summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regex-automata/src/dfa/onepass.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/regex-automata/src/dfa/onepass.rs')
-rw-r--r--third_party/rust/regex-automata/src/dfa/onepass.rs3188
1 files changed, 3188 insertions, 0 deletions
diff --git a/third_party/rust/regex-automata/src/dfa/onepass.rs b/third_party/rust/regex-automata/src/dfa/onepass.rs
new file mode 100644
index 0000000000..44691d0c8a
--- /dev/null
+++ b/third_party/rust/regex-automata/src/dfa/onepass.rs
@@ -0,0 +1,3188 @@
+/*!
+A DFA that can return spans for matching capturing groups.
+
+This module is the home of a [one-pass DFA](DFA).
+
+This module also contains a [`Builder`] and a [`Config`] for building and
+configuring a one-pass DFA.
+*/
+
+// A note on naming and credit:
+//
+// As far as I know, Russ Cox came up with the practical vision and
+// implementation of a "one-pass regex engine." He mentions and describes it
+// briefly in the third article of his regexp article series:
+// https://swtch.com/~rsc/regexp/regexp3.html
+//
+// Cox's implementation is in RE2, and the implementation below is most
+// heavily inspired by RE2's. The key thing they have in common is that
+// their transitions are defined over an alphabet of bytes. In contrast,
+// Go's regex engine also has a one-pass engine, but its transitions are
+// more firmly rooted on Unicode codepoints. The ideas are the same, but the
+// implementations are different.
+//
+// RE2 tends to call this a "one-pass NFA." Here, we call it a "one-pass DFA."
+// They're both true in their own ways:
+//
+// * The "one-pass" criterion is generally a property of the NFA itself. In
+// particular, it is said that an NFA is one-pass if, after each byte of input
+// during a search, there is at most one "VM thread" remaining to take for the
+// next byte of input. That is, there is never any ambiguity as to the path to
+// take through the NFA during a search.
+//
+// * On the other hand, once a one-pass NFA has its representation converted
+// to something where a constant number of instructions is used for each byte
+// of input, the implementation looks a lot more like a DFA. It's technically
+// more powerful than a DFA since it has side effects (storing offsets inside
+// of slots activated by a transition), but it is far closer to a DFA than an
+// NFA simulation.
+//
+// Thus, in this crate, we call it a one-pass DFA.
+
+use alloc::{vec, vec::Vec};
+
+use crate::{
+ dfa::{remapper::Remapper, DEAD},
+ nfa::thompson::{self, NFA},
+ util::{
+ alphabet::ByteClasses,
+ captures::Captures,
+ escape::DebugByte,
+ int::{Usize, U32, U64, U8},
+ look::{Look, LookSet, UnicodeWordBoundaryError},
+ primitives::{NonMaxUsize, PatternID, StateID},
+ search::{Anchored, Input, Match, MatchError, MatchKind, Span},
+ sparse_set::SparseSet,
+ },
+};
+
+/// The configuration used for building a [one-pass DFA](DFA).
+///
+/// A one-pass DFA configuration is a simple data object that is typically used
+/// with [`Builder::configure`]. It can be cheaply cloned.
+///
+/// A default configuration can be created either with `Config::new`, or
+/// perhaps more conveniently, with [`DFA::config`].
+#[derive(Clone, Debug, Default)]
+pub struct Config {
+ match_kind: Option<MatchKind>,
+ starts_for_each_pattern: Option<bool>,
+ byte_classes: Option<bool>,
+ size_limit: Option<Option<usize>>,
+}
+
+impl Config {
+ /// Return a new default one-pass DFA configuration.
+ pub fn new() -> Config {
+ Config::default()
+ }
+
+ /// Set the desired match semantics.
+ ///
+ /// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
+ /// match semantics of Perl-like regex engines. That is, when multiple
+ /// patterns would match at the same leftmost position, the pattern that
+ /// appears first in the concrete syntax is chosen.
+ ///
+ /// Currently, the only other kind of match semantics supported is
+ /// [`MatchKind::All`]. This corresponds to "classical DFA" construction
+ /// where all possible matches are visited.
+ ///
+ /// When it comes to the one-pass DFA, it is rarer for preference order and
+ /// "longest match" to actually disagree. Since if they did disagree, then
+ /// the regex typically isn't one-pass. For example, searching `Samwise`
+ /// for `Sam|Samwise` will report `Sam` for leftmost-first matching and
+ /// `Samwise` for "longest match" or "all" matching. However, this regex is
+ /// not one-pass if taken literally. The equivalent regex, `Sam(?:|wise)`
+ /// is one-pass and `Sam|Samwise` may be optimized to it.
+ ///
+ /// The other main difference is that "all" match semantics don't support
+ /// non-greedy matches. "All" match semantics always try to match as much
+ /// as possible.
+ pub fn match_kind(mut self, kind: MatchKind) -> Config {
+ self.match_kind = Some(kind);
+ self
+ }
+
+ /// Whether to compile a separate start state for each pattern in the
+ /// one-pass DFA.
+ ///
+ /// When enabled, a separate **anchored** start state is added for each
+ /// pattern in the DFA. When this start state is used, then the DFA will
+ /// only search for matches for the pattern specified, even if there are
+ /// other patterns in the DFA.
+ ///
+ /// The main downside of this option is that it can potentially increase
+ /// the size of the DFA and/or increase the time it takes to build the DFA.
+ ///
+ /// You might want to enable this option when you want to both search for
+ /// anchored matches of any pattern or to search for anchored matches of
+ /// one particular pattern while using the same DFA. (Otherwise, you would
+ /// need to compile a new DFA for each pattern.)
+ ///
+ /// By default this is disabled.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to build a multi-regex and then search for
+ /// matches for a any of the patterns or matches for a specific pattern.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// dfa::onepass::DFA, Anchored, Input, Match, PatternID,
+ /// };
+ ///
+ /// let re = DFA::builder()
+ /// .configure(DFA::config().starts_for_each_pattern(true))
+ /// .build_many(&["[a-z]+", "[0-9]+"])?;
+ /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+ /// let haystack = "123abc";
+ /// let input = Input::new(haystack).anchored(Anchored::Yes);
+ ///
+ /// // A normal multi-pattern search will show pattern 1 matches.
+ /// re.try_search(&mut cache, &input, &mut caps)?;
+ /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match());
+ ///
+ /// // If we only want to report pattern 0 matches, then we'll get no
+ /// // match here.
+ /// let input = input.anchored(Anchored::Pattern(PatternID::must(0)));
+ /// re.try_search(&mut cache, &input, &mut caps)?;
+ /// assert_eq!(None, caps.get_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
+ self.starts_for_each_pattern = Some(yes);
+ self
+ }
+
+ /// Whether to attempt to shrink the size of the DFA's alphabet or not.
+ ///
+ /// This option is enabled by default and should never be disabled unless
+ /// one is debugging a one-pass DFA.
+ ///
+ /// When enabled, the DFA will use a map from all possible bytes to their
+ /// corresponding equivalence class. Each equivalence class represents a
+ /// set of bytes that does not discriminate between a match and a non-match
+ /// in the DFA. For example, the pattern `[ab]+` has at least two
+ /// equivalence classes: a set containing `a` and `b` and a set containing
+ /// every byte except for `a` and `b`. `a` and `b` are in the same
+ /// equivalence class because they never discriminate between a match and a
+ /// non-match.
+ ///
+ /// The advantage of this map is that the size of the transition table
+ /// can be reduced drastically from (approximately) `#states * 256 *
+ /// sizeof(StateID)` to `#states * k * sizeof(StateID)` where `k` is the
+ /// number of equivalence classes (rounded up to the nearest power of 2).
+ /// As a result, total space usage can decrease substantially. Moreover,
+ /// since a smaller alphabet is used, DFA compilation becomes faster as
+ /// well.
+ ///
+ /// **WARNING:** This is only useful for debugging DFAs. Disabling this
+ /// does not yield any speed advantages. Namely, even when this is
+ /// disabled, a byte class map is still used while searching. The only
+ /// difference is that every byte will be forced into its own distinct
+ /// equivalence class. This is useful for debugging the actual generated
+ /// transitions because it lets one see the transitions defined on actual
+ /// bytes instead of the equivalence classes.
+ pub fn byte_classes(mut self, yes: bool) -> Config {
+ self.byte_classes = Some(yes);
+ self
+ }
+
+ /// Set a size limit on the total heap used by a one-pass DFA.
+ ///
+ /// This size limit is expressed in bytes and is applied during
+ /// construction of a one-pass DFA. If the DFA's heap usage exceeds
+ /// this configured limit, then construction is stopped and an error is
+ /// returned.
+ ///
+ /// The default is no limit.
+ ///
+ /// # Example
+ ///
+ /// This example shows a one-pass DFA that fails to build because of
+ /// a configured size limit. This particular example also serves as a
+ /// cautionary tale demonstrating just how big DFAs with large Unicode
+ /// character classes can get.
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// use regex_automata::{dfa::onepass::DFA, Match};
+ ///
+ /// // 6MB isn't enough!
+ /// DFA::builder()
+ /// .configure(DFA::config().size_limit(Some(6_000_000)))
+ /// .build(r"\w{20}")
+ /// .unwrap_err();
+ ///
+ /// // ... but 7MB probably is!
+ /// // (Note that DFA sizes aren't necessarily stable between releases.)
+ /// let re = DFA::builder()
+ /// .configure(DFA::config().size_limit(Some(7_000_000)))
+ /// .build(r"\w{20}")?;
+ /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+ /// let haystack = "A".repeat(20);
+ /// re.captures(&mut cache, &haystack, &mut caps);
+ /// assert_eq!(Some(Match::must(0, 0..20)), caps.get_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// While one needs a little more than 3MB to represent `\w{20}`, it
+ /// turns out that you only need a little more than 4KB to represent
+ /// `(?-u:\w{20})`. So only use Unicode if you need it!
+ pub fn size_limit(mut self, limit: Option<usize>) -> Config {
+ self.size_limit = Some(limit);
+ self
+ }
+
+ /// Returns the match semantics set in this configuration.
+ pub fn get_match_kind(&self) -> MatchKind {
+ self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
+ }
+
+ /// Returns whether this configuration has enabled anchored starting states
+ /// for every pattern in the DFA.
+ pub fn get_starts_for_each_pattern(&self) -> bool {
+ self.starts_for_each_pattern.unwrap_or(false)
+ }
+
+ /// Returns whether this configuration has enabled byte classes or not.
+ /// This is typically a debugging oriented option, as disabling it confers
+ /// no speed benefit.
+ pub fn get_byte_classes(&self) -> bool {
+ self.byte_classes.unwrap_or(true)
+ }
+
+ /// Returns the DFA size limit of this configuration if one was set.
+ /// The size limit is total number of bytes on the heap that a DFA is
+ /// permitted to use. If the DFA exceeds this limit during construction,
+ /// then construction is stopped and an error is returned.
+ pub fn get_size_limit(&self) -> Option<usize> {
+ self.size_limit.unwrap_or(None)
+ }
+
+ /// Overwrite the default configuration such that the options in `o` are
+ /// always used. If an option in `o` is not set, then the corresponding
+ /// option in `self` is used. If it's not set in `self` either, then it
+ /// remains not set.
