+ &self,
+ matches: &BTreeMap<StateID, Vec<PatternID>>,
+ ) -> Result<MatchStates<Vec<u32>>, BuildError> {
+ MatchStates::new(matches, self.pattern_len)
+ }
+}
+
+impl<T: AsRef<[u32]>> MatchStates<T> {
+ /// Writes a serialized form of these match states to the buffer given. If
+ /// the buffer is too small, then an error is returned. To determine how
+ /// big the buffer must be, use `write_to_len`.
+ fn write_to<E: Endian>(
+ &self,
+ mut dst: &mut [u8],
+ ) -> Result<usize, SerializeError> {
+ let nwrite = self.write_to_len();
+ if dst.len() < nwrite {
+ return Err(SerializeError::buffer_too_small("match states"));
+ }
+ dst = &mut dst[..nwrite];
+
+ // write state ID length
+ // Unwrap is OK since number of states is guaranteed to fit in a u32.
+ E::write_u32(u32::try_from(self.len()).unwrap(), dst);
+ dst = &mut dst[size_of::<u32>()..];
+
+ // write slice offset pairs
+ for &pid in self.slices() {
+ let n = wire::write_pattern_id::<E>(pid, &mut dst);
+ dst = &mut dst[n..];
+ }
+
+ // write unique pattern ID length
+ // Unwrap is OK since number of patterns is guaranteed to fit in a u32.
+ E::write_u32(u32::try_from(self.pattern_len).unwrap(), dst);
+ dst = &mut dst[size_of::<u32>()..];
+
+ // write pattern ID length
+ // Unwrap is OK since we check at construction (and deserialization)
+ // that the number of patterns is representable as a u32.
+ E::write_u32(u32::try_from(self.pattern_ids().len()).unwrap(), dst);
+ dst = &mut dst[size_of::<u32>()..];
+
+ // write pattern IDs
+ for &pid in self.pattern_ids() {
+ let n = wire::write_pattern_id::<E>(pid, &mut dst);
+ dst = &mut dst[n..];
+ }
+
+ Ok(nwrite)
+ }
+
+ /// Returns the number of bytes the serialized form of these match states
+ /// will use.
+ fn write_to_len(&self) -> usize {
+ size_of::<u32>() // match state length
+ + (self.slices().len() * PatternID::SIZE)
+ + size_of::<u32>() // unique pattern ID length
+ + size_of::<u32>() // pattern ID length
+ + (self.pattern_ids().len() * PatternID::SIZE)
+ }
+
+ /// Valides that the match state info is itself internally consistent and
+ /// consistent with the recorded match state region in the given DFA.
+ fn validate(&self, dfa: &DFA<T>) -> Result<(), DeserializeError> {
+ if self.len() != dfa.special.match_len(dfa.stride()) {
+ return Err(DeserializeError::generic(
+ "match state length mismatch",
+ ));
+ }
+ for si in 0..self.len() {
+ let start = self.slices()[si * 2].as_usize();
+ let len = self.slices()[si * 2 + 1].as_usize();
+ if start >= self.pattern_ids().len() {
+ return Err(DeserializeError::generic(
+ "invalid pattern ID start offset",
+ ));
+ }
+ if start + len > self.pattern_ids().len() {
+ return Err(DeserializeError::generic(
+ "invalid pattern ID length",
+ ));
+ }
+ for mi in 0..len {
+ let pid = self.pattern_id(si, mi);
+ if pid.as_usize() >= self.pattern_len {
+ return Err(DeserializeError::generic(
+ "invalid pattern ID",
+ ));
+ }
+ }
+ }
+ Ok(())
+ }
+
+ /// Converts these match states back into their map form. This is useful
+ /// when shuffling states, as the normal MatchStates representation is not
+ /// amenable to easy state swapping. But with this map, to swap id1 and
+ /// id2, all you need to do is:
+ ///
+ /// if let Some(pids) = map.remove(&id1) {
+ /// map.insert(id2, pids);
+ /// }
+ ///
+ /// Once shuffling is done, use MatchStates::new to convert back.
+ #[cfg(feature = "dfa-build")]
+ fn to_map(&self, dfa: &DFA<T>) -> BTreeMap<StateID, Vec<PatternID>> {
+ let mut map = BTreeMap::new();
+ for i in 0..self.len() {
+ let mut pids = vec![];
+ for j in 0..self.pattern_len(i) {
+ pids.push(self.pattern_id(i, j));
+ }
+ map.insert(self.match_state_id(dfa, i), pids);
+ }
+ map
+ }
+
+ /// Converts these match states to a borrowed value.