+ pub(crate) fn overwrite(&self, o: Config) -> Config {
+ Config {
+ match_kind: o.match_kind.or(self.match_kind),
+ starts_for_each_pattern: o
+ .starts_for_each_pattern
+ .or(self.starts_for_each_pattern),
+ byte_classes: o.byte_classes.or(self.byte_classes),
+ size_limit: o.size_limit.or(self.size_limit),
+ }
+ }
+}
+
+/// A builder for a [one-pass DFA](DFA).
+///
+/// This builder permits configuring options for the syntax of a pattern, the
+/// NFA construction and the DFA construction. This builder is different from a
+/// general purpose regex builder in that it permits fine grain configuration
+/// of the construction process. The trade off for this is complexity, and
+/// the possibility of setting a configuration that might not make sense. For
+/// example, there are two different UTF-8 modes:
+///
+/// * [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) controls
+/// whether the pattern itself can contain sub-expressions that match invalid
+/// UTF-8.
+/// * [`thompson::Config::utf8`] controls whether empty matches that split a
+/// Unicode codepoint are reported or not.
+///
+/// Generally speaking, callers will want to either enable all of these or
+/// disable all of these.
+///
+/// # Example
+///
+/// This example shows how to disable UTF-8 mode in the syntax and the NFA.
+/// This is generally what you want for matching on arbitrary bytes.
+///
+/// ```
+/// # if cfg!(miri) { return Ok(()); } // miri takes too long
+/// use regex_automata::{
+/// dfa::onepass::DFA,
+/// nfa::thompson,
+/// util::syntax,
+/// Match,
+/// };
+///
+/// let re = DFA::builder()
+/// .syntax(syntax::Config::new().utf8(false))
+/// .thompson(thompson::Config::new().utf8(false))
+/// .build(r"foo(?-u:[^b])ar.*")?;
+/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+///
+/// let haystack = b"foo\xFFarzz\xE2\x98\xFF\n";
+/// re.captures(&mut cache, haystack, &mut caps);
+/// // Notice that `(?-u:[^b])` matches invalid UTF-8,
+/// // but the subsequent `.*` does not! Disabling UTF-8
+/// // on the syntax permits this.
+/// //
+/// // N.B. This example does not show the impact of
+/// // disabling UTF-8 mode on a one-pass DFA Config,
+/// // since that only impacts regexes that can
+/// // produce matches of length 0.
+/// assert_eq!(Some(Match::must(0, 0..8)), caps.get_match());
+///
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+#[derive(Clone, Debug)]
+pub struct Builder {
+ config: Config,
+ #[cfg(feature = "syntax")]
+ thompson: thompson::Compiler,
+}
+
+impl Builder {
+ /// Create a new one-pass DFA builder with the default configuration.
+ pub fn new() -> Builder {
+ Builder {
+ config: Config::default(),
+ #[cfg(feature = "syntax")]
+ thompson: thompson::Compiler::new(),
+ }
+ }
+
+ /// Build a one-pass DFA from the given pattern.
+ ///
+ /// If there was a problem parsing or compiling the pattern, then an error
+ /// is returned.
+ #[cfg(feature = "syntax")]
+ pub fn build(&self, pattern: &str) -> Result<DFA, BuildError> {
+ self.build_many(&[pattern])
+ }
+
+ /// Build a one-pass DFA from the given patterns.
+ ///
+ /// When matches are returned, the pattern ID corresponds to the index of
+ /// the pattern in the slice given.
+ #[cfg(feature = "syntax")]
+ pub fn build_many<P: AsRef<str>>(
+ &self,
+ patterns: &[P],
+ ) -> Result<DFA, BuildError> {
+ let nfa =
+ self.thompson.build_many(patterns).map_err(BuildError::nfa)?;
+ self.build_from_nfa(nfa)
+ }
+
+ /// Build a DFA from the given NFA.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to build a DFA if you already have an NFA in
+ /// hand.
+ ///
+ /// ```
+ /// use regex_automata::{dfa::onepass::DFA, nfa::thompson::NFA, Match};
+ ///
+ /// // This shows how to set non-default options for building an NFA.
+ /// let nfa = NFA::compiler()
+ /// .configure(NFA::config().shrink(true))
+ /// .build(r"[a-z0-9]+")?;
+ /// let re = DFA::builder().build_from_nfa(nfa)?;
+ /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+ /// re.captures(&mut cache, "foo123bar", &mut caps);
+ /// assert_eq!(Some(Match::must(0, 0..9)), caps.get_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn build_from_nfa(&self, nfa: NFA) -> Result<DFA, BuildError> {
+ // Why take ownership if we're just going to pass a reference to the
+ // NFA to our internal builder? Well, the first thing to note is that
+ // an NFA uses reference counting internally, so either choice is going
+ // to be cheap. So there isn't much cost either way.
+ //
+ // The real reason is that a one-pass DFA, semantically, shares
+ // ownership of an NFA. This is unlike other DFAs that don't share
+ // ownership of an NFA at all, primarily because they want to be
+ // self-contained in order to support cheap (de)serialization.
+ //
+ // But then why pass a '&nfa' below if we want to share ownership?
+ // Well, it turns out that using a '&NFA' in our internal builder
+ // separates its lifetime from the DFA we're building, and this turns
+ // out to make code a bit more composable. e.g., We can iterate over
+ // things inside the NFA while borrowing the builder as mutable because
+ // we know the NFA cannot be mutated. So TL;DR --- this weirdness is
+ // "because borrow checker."
+ InternalBuilder::new(self.config.clone(), &nfa).build()
+ }
+
+ /// Apply the given one-pass DFA configuration options to this builder.
+ pub fn configure(&mut self, config: Config) -> &mut Builder {
+ self.config = self.config.overwrite(config);
+ self
+ }
+
+ /// Set the syntax configuration for this builder using
+ /// [`syntax::Config`](crate::util::syntax::Config).
+ ///
+ /// This permits setting things like case insensitivity, Unicode and multi
+ /// line mode.
+ ///
+ /// These settings only apply when constructing a one-pass DFA directly
+ /// from a pattern.
+ #[cfg(feature = "syntax")]
+ pub fn syntax(
+ &mut self,
+ config: crate::util::syntax::Config,
+ ) -> &mut Builder {
+ self.thompson.syntax(config);
+ self
+ }
+
+ /// Set the Thompson NFA configuration for this builder using
+ /// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
+ ///
+ /// This permits setting things like whether additional time should be
+ /// spent shrinking the size of the NFA.
+ ///
+ /// These settings only apply when constructing a DFA directly from a
+ /// pattern.
+ #[cfg(feature = "syntax")]
+ pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
+ self.thompson.configure(config);
+ self
+ }
+}
+
+/// An internal builder for encapsulating the state necessary to build a
+/// one-pass DFA. Typical use is just `InternalBuilder::new(..).build()`.
+///
+/// There is no separate pass for determining whether the NFA is one-pass or
+/// not. We just try to build the DFA. If during construction we discover that
+/// it is not one-pass, we bail out. This is likely to lead to some undesirable
+/// expense in some cases, so it might make sense to try an identify common
+/// patterns in the NFA that make it definitively not one-pass. That way, we
+/// can avoid ever trying to build a one-pass DFA in the first place. For
+/// example, '\w*\s' is not one-pass, and since '\w' is Unicode-aware by
+/// default, it's probably not a trivial cost to try and build a one-pass DFA
+/// for it and then fail.
+///
+/// Note that some (immutable) fields are duplicated here. For example, the
+/// 'nfa' and 'classes' fields are both in the 'DFA'. They are the same thing,
+/// but we duplicate them because it makes composition easier below. Otherwise,
+/// since the borrow checker can't see through method calls, the mutable borrow
+/// we use to mutate the DFA winds up preventing borrowing from any other part
+/// of the DFA, even though we aren't mutating those parts. We only do this
+/// because the duplication is cheap.
+#[derive(Debug)]
+struct InternalBuilder<'a> {
+ /// The DFA we're building.
+ dfa: DFA,
+ /// An unordered collection of NFA state IDs that we haven't yet tried to
+ /// build into a DFA state yet.
+ ///
+ /// This collection does not ultimately wind up including every NFA state
+ /// ID. Instead, each ID represents a "start" state for a sub-graph of the
+ /// NFA. The set of NFA states we then use to build a DFA state consists
+ /// of that "start" state and all states reachable from it via epsilon
+ /// transitions.
+ uncompiled_nfa_ids: Vec<StateID>,
+ /// A map from NFA state ID to DFA state ID. This is useful for easily
+ /// determining whether an NFA state has been used as a "starting" point
+ /// to build a DFA state yet. If it hasn't, then it is mapped to DEAD,
+ /// and since DEAD is specially added and never corresponds to any NFA
+ /// state, it follows that a mapping to DEAD implies the NFA state has
+ /// no corresponding DFA state yet.
+ nfa_to_dfa_id: Vec<StateID>,
+ /// A stack used to traverse the NFA states that make up a single DFA
+ /// state. Traversal occurs until the stack is empty, and we only push to
+ /// the stack when the state ID isn't in 'seen'. Actually, even more than
+ /// that, if we try to push something on to this stack that is already in
+ /// 'seen', then we bail out on construction completely, since it implies
+ /// that the NFA is not one-pass.
+ stack: Vec<(StateID, Epsilons)>,
+ /// The set of NFA states that we've visited via 'stack'.
+ seen: SparseSet,
+ /// Whether a match NFA state has been observed while constructing a
+ /// one-pass DFA state. Once a match state is seen, assuming we are using
+ /// leftmost-first match semantics, then we don't add any more transitions
+ /// to the DFA state we're building.
+ matched: bool,
+ /// The config passed to the builder.
+ ///
+ /// This is duplicated in dfa.config.
+ config: Config,
+ /// The NFA we're building a one-pass DFA from.
+ ///
+ /// This is duplicated in dfa.nfa.
+ nfa: &'a NFA,
+ /// The equivalence classes that make up the alphabet for this DFA>
+ ///
+ /// This is duplicated in dfa.classes.
+ classes: ByteClasses,
+}
+
+impl<'a> InternalBuilder<'a> {
+ /// Create a new builder with an initial empty DFA.
+ fn new(config: Config, nfa: &'a NFA) -> InternalBuilder {
+ let classes = if !config.get_byte_classes() {
+ // A one-pass DFA will always use the equivalence class map, but
+ // enabling this option is useful for debugging. Namely, this will
+ // cause all transitions to be defined over their actual bytes
+ // instead of an opaque equivalence class identifier. The former is
+ // much easier to grok as a human.
+ ByteClasses::singletons()
+ } else {
+ nfa.byte_classes().clone()
+ };
+ // Normally a DFA alphabet includes the EOI symbol, but we don't need
+ // that in the one-pass DFA since we handle look-around explicitly
+ // without encoding it into the DFA. Thus, we don't need to delay
+ // matches by 1 byte. However, we reuse the space that *would* be used
+ // by the EOI transition by putting match information there (like which
+ // pattern matches and which look-around assertions need to hold). So
+ // this means our real alphabet length is 1 fewer than what the byte
+ // classes report, since we don't use EOI.