+ fn as_ref(&self) -> MatchStates<&'_ [u32]> {
+ MatchStates {
+ slices: self.slices.as_ref(),
+ pattern_ids: self.pattern_ids.as_ref(),
+ pattern_len: self.pattern_len,
+ }
+ }
+
+ /// Converts these match states to an owned value.
+ #[cfg(feature = "alloc")]
+ fn to_owned(&self) -> MatchStates<alloc::vec::Vec<u32>> {
+ MatchStates {
+ slices: self.slices.as_ref().to_vec(),
+ pattern_ids: self.pattern_ids.as_ref().to_vec(),
+ pattern_len: self.pattern_len,
+ }
+ }
+
+ /// Returns the match state ID given the match state index. (Where the
+ /// first match state corresponds to index 0.)
+ ///
+ /// This panics if there is no match state at the given index.
+ fn match_state_id(&self, dfa: &DFA<T>, index: usize) -> StateID {
+ assert!(dfa.special.matches(), "no match states to index");
+ // This is one of the places where we rely on the fact that match
+ // states are contiguous in the transition table. Namely, that the
+ // first match state ID always corresponds to dfa.special.min_start.
+ // From there, since we know the stride, we can compute the ID of any
+ // match state given its index.
+ let stride2 = u32::try_from(dfa.stride2()).unwrap();
+ let offset = index.checked_shl(stride2).unwrap();
+ let id = dfa.special.min_match.as_usize().checked_add(offset).unwrap();
+ let sid = StateID::new(id).unwrap();
+ assert!(dfa.is_match_state(sid));
+ sid
+ }
+
+ /// Returns the pattern ID at the given match index for the given match
+ /// state.
+ ///
+ /// The match state index is the state index minus the state index of the
+ /// first match state in the DFA.
+ ///
+ /// The match index is the index of the pattern ID for the given state.
+ /// The index must be less than `self.pattern_len(state_index)`.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn pattern_id(&self, state_index: usize, match_index: usize) -> PatternID {
+ self.pattern_id_slice(state_index)[match_index]
+ }
+
+ /// Returns the number of patterns in the given match state.
+ ///
+ /// The match state index is the state index minus the state index of the
+ /// first match state in the DFA.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn pattern_len(&self, state_index: usize) -> usize {
+ self.slices()[state_index * 2 + 1].as_usize()
+ }
+
+ /// Returns all of the pattern IDs for the given match state index.
+ ///
+ /// The match state index is the state index minus the state index of the
+ /// first match state in the DFA.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn pattern_id_slice(&self, state_index: usize) -> &[PatternID] {
+ let start = self.slices()[state_index * 2].as_usize();
+ let len = self.pattern_len(state_index);
+ &self.pattern_ids()[start..start + len]
+ }
+
+ /// Returns the pattern ID offset slice of u32 as a slice of PatternID.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn slices(&self) -> &[PatternID] {
+ wire::u32s_to_pattern_ids(self.slices.as_ref())
+ }
+
+ /// Returns the total number of match states.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn len(&self) -> usize {
+ assert_eq!(0, self.slices().len() % 2);
+ self.slices().len() / 2
+ }
+
+ /// Returns the pattern ID slice of u32 as a slice of PatternID.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn pattern_ids(&self) -> &[PatternID] {
+ wire::u32s_to_pattern_ids(self.pattern_ids.as_ref())
+ }
+
+ /// Return the memory usage, in bytes, of these match pairs.
+ fn memory_usage(&self) -> usize {
+ (self.slices().len() + self.pattern_ids().len()) * PatternID::SIZE
+ }
+}
+
+/// A common set of flags for both dense and sparse DFAs. This primarily
+/// centralizes the serialization format of these flags at a bitset.
+#[derive(Clone, Copy, Debug)]
+pub(crate) struct Flags {
+ /// Whether the DFA can match the empty string. When this is false, all
+ /// matches returned by this DFA are guaranteed to have non-zero length.
+ pub(crate) has_empty: bool,
+ /// Whether the DFA should only produce matches with spans that correspond
+ /// to valid UTF-8. This also includes omitting any zero-width matches that
+ /// split the UTF-8 encoding of a codepoint.