+ let alphabet_len = classes.alphabet_len().checked_sub(1).unwrap();
+ let stride2 = classes.stride2();
+ let dfa = DFA {
+ config: config.clone(),
+ nfa: nfa.clone(),
+ table: vec![],
+ starts: vec![],
+ // Since one-pass DFAs have a smaller state ID max than
+ // StateID::MAX, it follows that StateID::MAX is a valid initial
+ // value for min_match_id since no state ID can ever be greater
+ // than it. In the case of a one-pass DFA with no match states, the
+ // min_match_id will keep this sentinel value.
+ min_match_id: StateID::MAX,
+ classes: classes.clone(),
+ alphabet_len,
+ stride2,
+ pateps_offset: alphabet_len,
+ // OK because PatternID::MAX*2 is guaranteed not to overflow.
+ explicit_slot_start: nfa.pattern_len().checked_mul(2).unwrap(),
+ };
+ InternalBuilder {
+ dfa,
+ uncompiled_nfa_ids: vec![],
+ nfa_to_dfa_id: vec![DEAD; nfa.states().len()],
+ stack: vec![],
+ seen: SparseSet::new(nfa.states().len()),
+ matched: false,
+ config,
+ nfa,
+ classes,
+ }
+ }
+
+ /// Build the DFA from the NFA given to this builder. If the NFA is not
+ /// one-pass, then return an error. An error may also be returned if a
+ /// particular limit is exceeded. (Some limits, like the total heap memory
+ /// used, are configurable. Others, like the total patterns or slots, are
+ /// hard-coded based on representational limitations.)
+ fn build(mut self) -> Result<DFA, BuildError> {
+ self.nfa.look_set_any().available().map_err(BuildError::word)?;
+ for look in self.nfa.look_set_any().iter() {
+ // This is a future incompatibility check where if we add any
+ // more look-around assertions, then the one-pass DFA either
+ // needs to reject them (what we do here) or it needs to have its
+ // Transition representation modified to be capable of storing the
+ // new assertions.
+ if look.as_repr() > Look::WordUnicodeNegate.as_repr() {
+ return Err(BuildError::unsupported_look(look));
+ }
+ }
+ if self.nfa.pattern_len().as_u64() > PatternEpsilons::PATTERN_ID_LIMIT
+ {
+ return Err(BuildError::too_many_patterns(
+ PatternEpsilons::PATTERN_ID_LIMIT,
+ ));
+ }
+ if self.nfa.group_info().explicit_slot_len() > Slots::LIMIT {
+ return Err(BuildError::not_one_pass(
+ "too many explicit capturing groups (max is 16)",
+ ));
+ }
+ assert_eq!(DEAD, self.add_empty_state()?);
+
+ // This is where the explicit slots start. We care about this because
+ // we only need to track explicit slots. The implicit slots---two for
+ // each pattern---are tracked as part of the search routine itself.
+ let explicit_slot_start = self.nfa.pattern_len() * 2;
+ self.add_start_state(None, self.nfa.start_anchored())?;
+ if self.config.get_starts_for_each_pattern() {
+ for pid in self.nfa.patterns() {
+ self.add_start_state(
+ Some(pid),
+ self.nfa.start_pattern(pid).unwrap(),
+ )?;
+ }
+ }
+ // NOTE: One wonders what the effects of treating 'uncompiled_nfa_ids'
+ // as a stack are. It is really an unordered *set* of NFA state IDs.
+ // If it, for example, in practice led to discovering whether a regex
+ // was or wasn't one-pass later than if we processed NFA state IDs in
+ // ascending order, then that would make this routine more costly in
+ // the somewhat common case of a regex that isn't one-pass.
+ while let Some(nfa_id) = self.uncompiled_nfa_ids.pop() {
+ let dfa_id = self.nfa_to_dfa_id[nfa_id];
+ // Once we see a match, we keep going, but don't add any new
+ // transitions. Normally we'd just stop, but we have to keep
+ // going in order to verify that our regex is actually one-pass.
+ self.matched = false;
+ // The NFA states we've already explored for this DFA state.
+ self.seen.clear();
+ // The NFA states to explore via epsilon transitions. If we ever
+ // try to push an NFA state that we've already seen, then the NFA
+ // is not one-pass because it implies there are multiple epsilon
+ // transition paths that lead to the same NFA state. In other
+ // words, there is ambiguity.
+ self.stack_push(nfa_id, Epsilons::empty())?;
+ while let Some((id, epsilons)) = self.stack.pop() {
+ match *self.nfa.state(id) {
+ thompson::State::ByteRange { ref trans } => {
+ self.compile_transition(dfa_id, trans, epsilons)?;
+ }
+ thompson::State::Sparse(ref sparse) => {
+ for trans in sparse.transitions.iter() {
+ self.compile_transition(dfa_id, trans, epsilons)?;
+ }
+ }
+ thompson::State::Dense(ref dense) => {
+ for trans in dense.iter() {
+ self.compile_transition(dfa_id, &trans, epsilons)?;
+ }
+ }
+ thompson::State::Look { look, next } => {
+ let looks = epsilons.looks().insert(look);
+ self.stack_push(next, epsilons.set_looks(looks))?;
+ }
+ thompson::State::Union { ref alternates } => {
+ for &sid in alternates.iter().rev() {
+ self.stack_push(sid, epsilons)?;
+ }
+ }
+ thompson::State::BinaryUnion { alt1, alt2 } => {
+ self.stack_push(alt2, epsilons)?;
+ self.stack_push(alt1, epsilons)?;
+ }
+ thompson::State::Capture { next, slot, .. } => {
+ let slot = slot.as_usize();
+ let epsilons = if slot < explicit_slot_start {
+ // If this is an implicit slot, we don't care
+ // about it, since we handle implicit slots in
+ // the search routine. We can get away with that
+ // because there are 2 implicit slots for every
+ // pattern.
+ epsilons
+ } else {
+ // Offset our explicit slots so that they start
+ // at index 0.
+ let offset = slot - explicit_slot_start;
+ epsilons.set_slots(epsilons.slots().insert(offset))
+ };
+ self.stack_push(next, epsilons)?;
+ }
+ thompson::State::Fail => {
+ continue;
+ }
+ thompson::State::Match { pattern_id } => {
+ // If we found two different paths to a match state
+ // for the same DFA state, then we have ambiguity.
+ // Thus, it's not one-pass.
+ if self.matched {
+ return Err(BuildError::not_one_pass(
+ "multiple epsilon transitions to match state",
+ ));
+ }
+ self.matched = true;
+ // Shove the matching pattern ID and the 'epsilons'
+ // into the current DFA state's pattern epsilons. The
+ // 'epsilons' includes the slots we need to capture
+ // before reporting the match and also the conditional
+ // epsilon transitions we need to check before we can
+ // report a match.
+ self.dfa.set_pattern_epsilons(
+ dfa_id,
+ PatternEpsilons::empty()
+ .set_pattern_id(pattern_id)
+ .set_epsilons(epsilons),
+ );
+ // N.B. It is tempting to just bail out here when
+ // compiling a leftmost-first DFA, since we will never
+ // compile any more transitions in that case. But we
+ // actually need to keep going in order to verify that
+ // we actually have a one-pass regex. e.g., We might
+ // see more Match states (e.g., for other patterns)
+ // that imply that we don't have a one-pass regex.
+ // So instead, we mark that we've found a match and
+ // continue on. When we go to compile a new DFA state,
+ // we just skip that part. But otherwise check that the
+ // one-pass property is upheld.
+ }
+ }
+ }
+ }
+ self.shuffle_states();
+ Ok(self.dfa)
+ }
+
+ /// Shuffle all match states to the end of the transition table and set
+ /// 'min_match_id' to the ID of the first such match state.
+ ///
+ /// The point of this is to make it extremely cheap to determine whether
+ /// a state is a match state or not. We need to check on this on every
+ /// transition during a search, so it being cheap is important. This
+ /// permits us to check it by simply comparing two state identifiers, as
+ /// opposed to looking for the pattern ID in the state's `PatternEpsilons`.
+ /// (Which requires a memory load and some light arithmetic.)
+ fn shuffle_states(&mut self) {
+ let mut remapper = Remapper::new(&self.dfa);
+ let mut next_dest = self.dfa.last_state_id();
+ for i in (0..self.dfa.state_len()).rev() {
+ let id = StateID::must(i);
+ let is_match =
+ self.dfa.pattern_epsilons(id).pattern_id().is_some();
+ if !is_match {
+ continue;
+ }
+ remapper.swap(&mut self.dfa, next_dest, id);
+ self.dfa.min_match_id = next_dest;
+ next_dest = self.dfa.prev_state_id(next_dest).expect(
+ "match states should be a proper subset of all states",
+ );
+ }
+ remapper.remap(&mut self.dfa);
+ }
+
+ /// Compile the given NFA transition into the DFA state given.
+ ///
+ /// 'Epsilons' corresponds to any conditional epsilon transitions that need
+ /// to be satisfied to follow this transition, and any slots that need to
+ /// be saved if the transition is followed.
+ ///
+ /// If this transition indicates that the NFA is not one-pass, then
+ /// this returns an error. (This occurs, for example, if the DFA state
+ /// already has a transition defined for the same input symbols as the
+ /// given transition, *and* the result of the old and new transitions is
+ /// different.)
+ fn compile_transition(
+ &mut self,
+ dfa_id: StateID,
+ trans: &thompson::Transition,
+ epsilons: Epsilons,
+ ) -> Result<(), BuildError> {
+ let next_dfa_id = self.add_dfa_state_for_nfa_state(trans.next)?;
+ for byte in self
+ .classes
+ .representatives(trans.start..=trans.end)
+ .filter_map(|r| r.as_u8())
+ {
+ let oldtrans = self.dfa.transition(dfa_id, byte);
+ let newtrans =
+ Transition::new(self.matched, next_dfa_id, epsilons);
+ // If the old transition points to the DEAD state, then we know
+ // 'byte' has not been mapped to any transition for this DFA state
+ // yet. So set it unconditionally. Otherwise, we require that the
+ // old and new transitions are equivalent. Otherwise, there is
+ // ambiguity and thus the regex is not one-pass.
+ if oldtrans.state_id() == DEAD {
+ self.dfa.set_transition(dfa_id, byte, newtrans);
+ } else if oldtrans != newtrans {
+ return Err(BuildError::not_one_pass(
+ "conflicting transition",
+ ));
+ }
+ }
+ Ok(())
+ }
+
+ /// Add a start state to the DFA corresponding to the given NFA starting
+ /// state ID.
+ ///
+ /// If adding a state would blow any limits (configured or hard-coded),
+ /// then an error is returned.
+ ///
+ /// If the starting state is an anchored state for a particular pattern,
+ /// then callers must provide the pattern ID for that starting state.
+ /// Callers must also ensure that the first starting state added is the
+ /// start state for all patterns, and then each anchored starting state for
+ /// each pattern (if necessary) added in order. Otherwise, this panics.
+ fn add_start_state(
+ &mut self,
+ pid: Option<PatternID>,
+ nfa_id: StateID,
+ ) -> Result<StateID, BuildError> {
+ match pid {
+ // With no pid, this should be the start state for all patterns
+ // and thus be the first one.
+ None => assert!(self.dfa.starts.is_empty()),
+ // With a pid, we want it to be at self.dfa.starts[pid+1].