+ pub(crate) is_utf8: bool,
+ /// Whether the DFA is always anchored or not, regardless of `Input`
+ /// configuration. This is useful for avoiding a reverse scan even when
+ /// executing unanchored searches.
+ pub(crate) is_always_start_anchored: bool,
+}
+
+impl Flags {
+ /// Creates a set of flags for a DFA from an NFA.
+ ///
+ /// N.B. This constructor was defined at the time of writing because all
+ /// of the flags are derived directly from the NFA. If this changes in the
+ /// future, we might be more thoughtful about how the `Flags` value is
+ /// itself built.
+ #[cfg(feature = "dfa-build")]
+ fn from_nfa(nfa: &thompson::NFA) -> Flags {
+ Flags {
+ has_empty: nfa.has_empty(),
+ is_utf8: nfa.is_utf8(),
+ is_always_start_anchored: nfa.is_always_start_anchored(),
+ }
+ }
+
+ /// Deserializes the flags from the given slice. On success, this also
+ /// returns the number of bytes read from the slice.
+ pub(crate) fn from_bytes(
+ slice: &[u8],
+ ) -> Result<(Flags, usize), DeserializeError> {
+ let (bits, nread) = wire::try_read_u32(slice, "flag bitset")?;
+ let flags = Flags {
+ has_empty: bits & (1 << 0) != 0,
+ is_utf8: bits & (1 << 1) != 0,
+ is_always_start_anchored: bits & (1 << 2) != 0,
+ };
+ Ok((flags, nread))
+ }
+
+ /// Writes these flags to the given byte slice. If the buffer is too small,
+ /// then an error is returned. To determine how big the buffer must be,
+ /// use `write_to_len`.
+ pub(crate) fn write_to<E: Endian>(
+ &self,
+ dst: &mut [u8],
+ ) -> Result<usize, SerializeError> {
+ fn bool_to_int(b: bool) -> u32 {
+ if b {
+ 1
+ } else {
+ 0
+ }
+ }
+
+ let nwrite = self.write_to_len();
+ if dst.len() < nwrite {
+ return Err(SerializeError::buffer_too_small("flag bitset"));
+ }
+ let bits = (bool_to_int(self.has_empty) << 0)
+ | (bool_to_int(self.is_utf8) << 1)
+ | (bool_to_int(self.is_always_start_anchored) << 2);
+ E::write_u32(bits, dst);
+ Ok(nwrite)
+ }
+
+ /// Returns the number of bytes the serialized form of these flags
+ /// will use.
+ pub(crate) fn write_to_len(&self) -> usize {
+ size_of::<u32>()
+ }
+}
+
+/// An iterator over all states in a DFA.
+///
+/// This iterator yields a tuple for each state. The first element of the
+/// tuple corresponds to a state's identifier, and the second element
+/// corresponds to the state itself (comprised of its transitions).
+///
+/// `'a` corresponding to the lifetime of original DFA, `T` corresponds to
+/// the type of the transition table itself.
+pub(crate) struct StateIter<'a, T> {
+ tt: &'a TransitionTable<T>,
+ it: iter::Enumerate<slice::Chunks<'a, StateID>>,
+}
+
+impl<'a, T: AsRef<[u32]>> Iterator for StateIter<'a, T> {
+ type Item = State<'a>;
+
+ fn next(&mut self) -> Option<State<'a>> {
+ self.it.next().map(|(index, _)| {
+ let id = self.tt.to_state_id(index);
+ self.tt.state(id)
+ })
+ }
+}
+
+/// An immutable representation of a single DFA state.
+///
+/// `'a` correspondings to the lifetime of a DFA's transition table.
+pub(crate) struct State<'a> {
+ id: StateID,
+ stride2: usize,
+ transitions: &'a [StateID],
+}
+
+impl<'a> State<'a> {
+ /// Return an iterator over all transitions in this state. This yields
+ /// a number of transitions equivalent to the alphabet length of the
+ /// corresponding DFA.
+ ///
+ /// Each transition is represented by a tuple. The first element is
+ /// the input byte for that transition and the second element is the
+ /// transitions itself.
+ pub(crate) fn transitions(&self) -> StateTransitionIter<'_> {
+ StateTransitionIter {
+ len: self.transitions.len(),
+ it: self.transitions.iter().enumerate(),
+ }
+ }
+
+ /// Return an iterator over a sparse representation of the transitions in
+ /// this state. Only non-dead transitions are returned.