+ Some(pid) => assert!(self.dfa.starts.len() == pid.one_more()),
+ }
+ let dfa_id = self.add_dfa_state_for_nfa_state(nfa_id)?;
+ self.dfa.starts.push(dfa_id);
+ Ok(dfa_id)
+ }
+
+ /// Add a new DFA state corresponding to the given NFA state. If adding a
+ /// state would blow any limits (configured or hard-coded), then an error
+ /// is returned. If a DFA state already exists for the given NFA state,
+ /// then that DFA state's ID is returned and no new states are added.
+ ///
+ /// It is not expected that this routine is called for every NFA state.
+ /// Instead, an NFA state ID will usually correspond to the "start" state
+ /// for a sub-graph of the NFA, where all states in the sub-graph are
+ /// reachable via epsilon transitions (conditional or unconditional). That
+ /// sub-graph of NFA states is ultimately what produces a single DFA state.
+ fn add_dfa_state_for_nfa_state(
+ &mut self,
+ nfa_id: StateID,
+ ) -> Result<StateID, BuildError> {
+ // If we've already built a DFA state for the given NFA state, then
+ // just return that. We definitely do not want to have more than one
+ // DFA state in existence for the same NFA state, since all but one of
+ // them will likely become unreachable. And at least some of them are
+ // likely to wind up being incomplete.
+ let existing_dfa_id = self.nfa_to_dfa_id[nfa_id];
+ if existing_dfa_id != DEAD {
+ return Ok(existing_dfa_id);
+ }
+ // If we don't have any DFA state yet, add it and then add the given
+ // NFA state to the list of states to explore.
+ let dfa_id = self.add_empty_state()?;
+ self.nfa_to_dfa_id[nfa_id] = dfa_id;
+ self.uncompiled_nfa_ids.push(nfa_id);
+ Ok(dfa_id)
+ }
+
+ /// Unconditionally add a new empty DFA state. If adding it would exceed
+ /// any limits (configured or hard-coded), then an error is returned. The
+ /// ID of the new state is returned on success.
+ ///
+ /// The added state is *not* a match state.
+ fn add_empty_state(&mut self) -> Result<StateID, BuildError> {
+ let state_limit = Transition::STATE_ID_LIMIT;
+ // Note that unlike dense and lazy DFAs, we specifically do NOT
+ // premultiply our state IDs here. The reason is that we want to pack
+ // our state IDs into 64-bit transitions with other info, so the fewer
+ // the bits we use for state IDs the better. If we premultiply, then
+ // our state ID space shrinks. We justify this by the assumption that
+ // a one-pass DFA is just already doing a fair bit more work than a
+ // normal DFA anyway, so an extra multiplication to compute a state
+ // transition doesn't seem like a huge deal.
+ let next_id = self.dfa.table.len() >> self.dfa.stride2();
+ let id = StateID::new(next_id)
+ .map_err(|_| BuildError::too_many_states(state_limit))?;
+ if id.as_u64() > Transition::STATE_ID_LIMIT {
+ return Err(BuildError::too_many_states(state_limit));
+ }
+ self.dfa
+ .table
+ .extend(core::iter::repeat(Transition(0)).take(self.dfa.stride()));
+ // The default empty value for 'PatternEpsilons' is sadly not all
+ // zeroes. Instead, a special sentinel is used to indicate that there
+ // is no pattern. So we need to explicitly set the pattern epsilons to
+ // the correct "empty" PatternEpsilons.
+ self.dfa.set_pattern_epsilons(id, PatternEpsilons::empty());
+ if let Some(size_limit) = self.config.get_size_limit() {
+ if self.dfa.memory_usage() > size_limit {
+ return Err(BuildError::exceeded_size_limit(size_limit));
+ }
+ }
+ Ok(id)
+ }
+
+ /// Push the given NFA state ID and its corresponding epsilons (slots and
+ /// conditional epsilon transitions) on to a stack for use in a depth first
+ /// traversal of a sub-graph of the NFA.
+ ///
+ /// If the given NFA state ID has already been pushed on to the stack, then
+ /// it indicates the regex is not one-pass and this correspondingly returns
+ /// an error.
+ fn stack_push(
+ &mut self,
+ nfa_id: StateID,
+ epsilons: Epsilons,
+ ) -> Result<(), BuildError> {
+ // If we already have seen a match and we are compiling a leftmost
+ // first DFA, then we shouldn't add any more states to look at. This is
+ // effectively how preference order and non-greediness is implemented.
+ // if !self.config.get_match_kind().continue_past_first_match()
+ // && self.matched
+ // {
+ // return Ok(());
+ // }
+ if !self.seen.insert(nfa_id) {
+ return Err(BuildError::not_one_pass(
+ "multiple epsilon transitions to same state",
+ ));
+ }
+ self.stack.push((nfa_id, epsilons));
+ Ok(())
+ }
+}
+
+/// A one-pass DFA for executing a subset of anchored regex searches while
+/// resolving capturing groups.
+///
+/// A one-pass DFA can be built from an NFA that is one-pass. An NFA is
+/// one-pass when there is never any ambiguity about how to continue a search.
+/// For example, `a*a` is not one-pass becuase during a search, it's not
+/// possible to know whether to continue matching the `a*` or to move on to
+/// the single `a`. However, `a*b` is one-pass, because for every byte in the
+/// input, it's always clear when to move on from `a*` to `b`.
+///
+/// # Only anchored searches are supported
+///
+/// In this crate, especially for DFAs, unanchored searches are implemented by
+/// treating the pattern as if it had a `(?s-u:.)*?` prefix. While the prefix
+/// is one-pass on its own, adding anything after it, e.g., `(?s-u:.)*?a` will
+/// make the overall pattern not one-pass. Why? Because the `(?s-u:.)` matches
+/// any byte, and there is therefore ambiguity as to when the prefix should
+/// stop matching and something else should start matching.
+///
+/// Therefore, one-pass DFAs do not support unanchored searches. In addition
+/// to many regexes simply not being one-pass, it implies that one-pass DFAs
+/// have limited utility. With that said, when a one-pass DFA can be used, it
+/// can potentially provide a dramatic speed up over alternatives like the
+/// [`BoundedBacktracker`](crate::nfa::thompson::backtrack::BoundedBacktracker)
+/// and the [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM). In particular,
+/// a one-pass DFA is the only DFA capable of reporting the spans of matching
+/// capturing groups.
+///
+/// To clarify, when we say that unanchored searches are not supported, what
+/// that actually means is:
+///
+/// * The high level routines, [`DFA::is_match`] and [`DFA::captures`], always
+/// do anchored searches.
+/// * Since iterators are most useful in the context of unanchored searches,
+/// there is no `DFA::captures_iter` method.
+/// * For lower level routines like [`DFA::try_search`], an error will be
+/// returned if the given [`Input`] is configured to do an unanchored search or
+/// search for an invalid pattern ID. (Note that an [`Input`] is configured to
+/// do an unanchored search by default, so just giving a `Input::new` is
+/// guaranteed to return an error.)
+///
+/// # Other limitations
+///
+/// In addition to the [configurable heap limit](Config::size_limit) and
+/// the requirement that a regex pattern be one-pass, there are some other
+/// limitations:
+///
+/// * There is an internal limit on the total number of explicit capturing
+/// groups that appear across all patterns. It is somewhat small and there is
+/// no way to configure it. If your pattern(s) exceed this limit, then building
+/// a one-pass DFA will fail.
+/// * If the number of patterns exceeds an internal unconfigurable limit, then
+/// building a one-pass DFA will fail. This limit is quite large and you're
+/// unlikely to hit it.
+/// * If the total number of states exceeds an internal unconfigurable limit,
+/// then building a one-pass DFA will fail. This limit is quite large and
+/// you're unlikely to hit it.
+///
+/// # Other examples of regexes that aren't one-pass
+///
+/// One particularly unfortunate example is that enabling Unicode can cause
+/// regexes that were one-pass to no longer be one-pass. Consider the regex
+/// `(?-u)\w*\s` for example. It is one-pass because there is exactly no
+/// overlap between the ASCII definitions of `\w` and `\s`. But `\w*\s`
+/// (i.e., with Unicode enabled) is *not* one-pass because `\w` and `\s` get
+/// translated to UTF-8 automatons. And while the *codepoints* in `\w` and `\s`
+/// do not overlap, the underlying UTF-8 encodings do. Indeed, because of the
+/// overlap between UTF-8 automata, the use of Unicode character classes will
+/// tend to vastly increase the likelihood of a regex not being one-pass.
+///
+/// # How does one know if a regex is one-pass or not?
+///
+/// At the time of writing, the only way to know is to try and build a one-pass
+/// DFA. The one-pass property is checked while constructing the DFA.
+///
+/// This does mean that you might potentially waste some CPU cycles and memory
+/// by optimistically trying to build a one-pass DFA. But this is currently the
+/// only way. In the future, building a one-pass DFA might be able to use some
+/// heuristics to detect common violations of the one-pass property and bail
+/// more quickly.
+///
+/// # Resource usage
+///
+/// Unlike a general DFA, a one-pass DFA has stricter bounds on its resource
+/// usage. Namely, construction of a one-pass DFA has a time and space
+/// complexity of `O(n)`, where `n ~ nfa.states().len()`. (A general DFA's time
+/// and space complexity is `O(2^n)`.) This smaller time bound is achieved
+/// because there is at most one DFA state created for each NFA state. If
+/// additional DFA states would be required, then the pattern is not one-pass
+/// and construction will fail.
+///
+/// Note though that currently, this DFA uses a fully dense representation.
+/// This means that while its space complexity is no worse than an NFA, it may
+/// in practice use more memory because of higher constant factors. The reason
+/// for this trade off is two-fold. Firstly, a dense representation makes the
+/// search faster. Secondly, the bigger an NFA, the more unlikely it is to be
+/// one-pass. Therefore, most one-pass DFAs are usually pretty small.
+///
+/// # Example
+///
+/// This example shows that the one-pass DFA implements Unicode word boundaries
+/// correctly while simultaneously reporting spans for capturing groups that
+/// participate in a match. (This is the only DFA that implements full support
+/// for Unicode word boundaries.)
+///
+/// ```
+/// # if cfg!(miri) { return Ok(()); } // miri takes too long
+/// use regex_automata::{dfa::onepass::DFA, Match, Span};
+///
+/// let re = DFA::new(r"\b(?P<first>\w+)[[:space:]]+(?P<last>\w+)\b")?;
+/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+///
+/// re.captures(&mut cache, "Шерлок Холмс", &mut caps);
+/// assert_eq!(Some(Match::must(0, 0..23)), caps.get_match());
+/// assert_eq!(Some(Span::from(0..12)), caps.get_group_by_name("first"));
+/// assert_eq!(Some(Span::from(13..23)), caps.get_group_by_name("last"));
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+///
+/// # Example: iteration
+///
+/// Unlike other regex engines in this crate, this one does not provide
+/// iterator search functions. This is because a one-pass DFA only supports
+/// anchored searches, and so iterator functions are generally not applicable.
+///
+/// However, if you know that all of your matches are
+/// directly adjacent, then an iterator can be used. The
+/// [`util::iter::Searcher`](crate::util::iter::Searcher) type can be used for
+/// this purpose:
+///
+/// ```
+/// # if cfg!(miri) { return Ok(()); } // miri takes too long
+/// use regex_automata::{
+/// dfa::onepass::DFA,
+/// util::iter::Searcher,
+/// Anchored, Input, Span,
+/// };
+///
+/// let re = DFA::new(r"\w(\d)\w")?;
+/// let (mut cache, caps) = (re.create_cache(), re.create_captures());
+/// let input = Input::new("a1zb2yc3x").anchored(Anchored::Yes);
+///
+/// let mut it = Searcher::new(input).into_captures_iter(caps, |input, caps| {
+/// Ok(re.try_search(&mut cache, input, caps)?)
+/// }).infallible();
+/// let caps0 = it.next().unwrap();
+/// assert_eq!(Some(Span::from(1..2)), caps0.get_group(1));
+///
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+#[derive(Clone)]
+pub struct DFA {
+ /// The configuration provided by the caller.
+ config: Config,
+ /// The NFA used to build this DFA.
+ ///
+ /// NOTE: We probably don't need to store the NFA here, but we use enough
+ /// bits from it that it's convenient to do so. And there really isn't much
+ /// cost to doing so either, since an NFA is reference counted internally.
+ nfa: NFA,
+ /// The transition table. Given a state ID 's' and a byte of haystack 'b',
+ /// the next state is `table[sid + classes[byte]]`.
+ ///
+ /// The stride of this table (i.e., the number of columns) is always
+ /// a power of 2, even if the alphabet length is smaller. This makes
+ /// converting between state IDs and state indices very cheap.
+ ///
+ /// Note that the stride always includes room for one extra "transition"
+ /// that isn't actually a transition. It is a 'PatternEpsilons' that is
+ /// used for match states only. Because of this, the maximum number of
+ /// active columns in the transition table is 257, which means the maximum
+ /// stride is 512 (the next power of 2 greater than or equal to 257).
+ table: Vec<Transition>,
+ /// The DFA state IDs of the starting states.
+ ///
+ /// `starts[0]` is always present and corresponds to the starting state
+ /// when searching for matches of any pattern in the DFA.
+ ///
+ /// `starts[i]` where i>0 corresponds to the starting state for the pattern
+ /// ID 'i-1'. These starting states are optional.
+ starts: Vec<StateID>,
+ /// Every state ID >= this value corresponds to a match state.
+ ///
+ /// This is what a search uses to detect whether a state is a match state
+ /// or not. It requires only a simple comparison instead of bit-unpacking
+ /// the PatternEpsilons from every state.
+ min_match_id: StateID,
+ /// The alphabet of this DFA, split into equivalence classes. Bytes in the
+ /// same equivalence class can never discriminate between a match and a
+ /// non-match.
+ classes: ByteClasses,
+ /// The number of elements in each state in the transition table. This may
+ /// be less than the stride, since the stride is always a power of 2 and
+ /// the alphabet length can be anything up to and including 256.
+ alphabet_len: usize,
+ /// The number of columns in the transition table, expressed as a power of
+ /// 2.
+ stride2: usize,
+ /// The offset at which the PatternEpsilons for a match state is stored in
+ /// the transition table.
+ ///
+ /// PERF: One wonders whether it would be better to put this in a separate
+ /// allocation, since only match states have a non-empty PatternEpsilons
+ /// and the number of match states tends be dwarfed by the number of
+ /// non-match states. So this would save '8*len(non_match_states)' for each
+ /// DFA. The question is whether moving this to a different allocation will
+ /// lead to a perf hit during searches. You might think dealing with match
+ /// states is rare, but some regexes spend a lot of time in match states
+ /// gobbling up input. But... match state handling is already somewhat
+ /// expensive, so maybe this wouldn't do much? Either way, it's worth
+ /// experimenting.
+ pateps_offset: usize,
+ /// The first explicit slot index. This refers to the first slot appearing
+ /// immediately after the last implicit slot. It is always 'patterns.len()
+ /// * 2'.
+ ///
+ /// We record this because we only store the explicit slots in our DFA
+ /// transition table that need to be saved. Implicit slots are handled
+ /// automatically as part of the search.
+ explicit_slot_start: usize,
+}
+
+impl DFA {
+ /// Parse the given regular expression using the default configuration and
+ /// return the corresponding one-pass DFA.
+ ///
+ /// If you want a non-default configuration, then use the [`Builder`] to
+ /// set your own configuration.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{dfa::onepass::DFA, Match};
+ ///
+ /// let re = DFA::new("foo[0-9]+bar")?;
+ /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+ ///
+ /// re.captures(&mut cache, "foo12345barzzz", &mut caps);
+ /// assert_eq!(Some(Match::must(0, 0..11)), caps.get_match());
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[cfg(feature = "syntax")]
+ #[inline]
+ pub fn new(pattern: &str) -> Result<DFA, BuildError> {
+ DFA::builder().build(pattern)
+ }
+
+ /// Like `new`, but parses multiple patterns into a single "multi regex."
+ /// This similarly uses the default regex configuration.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{dfa::onepass::DFA, Match};
+ ///
+ /// let re = DFA::new_many(&["[a-z]+", "[0-9]+"])?;
+ /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+ ///
+ /// re.captures(&mut cache, "abc123", &mut caps);
+ /// assert_eq!(Some(Match::must(0, 0..3)), caps.get_match());
+ ///
+ /// re.captures(&mut cache, "123abc", &mut caps);
+ /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[cfg(feature = "syntax")]
+ #[inline]
+ pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<DFA, BuildError> {
+ DFA::builder().build_many(patterns)
+ }
+
+ /// Like `new`, but builds a one-pass DFA directly from an NFA. This is
+ /// useful if you already have an NFA, or even if you hand-assembled the
+ /// NFA.
+ ///
+ /// # Example
+ ///
+ /// This shows how to hand assemble a regular expression via its HIR,
+ /// compile an NFA from it and build a one-pass DFA from the NFA.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// dfa::onepass::DFA,
+ /// nfa::thompson::NFA,
+ /// Match,
+ /// };
+ /// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange};
+ ///
+ /// let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![
+ /// ClassBytesRange::new(b'0', b'9'),
+ /// ClassBytesRange::new(b'A', b'Z'),
+ /// ClassBytesRange::new(b'_', b'_'),
+ /// ClassBytesRange::new(b'a', b'z'),
+ /// ])));
+ ///
+ /// let config = NFA::config().nfa_size_limit(Some(1_000));
+ /// let nfa = NFA::compiler().configure(config).build_from_hir(&hir)?;
+ ///
+ /// let re = DFA::new_from_nfa(nfa)?;
+ /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+ /// let expected = Some(Match::must(0, 0..1));
+ /// re.captures(&mut cache, "A", &mut caps);
+ /// assert_eq!(expected, caps.get_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn new_from_nfa(nfa: NFA) -> Result<DFA, BuildError> {
+ DFA::builder().build_from_nfa(nfa)
+ }
+
+ /// Create a new one-pass DFA that matches every input.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::{dfa::onepass::DFA, Match};
+ ///
+ /// let dfa = DFA::always_match()?;
+ /// let mut cache = dfa.create_cache();
+ /// let mut caps = dfa.create_captures();
+ ///
+ /// let expected = Match::must(0, 0..0);
+ /// dfa.captures(&mut cache, "", &mut caps);
+ /// assert_eq!(Some(expected), caps.get_match());
+ /// dfa.captures(&mut cache, "foo", &mut caps);
+ /// assert_eq!(Some(expected), caps.get_match());
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn always_match() -> Result<DFA, BuildError> {
+ let nfa = thompson::NFA::always_match();
+ Builder::new().build_from_nfa(nfa)
+ }
+
+ /// Create a new one-pass DFA that never matches any input.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// use regex_automata::dfa::onepass::DFA;
+ ///
+ /// let dfa = DFA::never_match()?;
+ /// let mut cache = dfa.create_cache();
+ /// let mut caps = dfa.create_captures();
+ ///
+ /// dfa.captures(&mut cache, "", &mut caps);
+ /// assert_eq!(None, caps.get_match());
+ /// dfa.captures(&mut cache, "foo", &mut caps);
+ /// assert_eq!(None, caps.get_match());
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn never_match() -> Result<DFA, BuildError> {
+ let nfa = thompson::NFA::never_match();
+ Builder::new().build_from_nfa(nfa)
+ }
+
+ /// Return a default configuration for a DFA.
+ ///
+ /// This is a convenience routine to avoid needing to import the `Config`
+ /// type when customizing the construction of a DFA.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to change the match semantics of this DFA from
+ /// its default "leftmost first" to "all." When using "all," non-greediness
+ /// doesn't apply and neither does preference order matching. Instead, the
+ /// longest match possible is always returned. (Although, by construction,
+ /// it's impossible for a one-pass DFA to have a different answer for
+ /// "preference order" vs "longest match.")
+ ///
+ /// ```
+ /// use regex_automata::{dfa::onepass::DFA, Match, MatchKind};
+ ///
+ /// let re = DFA::builder()
+ /// .configure(DFA::config().match_kind(MatchKind::All))
+ /// .build(r"(abc)+?")?;
+ /// let mut cache = re.create_cache();
+ /// let mut caps = re.create_captures();
+ ///
+ /// re.captures(&mut cache, "abcabc", &mut caps);
+ /// // Normally, the non-greedy repetition would give us a 0..3 match.
+ /// assert_eq!(Some(Match::must(0, 0..6)), caps.get_match());
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn config() -> Config {
+ Config::new()
+ }
+
+ /// Return a builder for configuring the construction of a DFA.
+ ///
+ /// This is a convenience routine to avoid needing to import the
+ /// [`Builder`] type in common cases.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to use the builder to disable UTF-8 mode.
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// use regex_automata::{
+ /// dfa::onepass::DFA,
+ /// nfa::thompson,
+ /// util::syntax,
+ /// Match,
+ /// };
+ ///
+ /// let re = DFA::builder()
+ /// .syntax(syntax::Config::new().utf8(false))
+ /// .thompson(thompson::Config::new().utf8(false))
+ /// .build(r"foo(?-u:[^b])ar.*")?;
+ /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+ ///
+ /// let haystack = b"foo\xFFarzz\xE2\x98\xFF\n";
+ /// let expected = Some(Match::must(0, 0..8));
+ /// re.captures(&mut cache, haystack, &mut caps);
+ /// assert_eq!(expected, caps.get_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn builder() -> Builder {
+ Builder::new()
+ }
+
+ /// Create a new empty set of capturing groups that is guaranteed to be
+ /// valid for the search APIs on this DFA.
+ ///
+ /// A `Captures` value created for a specific DFA cannot be used with any
+ /// other DFA.
+ ///
+ /// This is a convenience function for [`Captures::all`]. See the
+ /// [`Captures`] documentation for an explanation of its alternative
+ /// constructors that permit the DFA to do less work during a search, and
+ /// thus might make it faster.
+ #[inline]
+ pub fn create_captures(&self) -> Captures {
+ Captures::all(self.nfa.group_info().clone())
+ }
+
+ /// Create a new cache for this DFA.