+ ///
+ /// The "sparse" representation in this case corresponds to a sequence of
+ /// triples. The first two elements of the triple comprise an inclusive
+ /// byte range while the last element corresponds to the transition taken
+ /// for all bytes in the range.
+ ///
+ /// This is somewhat more condensed than the classical sparse
+ /// representation (where you have an element for every non-dead
+ /// transition), but in practice, checking if a byte is in a range is very
+ /// cheap and using ranges tends to conserve quite a bit more space.
+ pub(crate) fn sparse_transitions(&self) -> StateSparseTransitionIter<'_> {
+ StateSparseTransitionIter { dense: self.transitions(), cur: None }
+ }
+
+ /// Returns the identifier for this state.
+ pub(crate) fn id(&self) -> StateID {
+ self.id
+ }
+
+ /// Analyzes this state to determine whether it can be accelerated. If so,
+ /// it returns an accelerator that contains at least one byte.
+ #[cfg(feature = "dfa-build")]
+ fn accelerate(&self, classes: &ByteClasses) -> Option<Accel> {
+ // We just try to add bytes to our accelerator. Once adding fails
+ // (because we've added too many bytes), then give up.
+ let mut accel = Accel::new();
+ for (class, id) in self.transitions() {
+ if id == self.id() {
+ continue;
+ }
+ for unit in classes.elements(class) {
+ if let Some(byte) = unit.as_u8() {
+ if !accel.add(byte) {
+ return None;
+ }
+ }
+ }
+ }
+ if accel.is_empty() {
+ None
+ } else {
+ Some(accel)
+ }
+ }
+}
+
+impl<'a> fmt::Debug for State<'a> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ for (i, (start, end, sid)) in self.sparse_transitions().enumerate() {
+ let id = if f.alternate() {
+ sid.as_usize()
+ } else {
+ sid.as_usize() >> self.stride2
+ };
+ if i > 0 {
+ write!(f, ", ")?;
+ }
+ if start == end {
+ write!(f, "{:?} => {:?}", start, id)?;
+ } else {
+ write!(f, "{:?}-{:?} => {:?}", start, end, id)?;
+ }
+ }
+ Ok(())
+ }
+}
+
+/// An iterator over all transitions in a single DFA state. This yields
+/// a number of transitions equivalent to the alphabet length of the
+/// corresponding DFA.
+///
+/// Each transition is represented by a tuple. The first element is the input
+/// byte for that transition and the second element is the transition itself.
+#[derive(Debug)]
+pub(crate) struct StateTransitionIter<'a> {
+ len: usize,
+ it: iter::Enumerate<slice::Iter<'a, StateID>>,
+}
+
+impl<'a> Iterator for StateTransitionIter<'a> {
+ type Item = (alphabet::Unit, StateID);
+
+ fn next(&mut self) -> Option<(alphabet::Unit, StateID)> {
+ self.it.next().map(|(i, &id)| {
+ let unit = if i + 1 == self.len {
+ alphabet::Unit::eoi(i)
+ } else {
+ let b = u8::try_from(i)
+ .expect("raw byte alphabet is never exceeded");
+ alphabet::Unit::u8(b)
+ };
+ (unit, id)
+ })
+ }
+}
+
+/// An iterator over all non-DEAD transitions in a single DFA state using a
+/// sparse representation.
+///
+/// Each transition is represented by a triple. The first two elements of the
+/// triple comprise an inclusive byte range while the last element corresponds
+/// to the transition taken for all bytes in the range.
+///
+/// As a convenience, this always returns `alphabet::Unit` values of the same
+/// type. That is, you'll never get a (byte, EOI) or a (EOI, byte). Only (byte,
+/// byte) and (EOI, EOI) values are yielded.