+ ///
+ /// The cache returned should only be used for searches for this
+ /// DFA. If you want to reuse the cache for another DFA, then you
+ /// must call [`Cache::reset`] with that DFA (or, equivalently,
+ /// [`DFA::reset_cache`]).
+ #[inline]
+ pub fn create_cache(&self) -> Cache {
+ Cache::new(self)
+ }
+
+ /// Reset the given cache such that it can be used for searching with the
+ /// this DFA (and only this DFA).
+ ///
+ /// A cache reset permits reusing memory already allocated in this cache
+ /// with a different DFA.
+ ///
+ /// # Example
+ ///
+ /// This shows how to re-purpose a cache for use with a different DFA.
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// use regex_automata::{dfa::onepass::DFA, Match};
+ ///
+ /// let re1 = DFA::new(r"\w")?;
+ /// let re2 = DFA::new(r"\W")?;
+ /// let mut caps1 = re1.create_captures();
+ /// let mut caps2 = re2.create_captures();
+ ///
+ /// let mut cache = re1.create_cache();
+ /// assert_eq!(
+ /// Some(Match::must(0, 0..2)),
+ /// { re1.captures(&mut cache, "Δ", &mut caps1); caps1.get_match() },
+ /// );
+ ///
+ /// // Using 'cache' with re2 is not allowed. It may result in panics or
+ /// // incorrect results. In order to re-purpose the cache, we must reset
+ /// // it with the one-pass DFA we'd like to use it with.
+ /// //
+ /// // Similarly, after this reset, using the cache with 're1' is also not
+ /// // allowed.
+ /// re2.reset_cache(&mut cache);
+ /// assert_eq!(
+ /// Some(Match::must(0, 0..3)),
+ /// { re2.captures(&mut cache, "☃", &mut caps2); caps2.get_match() },
+ /// );
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn reset_cache(&self, cache: &mut Cache) {
+ cache.reset(self);
+ }
+
+ /// Return the config for this one-pass DFA.
+ #[inline]
+ pub fn get_config(&self) -> &Config {
+ &self.config
+ }
+
+ /// Returns a reference to the underlying NFA.
+ #[inline]
+ pub fn get_nfa(&self) -> &NFA {
+ &self.nfa
+ }
+
+ /// Returns the total number of patterns compiled into this DFA.
+ ///
+ /// In the case of a DFA that contains no patterns, this returns `0`.
+ #[inline]
+ pub fn pattern_len(&self) -> usize {
+ self.get_nfa().pattern_len()
+ }
+
+ /// Returns the total number of states in this one-pass DFA.
+ ///
+ /// Note that unlike dense or sparse DFAs, a one-pass DFA does not expose
+ /// a low level DFA API. Therefore, this routine has little use other than
+ /// being informational.
+ #[inline]
+ pub fn state_len(&self) -> usize {
+ self.table.len() >> self.stride2()
+ }
+
+ /// Returns the total number of elements in the alphabet for this DFA.
+ ///
+ /// That is, this returns the total number of transitions that each
+ /// state in this DFA must have. The maximum alphabet size is 256, which
+ /// corresponds to each possible byte value.
+ ///
+ /// The alphabet size may be less than 256 though, and unless
+ /// [`Config::byte_classes`] is disabled, it is typically must less than
+ /// 256. Namely, bytes are grouped into equivalence classes such that no
+ /// two bytes in the same class can distinguish a match from a non-match.
+ /// For example, in the regex `^[a-z]+$`, the ASCII bytes `a-z` could
+ /// all be in the same equivalence class. This leads to a massive space
+ /// savings.
+ ///
+ /// Note though that the alphabet length does _not_ necessarily equal the
+ /// total stride space taken up by a single DFA state in the transition
+ /// table. Namely, for performance reasons, the stride is always the
+ /// smallest power of two that is greater than or equal to the alphabet
+ /// length. For this reason, [`DFA::stride`] or [`DFA::stride2`] are
+ /// often more useful. The alphabet length is typically useful only for
+ /// informational purposes.
+ ///
+ /// Note also that unlike dense or sparse DFAs, a one-pass DFA does
+ /// not have a special end-of-input (EOI) transition. This is because
+ /// a one-pass DFA handles look-around assertions explicitly (like the
+ /// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM)) and does not build
+ /// them into the transitions of the DFA.
+ #[inline]
+ pub fn alphabet_len(&self) -> usize {
+ self.alphabet_len
+ }
+
+ /// Returns the total stride for every state in this DFA, expressed as the
+ /// exponent of a power of 2. The stride is the amount of space each state
+ /// takes up in the transition table, expressed as a number of transitions.
+ /// (Unused transitions map to dead states.)
+ ///
+ /// The stride of a DFA is always equivalent to the smallest power of
+ /// 2 that is greater than or equal to the DFA's alphabet length. This
+ /// definition uses extra space, but possibly permits faster translation
+ /// between state identifiers and their corresponding offsets in this DFA's
+ /// transition table.
+ ///
+ /// For example, if the DFA's stride is 16 transitions, then its `stride2`
+ /// is `4` since `2^4 = 16`.
+ ///
+ /// The minimum `stride2` value is `1` (corresponding to a stride of `2`)
+ /// while the maximum `stride2` value is `9` (corresponding to a stride
+ /// of `512`). The maximum in theory should be `8`, but because of some
+ /// implementation quirks that may be relaxed in the future, it is one more
+ /// than `8`. (Do note that a maximal stride is incredibly rare, as it
+ /// would imply that there is almost no redundant in the regex pattern.)
+ ///
+ /// Note that unlike dense or sparse DFAs, a one-pass DFA does not expose
+ /// a low level DFA API. Therefore, this routine has little use other than
+ /// being informational.
+ #[inline]
+ pub fn stride2(&self) -> usize {
+ self.stride2
+ }
+
+ /// Returns the total stride for every state in this DFA. This corresponds
+ /// to the total number of transitions used by each state in this DFA's
+ /// transition table.
+ ///
+ /// Please see [`DFA::stride2`] for more information. In particular, this
+ /// returns the stride as the number of transitions, where as `stride2`
+ /// returns it as the exponent of a power of 2.
+ ///
+ /// Note that unlike dense or sparse DFAs, a one-pass DFA does not expose
+ /// a low level DFA API. Therefore, this routine has little use other than
+ /// being informational.
+ #[inline]
+ pub fn stride(&self) -> usize {
+ 1 << self.stride2()
+ }
+
+ /// Returns the memory usage, in bytes, of this DFA.
+ ///
+ /// The memory usage is computed based on the number of bytes used to
+ /// represent this DFA.
+ ///
+ /// This does **not** include the stack size used up by this DFA. To
+ /// compute that, use `std::mem::size_of::<onepass::DFA>()`.
+ #[inline]
+ pub fn memory_usage(&self) -> usize {
+ use core::mem::size_of;
+
+ self.table.len() * size_of::<Transition>()
+ + self.starts.len() * size_of::<StateID>()
+ }
+}
+
+impl DFA {
+ /// Executes an anchored leftmost forward search, and returns true if and
+ /// only if this one-pass DFA matches the given haystack.
+ ///
+ /// This routine may short circuit if it knows that scanning future
+ /// input will never lead to a different result. In particular, if the
+ /// underlying DFA enters a match state, then this routine will return
+ /// `true` immediately without inspecting any future input. (Consider how
+ /// this might make a difference given the regex `a+` on the haystack
+ /// `aaaaaaaaaaaaaaa`. This routine can stop after it sees the first `a`,
+ /// but routines like `find` need to continue searching because `+` is
+ /// greedy by default.)
+ ///
+ /// The given `Input` is forcefully set to use [`Anchored::Yes`] if the
+ /// given configuration was [`Anchored::No`] (which is the default).
+ ///
+ /// # Panics
+ ///
+ /// This routine panics if the search could not complete. This can occur
+ /// in the following circumstances:
+ ///
+ /// * When the provided `Input` configuration is not supported. For
+ /// example, by providing an unsupported anchor mode. Concretely,
+ /// this occurs when using [`Anchored::Pattern`] without enabling
+ /// [`Config::starts_for_each_pattern`].
+ ///
+ /// When a search panics, callers cannot know whether a match exists or
+ /// not.
+ ///
+ /// Use [`DFA::try_search`] if you want to handle these panics as error
+ /// values instead.
+ ///
+ /// # Example
+ ///
+ /// This shows basic usage:
+ ///
+ /// ```
+ /// use regex_automata::dfa::onepass::DFA;
+ ///
+ /// let re = DFA::new("foo[0-9]+bar")?;
+ /// let mut cache = re.create_cache();
+ ///
+ /// assert!(re.is_match(&mut cache, "foo12345bar"));
+ /// assert!(!re.is_match(&mut cache, "foobar"));
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// # Example: consistency with search APIs
+ ///
+ /// `is_match` is guaranteed to return `true` whenever `captures` returns
+ /// a match. This includes searches that are executed entirely within a
+ /// codepoint:
+ ///
+ /// ```
+ /// use regex_automata::{dfa::onepass::DFA, Input};
+ ///
+ /// let re = DFA::new("a*")?;
+ /// let mut cache = re.create_cache();
+ ///
+ /// assert!(!re.is_match(&mut cache, Input::new("☃").span(1..2)));
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// Notice that when UTF-8 mode is disabled, then the above reports a
+ /// match because the restriction against zero-width matches that split a
+ /// codepoint has been lifted:
+ ///
+ /// ```
+ /// use regex_automata::{dfa::onepass::DFA, nfa::thompson::NFA, Input};
+ ///
+ /// let re = DFA::builder()
+ /// .thompson(NFA::config().utf8(false))
+ /// .build("a*")?;
+ /// let mut cache = re.create_cache();
+ ///
+ /// assert!(re.is_match(&mut cache, Input::new("☃").span(1..2)));
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn is_match<'h, I: Into<Input<'h>>>(
+ &self,
+ cache: &mut Cache,
+ input: I,
+ ) -> bool {
+ let mut input = input.into().earliest(true);
+ if matches!(input.get_anchored(), Anchored::No) {
+ input.set_anchored(Anchored::Yes);
+ }
+ self.try_search_slots(cache, &input, &mut []).unwrap().is_some()
+ }
+
+ /// Executes an anchored leftmost forward search, and returns a `Match` if
+ /// and only if this one-pass DFA matches the given haystack.
+ ///
+ /// This routine only includes the overall match span. To get access to the
+ /// individual spans of each capturing group, use [`DFA::captures`].
+ ///
+ /// The given `Input` is forcefully set to use [`Anchored::Yes`] if the
+ /// given configuration was [`Anchored::No`] (which is the default).
+ ///
+ /// # Panics
+ ///
+ /// This routine panics if the search could not complete. This can occur
+ /// in the following circumstances:
+ ///
+ /// * When the provided `Input` configuration is not supported. For
+ /// example, by providing an unsupported anchor mode. Concretely,
+ /// this occurs when using [`Anchored::Pattern`] without enabling
+ /// [`Config::starts_for_each_pattern`].
+ ///
+ /// When a search panics, callers cannot know whether a match exists or
+ /// not.
+ ///
+ /// Use [`DFA::try_search`] if you want to handle these panics as error
+ /// values instead.
+ ///
+ /// # Example
+ ///
+ /// Leftmost first match semantics corresponds to the match with the
+ /// smallest starting offset, but where the end offset is determined by
+ /// preferring earlier branches in the original regular expression. For
+ /// example, `Sam|Samwise` will match `Sam` in `Samwise`, but `Samwise|Sam`
+ /// will match `Samwise` in `Samwise`.
+ ///
+ /// Generally speaking, the "leftmost first" match is how most backtracking
+ /// regular expressions tend to work. This is in contrast to POSIX-style
+ /// regular expressions that yield "leftmost longest" matches. Namely,
+ /// both `Sam|Samwise` and `Samwise|Sam` match `Samwise` when using
+ /// leftmost longest semantics. (This crate does not currently support
+ /// leftmost longest semantics.)
+ ///
+ /// ```
+ /// use regex_automata::{dfa::onepass::DFA, Match};
+ ///
+ /// let re = DFA::new("foo[0-9]+")?;
+ /// let mut cache = re.create_cache();
+ /// let expected = Match::must(0, 0..8);
+ /// assert_eq!(Some(expected), re.find(&mut cache, "foo12345"));
+ ///
+ /// // Even though a match is found after reading the first byte (`a`),
+ /// // the leftmost first match semantics demand that we find the earliest
+ /// // match that prefers earlier parts of the pattern over later parts.
+ /// let re = DFA::new("abc|a")?;
+ /// let mut cache = re.create_cache();
+ /// let expected = Match::must(0, 0..3);
+ /// assert_eq!(Some(expected), re.find(&mut cache, "abc"));
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn find<'h, I: Into<Input<'h>>>(
+ &self,
+ cache: &mut Cache,
+ input: I,
+ ) -> Option<Match> {
+ let mut input = input.into();
+ if matches!(input.get_anchored(), Anchored::No) {
+ input.set_anchored(Anchored::Yes);
+ }
+ if self.get_nfa().pattern_len() == 1 {
+ let mut slots = [None, None];
+ let pid =
+ self.try_search_slots(cache, &input, &mut slots).unwrap()?;
+ let start = slots[0].unwrap().get();
+ let end = slots[1].unwrap().get();
+ return Some(Match::new(pid, Span { start, end }));
+ }
+ let ginfo = self.get_nfa().group_info();
+ let slots_len = ginfo.implicit_slot_len();
+ let mut slots = vec![None; slots_len];
+ let pid = self.try_search_slots(cache, &input, &mut slots).unwrap()?;
+ let start = slots[pid.as_usize() * 2].unwrap().get();
+ let end = slots[pid.as_usize() * 2 + 1].unwrap().get();
+ Some(Match::new(pid, Span { start, end }))
+ }
+
+ /// Executes an anchored leftmost forward search and writes the spans
+ /// of capturing groups that participated in a match into the provided
+ /// [`Captures`] value. If no match was found, then [`Captures::is_match`]
+ /// is guaranteed to return `false`.
+ ///
+ /// The given `Input` is forcefully set to use [`Anchored::Yes`] if the
+ /// given configuration was [`Anchored::No`] (which is the default).
+ ///
+ /// # Panics
+ ///
+ /// This routine panics if the search could not complete. This can occur
+ /// in the following circumstances:
+ ///
+ /// * When the provided `Input` configuration is not supported. For
+ /// example, by providing an unsupported anchor mode. Concretely,
+ /// this occurs when using [`Anchored::Pattern`] without enabling
+ /// [`Config::starts_for_each_pattern`].
+ ///
+ /// When a search panics, callers cannot know whether a match exists or
+ /// not.
+ ///
+ /// Use [`DFA::try_search`] if you want to handle these panics as error
+ /// values instead.
+ ///
+ /// # Example
+ ///
+ /// This shows a simple example of a one-pass regex that extracts
+ /// capturing group spans.
+ ///
+ /// ```
+ /// use regex_automata::{dfa::onepass::DFA, Match, Span};
+ ///
+ /// let re = DFA::new(
+ /// // Notice that we use ASCII here. The corresponding Unicode regex
+ /// // is sadly not one-pass.
+ /// "(?P<first>[[:alpha:]]+)[[:space:]]+(?P<last>[[:alpha:]]+)",
+ /// )?;
+ /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+ ///
+ /// re.captures(&mut cache, "Bruce Springsteen", &mut caps);
+ /// assert_eq!(Some(Match::must(0, 0..17)), caps.get_match());
+ /// assert_eq!(Some(Span::from(0..5)), caps.get_group(1));
+ /// assert_eq!(Some(Span::from(6..17)), caps.get_group_by_name("last"));
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn captures<'h, I: Into<Input<'h>>>(
+ &self,
+ cache: &mut Cache,
+ input: I,
+ caps: &mut Captures,
+ ) {
+ let mut input = input.into();
+ if matches!(input.get_anchored(), Anchored::No) {
+ input.set_anchored(Anchored::Yes);
+ }
+ self.try_search(cache, &input, caps).unwrap();
+ }
+
+ /// Executes an anchored leftmost forward search and writes the spans
+ /// of capturing groups that participated in a match into the provided
+ /// [`Captures`] value. If no match was found, then [`Captures::is_match`]
+ /// is guaranteed to return `false`.
+ ///
+ /// The differences with [`DFA::captures`] are:
+ ///
+ /// 1. This returns an error instead of panicking if the search fails.
+ /// 2. Accepts an `&Input` instead of a `Into<Input>`. This permits reusing
+ /// the same input for multiple searches, which _may_ be important for
+ /// latency.
+ /// 3. This does not automatically change the [`Anchored`] mode from `No`
+ /// to `Yes`. Instead, if [`Input::anchored`] is `Anchored::No`, then an
+ /// error is returned.
+ ///
+ /// # Errors
+ ///
+ /// This routine errors if the search could not complete. This can occur
+ /// in the following circumstances:
+ ///
+ /// * When the provided `Input` configuration is not supported. For
+ /// example, by providing an unsupported anchor mode. Concretely,
+ /// this occurs when using [`Anchored::Pattern`] without enabling
+ /// [`Config::starts_for_each_pattern`].
+ ///
+ /// When a search returns an error, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Example: specific pattern search
+ ///
+ /// This example shows how to build a multi-regex that permits searching
+ /// for specific patterns. Note that this is somewhat less useful than
+ /// in other regex engines, since a one-pass DFA by definition has no
+ /// ambiguity about which pattern can match at a position. That is, if it
+ /// were possible for two different patterns to match at the same starting
+ /// position, then the multi-regex would not be one-pass and construction
+ /// would have failed.
+ ///
+ /// Nevertheless, this can still be useful if you only care about matches
+ /// for a specific pattern, and want the DFA to report "no match" even if
+ /// some other pattern would have matched.
+ ///
+ /// Note that in order to make use of this functionality,
+ /// [`Config::starts_for_each_pattern`] must be enabled. It is disabled
+ /// by default since it may result in higher memory usage.
+ ///
+ /// ```
+ /// use regex_automata::{
+ /// dfa::onepass::DFA, Anchored, Input, Match, PatternID,
+ /// };
+ ///
+ /// let re = DFA::builder()
+ /// .configure(DFA::config().starts_for_each_pattern(true))
+ /// .build_many(&["[a-z]+", "[0-9]+"])?;
+ /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+ /// let haystack = "123abc";
+ /// let input = Input::new(haystack).anchored(Anchored::Yes);
+ ///
+ /// // A normal multi-pattern search will show pattern 1 matches.
+ /// re.try_search(&mut cache, &input, &mut caps)?;
+ /// assert_eq!(Some(Match::must(1, 0..3)), caps.get_match());
+ ///
+ /// // If we only want to report pattern 0 matches, then we'll get no
+ /// // match here.
+ /// let input = input.anchored(Anchored::Pattern(PatternID::must(0)));
+ /// re.try_search(&mut cache, &input, &mut caps)?;
+ /// assert_eq!(None, caps.get_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ ///
+ /// # Example: specifying the bounds of a search
+ ///
+ /// This example shows how providing the bounds of a search can produce
+ /// different results than simply sub-slicing the haystack.
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// use regex_automata::{dfa::onepass::DFA, Anchored, Input, Match};
+ ///
+ /// // one-pass DFAs fully support Unicode word boundaries!
+ /// // A sad joke is that a Unicode aware regex like \w+\s is not one-pass.
+ /// // :-(
+ /// let re = DFA::new(r"\b[0-9]{3}\b")?;
+ /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
+ /// let haystack = "foo123bar";
+ ///
+ /// // Since we sub-slice the haystack, the search doesn't know about
+ /// // the larger context and assumes that `123` is surrounded by word
+ /// // boundaries. And of course, the match position is reported relative
+ /// // to the sub-slice as well, which means we get `0..3` instead of
+ /// // `3..6`.
+ /// let expected = Some(Match::must(0, 0..3));
+ /// let input = Input::new(&haystack[3..6]).anchored(Anchored::Yes);
+ /// re.try_search(&mut cache, &input, &mut caps)?;
+ /// assert_eq!(expected, caps.get_match());
+ ///
+ /// // But if we provide the bounds of the search within the context of the
+ /// // entire haystack, then the search can take the surrounding context
+ /// // into account. (And if we did find a match, it would be reported
+ /// // as a valid offset into `haystack` instead of its sub-slice.)
+ /// let expected = None;
+ /// let input = Input::new(haystack).range(3..6).anchored(Anchored::Yes);
+ /// re.try_search(&mut cache, &input, &mut caps)?;
+ /// assert_eq!(expected, caps.get_match());
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn try_search(
+ &self,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ caps: &mut Captures,
+ ) -> Result<(), MatchError> {
+ let pid = self.try_search_slots(cache, input, caps.slots_mut())?;
+ caps.set_pattern(pid);
+ Ok(())
+ }
+
+ /// Executes an anchored leftmost forward search and writes the spans
+ /// of capturing groups that participated in a match into the provided
+ /// `slots`, and returns the matching pattern ID. The contents of the
+ /// slots for patterns other than the matching pattern are unspecified. If
+ /// no match was found, then `None` is returned and the contents of all
+ /// `slots` is unspecified.
+ ///
+ /// This is like [`DFA::try_search`], but it accepts a raw slots slice
+ /// instead of a `Captures` value. This is useful in contexts where you
+ /// don't want or need to allocate a `Captures`.
+ ///
+ /// It is legal to pass _any_ number of slots to this routine. If the regex
+ /// engine would otherwise write a slot offset that doesn't fit in the
+ /// provided slice, then it is simply skipped. In general though, there are
+ /// usually three slice lengths you might want to use:
+ ///
+ /// * An empty slice, if you only care about which pattern matched.
+ /// * A slice with
+ /// [`pattern_len() * 2`](crate::dfa::onepass::DFA::pattern_len)
+ /// slots, if you only care about the overall match spans for each matching
+ /// pattern.
+ /// * A slice with
+ /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
+ /// permits recording match offsets for every capturing group in every
+ /// pattern.
+ ///
+ /// # Errors
+ ///
+ /// This routine errors if the search could not complete. This can occur
+ /// in the following circumstances:
+ ///
+ /// * When the provided `Input` configuration is not supported. For
+ /// example, by providing an unsupported anchor mode. Concretely,
+ /// this occurs when using [`Anchored::Pattern`] without enabling
+ /// [`Config::starts_for_each_pattern`].