+#[derive(Debug)]
+pub(crate) struct StateSparseTransitionIter<'a> {
+ dense: StateTransitionIter<'a>,
+ cur: Option<(alphabet::Unit, alphabet::Unit, StateID)>,
+}
+
+impl<'a> Iterator for StateSparseTransitionIter<'a> {
+ type Item = (alphabet::Unit, alphabet::Unit, StateID);
+
+ fn next(&mut self) -> Option<(alphabet::Unit, alphabet::Unit, StateID)> {
+ while let Some((unit, next)) = self.dense.next() {
+ let (prev_start, prev_end, prev_next) = match self.cur {
+ Some(t) => t,
+ None => {
+ self.cur = Some((unit, unit, next));
+ continue;
+ }
+ };
+ if prev_next == next && !unit.is_eoi() {
+ self.cur = Some((prev_start, unit, prev_next));
+ } else {
+ self.cur = Some((unit, unit, next));
+ if prev_next != DEAD {
+ return Some((prev_start, prev_end, prev_next));
+ }
+ }
+ }
+ if let Some((start, end, next)) = self.cur.take() {
+ if next != DEAD {
+ return Some((start, end, next));
+ }
+ }
+ None
+ }
+}
+
+/// An error that occurred during the construction of a DFA.
+///
+/// This error does not provide many introspection capabilities. There are
+/// generally only two things you can do with it:
+///
+/// * Obtain a human readable message via its `std::fmt::Display` impl.
+/// * Access an underlying [`nfa::thompson::BuildError`](thompson::BuildError)
+/// type from its `source` method via the `std::error::Error` trait. This error
+/// only occurs when using convenience routines for building a DFA directly
+/// from a pattern string.
+///
+/// When the `std` feature is enabled, this implements the `std::error::Error`
+/// trait.
+#[cfg(feature = "dfa-build")]
+#[derive(Clone, Debug)]
+pub struct BuildError {
+ kind: BuildErrorKind,
+}
+
+/// The kind of error that occurred during the construction of a DFA.
+///
+/// Note that this error is non-exhaustive. Adding new variants is not
+/// considered a breaking change.
+#[cfg(feature = "dfa-build")]
+#[derive(Clone, Debug)]
+enum BuildErrorKind {
+ /// An error that occurred while constructing an NFA as a precursor step
+ /// before a DFA is compiled.
+ NFA(thompson::BuildError),
+ /// An error that occurred because an unsupported regex feature was used.
+ /// The message string describes which unsupported feature was used.
+ ///
+ /// The primary regex feature that is unsupported by DFAs is the Unicode
+ /// word boundary look-around assertion (`\b`). This can be worked around
+ /// by either using an ASCII word boundary (`(?-u:\b)`) or by enabling
+ /// Unicode word boundaries when building a DFA.
+ Unsupported(&'static str),
+ /// An error that occurs if too many states are produced while building a
+ /// DFA.
+ TooManyStates,
+ /// An error that occurs if too many start states are needed while building
+ /// a DFA.
+ ///
+ /// This is a kind of oddball error that occurs when building a DFA with
+ /// start states enabled for each pattern and enough patterns to cause
+ /// the table of start states to overflow `usize`.
+ TooManyStartStates,
+ /// This is another oddball error that can occur if there are too many
+ /// patterns spread out across too many match states.
+ TooManyMatchPatternIDs,
+ /// An error that occurs if the DFA got too big during determinization.
+ DFAExceededSizeLimit { limit: usize },
+ /// An error that occurs if auxiliary storage (not the DFA) used during
+ /// determinization got too big.
+ DeterminizeExceededSizeLimit { limit: usize },
+}
+
+#[cfg(feature = "dfa-build")]
+impl BuildError {
+ /// Return the kind of this error.
+ fn kind(&self) -> &BuildErrorKind {
+ &self.kind
+ }
+
+ pub(crate) fn nfa(err: thompson::BuildError) -> BuildError {
+ BuildError { kind: BuildErrorKind::NFA(err) }
+ }
+
+ pub(crate) fn unsupported_dfa_word_boundary_unicode() -> BuildError {
+ let msg = "cannot build DFAs for regexes with Unicode word \
+ boundaries; switch to ASCII word boundaries, or \
+ heuristically enable Unicode word boundaries or use a \
+ different regex engine";
+ BuildError { kind: BuildErrorKind::Unsupported(msg) }
+ }
+
+ pub(crate) fn too_many_states() -> BuildError {
+ BuildError { kind: BuildErrorKind::TooManyStates }
+ }
+
+ pub(crate) fn too_many_start_states() -> BuildError {
+ BuildError { kind: BuildErrorKind::TooManyStartStates }
+ }
+
+ pub(crate) fn too_many_match_pattern_ids() -> BuildError {
+ BuildError { kind: BuildErrorKind::TooManyMatchPatternIDs }
+ }
+
+ pub(crate) fn dfa_exceeded_size_limit(limit: usize) -> BuildError {
+ BuildError { kind: BuildErrorKind::DFAExceededSizeLimit { limit } }
+ }
+
+ pub(crate) fn determinize_exceeded_size_limit(limit: usize) -> BuildError {
+ BuildError {
+ kind: BuildErrorKind::DeterminizeExceededSizeLimit { limit },
+ }
+ }
+}
+
+#[cfg(all(feature = "std", feature = "dfa-build"))]
+impl std::error::Error for BuildError {
+ fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
+ match self.kind() {
+ BuildErrorKind::NFA(ref err) => Some(err),
+ _ => None,
+ }
+ }
+}
+
+#[cfg(feature = "dfa-build")]
+impl core::fmt::Display for BuildError {
+ fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
+ match self.kind() {
+ BuildErrorKind::NFA(_) => write!(f, "error building NFA"),
+ BuildErrorKind::Unsupported(ref msg) => {
+ write!(f, "unsupported regex feature for DFAs: {}", msg)
+ }
+ BuildErrorKind::TooManyStates => write!(
+ f,
+ "number of DFA states exceeds limit of {}",
+ StateID::LIMIT,
+ ),
+ BuildErrorKind::TooManyStartStates => {
+ let stride = Start::len();
+ // The start table has `stride` entries for starting states for
+ // the entire DFA, and then `stride` entries for each pattern
+ // if start states for each pattern are enabled (which is the
+ // only way this error can occur). Thus, the total number of
+ // patterns that can fit in the table is `stride` less than
+ // what we can allocate.
+ let max = usize::try_from(core::isize::MAX).unwrap();
+ let limit = (max - stride) / stride;
+ write!(
+ f,
+ "compiling DFA with start states exceeds pattern \
+ pattern limit of {}",
+ limit,
+ )
+ }
+ BuildErrorKind::TooManyMatchPatternIDs => write!(
+ f,
+ "compiling DFA with total patterns in all match states \
+ exceeds limit of {}",
+ PatternID::LIMIT,
+ ),
+ BuildErrorKind::DFAExceededSizeLimit { limit } => write!(
+ f,
+ "DFA exceeded size limit of {:?} during determinization",
+ limit,
+ ),
+ BuildErrorKind::DeterminizeExceededSizeLimit { limit } => {
+ write!(f, "determinization exceeded size limit of {:?}", limit)
+ }
+ }
+ }
+}
+
+#[cfg(all(test, feature = "syntax", feature = "dfa-build"))]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn errors_with_unicode_word_boundary() {
+ let pattern = r"\b";
+ assert!(Builder::new().build(pattern).is_err());
+ }
+
+ #[test]
+ fn roundtrip_never_match() {
+ let dfa = DFA::never_match().unwrap();
+ let (buf, _) = dfa.to_bytes_native_endian();
+ let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
+
+ assert_eq!(None, dfa.try_search_fwd(&Input::new("foo12345")).unwrap());
+ }
+
+ #[test]
+ fn roundtrip_always_match() {
+ use crate::HalfMatch;
+
+ let dfa = DFA::always_match().unwrap();
+ let (buf, _) = dfa.to_bytes_native_endian();
+ let dfa: DFA<&[u32]> = DFA::from_bytes(&buf).unwrap().0;
+
+ assert_eq!(
+ Some(HalfMatch::must(0, 0)),
+ dfa.try_search_fwd(&Input::new("foo12345")).unwrap()
+ );
+ }
+
+ // See the analogous test in src/hybrid/dfa.rs.
+ #[test]
+ fn heuristic_unicode_reverse() {
+ let dfa = DFA::builder()
+ .configure(DFA::config().unicode_word_boundary(true))
+ .thompson(thompson::Config::new().reverse(true))
+ .build(r"\b[0-9]+\b")
+ .unwrap();
+
+ let input = Input::new("β123").range(2..);
+ let expected = MatchError::quit(0xB2, 1);
+ let got = dfa.try_search_rev(&input);
+ assert_eq!(Err(expected), got);
+
+ let input = Input::new("123β").range(..3);
+ let expected = MatchError::quit(0xCE, 3);
+ let got = dfa.try_search_rev(&input);
+ assert_eq!(Err(expected), got);
+ }
+}