+ ///
+ /// When a search returns an error, callers cannot know whether a match
+ /// exists or not.
+ ///
+ /// # Example
+ ///
+ /// This example shows how to find the overall match offsets in a
+ /// multi-pattern search without allocating a `Captures` value. Indeed, we
+ /// can put our slots right on the stack.
+ ///
+ /// ```
+ /// use regex_automata::{dfa::onepass::DFA, Anchored, Input, PatternID};
+ ///
+ /// let re = DFA::new_many(&[
+ /// r"[a-zA-Z]+",
+ /// r"[0-9]+",
+ /// ])?;
+ /// let mut cache = re.create_cache();
+ /// let input = Input::new("123").anchored(Anchored::Yes);
+ ///
+ /// // We only care about the overall match offsets here, so we just
+ /// // allocate two slots for each pattern. Each slot records the start
+ /// // and end of the match.
+ /// let mut slots = [None; 4];
+ /// let pid = re.try_search_slots(&mut cache, &input, &mut slots)?;
+ /// assert_eq!(Some(PatternID::must(1)), pid);
+ ///
+ /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
+ /// // See 'GroupInfo' for more details on the mapping between groups and
+ /// // slot indices.
+ /// let slot_start = pid.unwrap().as_usize() * 2;
+ /// let slot_end = slot_start + 1;
+ /// assert_eq!(Some(0), slots[slot_start].map(|s| s.get()));
+ /// assert_eq!(Some(3), slots[slot_end].map(|s| s.get()));
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ #[inline]
+ pub fn try_search_slots(
+ &self,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ slots: &mut [Option<NonMaxUsize>],
+ ) -> Result<Option<PatternID>, MatchError> {
+ let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
+ if !utf8empty {
+ return self.try_search_slots_imp(cache, input, slots);
+ }
+ // See PikeVM::try_search_slots for why we do this.
+ let min = self.get_nfa().group_info().implicit_slot_len();
+ if slots.len() >= min {
+ return self.try_search_slots_imp(cache, input, slots);
+ }
+ if self.get_nfa().pattern_len() == 1 {
+ let mut enough = [None, None];
+ let got = self.try_search_slots_imp(cache, input, &mut enough)?;
+ // This is OK because we know `enough_slots` is strictly bigger
+ // than `slots`, otherwise this special case isn't reached.
+ slots.copy_from_slice(&enough[..slots.len()]);
+ return Ok(got);
+ }
+ let mut enough = vec![None; min];
+ let got = self.try_search_slots_imp(cache, input, &mut enough)?;
+ // This is OK because we know `enough_slots` is strictly bigger than
+ // `slots`, otherwise this special case isn't reached.
+ slots.copy_from_slice(&enough[..slots.len()]);
+ Ok(got)
+ }
+
+ #[inline(never)]
+ fn try_search_slots_imp(
+ &self,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ slots: &mut [Option<NonMaxUsize>],
+ ) -> Result<Option<PatternID>, MatchError> {
+ let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
+ match self.search_imp(cache, input, slots)? {
+ None => return Ok(None),
+ Some(pid) if !utf8empty => return Ok(Some(pid)),
+ Some(pid) => {
+ // These slot indices are always correct because we know our
+ // 'pid' is valid and thus we know that the slot indices for it
+ // are valid.
+ let slot_start = pid.as_usize().wrapping_mul(2);
+ let slot_end = slot_start.wrapping_add(1);
+ // OK because we know we have a match and we know our caller
+ // provided slots are big enough (which we make true above if
+ // the caller didn't). Namely, we're only here when 'utf8empty'
+ // is true, and when that's true, we require slots for every
+ // pattern.
+ let start = slots[slot_start].unwrap().get();
+ let end = slots[slot_end].unwrap().get();
+ // If our match splits a codepoint, then we cannot report is
+ // as a match. And since one-pass DFAs only support anchored
+ // searches, we don't try to skip ahead to find the next match.
+ // We can just quit with nothing.
+ if start == end && !input.is_char_boundary(start) {
+ return Ok(None);
+ }
+ Ok(Some(pid))
+ }
+ }
+ }
+}
+
+impl DFA {
+ fn search_imp(
+ &self,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ slots: &mut [Option<NonMaxUsize>],
+ ) -> Result<Option<PatternID>, MatchError> {
+ // PERF: Some ideas. I ran out of steam after my initial impl to try
+ // many of these.
+ //
+ // 1) Try doing more state shuffling. Right now, all we do is push
+ // match states to the end of the transition table so that we can do
+ // 'if sid >= self.min_match_id' to know whether we're in a match
+ // state or not. But what about doing something like dense DFAs and
+ // pushing dead, match and states with captures/looks all toward the
+ // beginning of the transition table. Then we could do 'if sid <=
+ // self.max_special_id', in which case, we need to do some special
+ // handling of some sort. Otherwise, we get the happy path, just
+ // like in a DFA search. The main argument against this is that the
+ // one-pass DFA is likely to be used most often with capturing groups
+ // and if capturing groups are common, then this might wind up being a
+ // pessimization.
+ //
+ // 2) Consider moving 'PatternEpsilons' out of the transition table.
+ // It is only needed for match states and usually a small minority of
+ // states are match states. Therefore, we're using an extra 'u64' for
+ // most states.
+ //
+ // 3) I played around with the match state handling and it seems like
+ // there is probably a lot left on the table for improvement. The
+ // key tension is that the 'find_match' routine is a giant mess, but
+ // splitting it out into a non-inlineable function is a non-starter
+ // because the match state might consume input, so 'find_match' COULD
+ // be called quite a lot, and a function call at that point would trash
+ // perf. In theory, we could detect whether a match state consumes
+ // input and then specialize our search routine based on that. In that
+ // case, maybe an extra function call is OK, but even then, it might be
+ // too much of a latency hit. Another idea is to just try and figure
+ // out how to reduce the code size of 'find_match'. RE2 has a trick
+ // here where the match handling isn't done if we know the next byte of
+ // input yields a match too. Maybe we adopt that?
+ //
+ // This just might be a tricky DFA to optimize.
+
+ if input.is_done() {
+ return Ok(None);
+ }
+ // We unfortunately have a bit of book-keeping to do to set things
+ // up. We do have to setup our cache and clear all of our slots. In
+ // particular, clearing the slots is necessary for the case where we
+ // report a match, but one of the capturing groups didn't participate
+ // in the match but had a span set from a previous search. That would
+ // be bad. In theory, we could avoid all this slot clearing if we knew
+ // that every slot was always activated for every match. Then we would
+ // know they would always be overwritten when a match is found.
+ let explicit_slots_len = core::cmp::min(
+ Slots::LIMIT,
+ slots.len().saturating_sub(self.explicit_slot_start),
+ );
+ cache.setup_search(explicit_slots_len);
+ for slot in cache.explicit_slots() {
+ *slot = None;
+ }
+ for slot in slots.iter_mut() {
+ *slot = None;
+ }
+ // We set the starting slots for every pattern up front. This does
+ // increase our latency somewhat, but it avoids having to do it every
+ // time we see a match state (which could be many times in a single
+ // search if the match state consumes input).
+ for pid in self.nfa.patterns() {
+ let i = pid.as_usize() * 2;
+ if i >= slots.len() {
+ break;
+ }
+ slots[i] = NonMaxUsize::new(input.start());
+ }
+ let mut pid = None;
+ let mut next_sid = match input.get_anchored() {
+ Anchored::Yes => self.start(),
+ Anchored::Pattern(pid) => self.start_pattern(pid)?,
+ Anchored::No => {
+ // If the regex is itself always anchored, then we're fine,
+ // even if the search is configured to be unanchored.
+ if !self.nfa.is_always_start_anchored() {
+ return Err(MatchError::unsupported_anchored(
+ Anchored::No,
+ ));
+ }
+ self.start()
+ }
+ };
+ let leftmost_first =
+ matches!(self.config.get_match_kind(), MatchKind::LeftmostFirst);
+ for at in input.start()..input.end() {
+ let sid = next_sid;
+ let trans = self.transition(sid, input.haystack()[at]);
+ next_sid = trans.state_id();
+ let epsilons = trans.epsilons();
+ if sid >= self.min_match_id {
+ if self.find_match(cache, input, at, sid, slots, &mut pid) {
+ if input.get_earliest()
+ || (leftmost_first && trans.match_wins())
+ {
+ return Ok(pid);
+ }
+ }
+ }
+ if sid == DEAD
+ || (!epsilons.looks().is_empty()
+ && !self.nfa.look_matcher().matches_set_inline(
+ epsilons.looks(),
+ input.haystack(),
+ at,
+ ))
+ {
+ return Ok(pid);
+ }
+ epsilons.slots().apply(at, cache.explicit_slots());
+ }
+ if next_sid >= self.min_match_id {
+ self.find_match(
+ cache,
+ input,
+ input.end(),
+ next_sid,
+ slots,
+ &mut pid,
+ );
+ }
+ Ok(pid)
+ }
+
+ /// Assumes 'sid' is a match state and looks for whether a match can
+ /// be reported. If so, appropriate offsets are written to 'slots' and
+ /// 'matched_pid' is set to the matching pattern ID.
+ ///
+ /// Even when 'sid' is a match state, it's possible that a match won't
+ /// be reported. For example, when the conditional epsilon transitions
+ /// leading to the match state aren't satisfied at the given position in
+ /// the haystack.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ fn find_match(
+ &self,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ at: usize,
+ sid: StateID,
+ slots: &mut [Option<NonMaxUsize>],
+ matched_pid: &mut Option<PatternID>,
+ ) -> bool {
+ debug_assert!(sid >= self.min_match_id);
+ let pateps = self.pattern_epsilons(sid);
+ let epsilons = pateps.epsilons();
+ if !epsilons.looks().is_empty()
+ && !self.nfa.look_matcher().matches_set_inline(
+ epsilons.looks(),
+ input.haystack(),
+ at,
+ )
+ {
+ return false;
+ }
+ let pid = pateps.pattern_id_unchecked();
+ // This calculation is always correct because we know our 'pid' is
+ // valid and thus we know that the slot indices for it are valid.
+ let slot_end = pid.as_usize().wrapping_mul(2).wrapping_add(1);
+ // Set the implicit 'end' slot for the matching pattern. (The 'start'
+ // slot was set at the beginning of the search.)
+ if slot_end < slots.len() {
+ slots[slot_end] = NonMaxUsize::new(at);
+ }
+ // If the caller provided enough room, copy the previously recorded
+ // explicit slots from our scratch space to the caller provided slots.
+ // We *also* need to set any explicit slots that are active as part of
+ // the path to the match state.
+ if self.explicit_slot_start < slots.len() {
+ // NOTE: The 'cache.explicit_slots()' slice is setup at the
+ // beginning of every search such that it is guaranteed to return a
+ // slice of length equivalent to 'slots[explicit_slot_start..]'.
+ slots[self.explicit_slot_start..]
+ .copy_from_slice(cache.explicit_slots());
+ epsilons.slots().apply(at, &mut slots[self.explicit_slot_start..]);
+ }
+ *matched_pid = Some(pid);
+ true
+ }
+}
+
+impl DFA {
+ /// Returns the anchored start state for matching any pattern in this DFA.
+ fn start(&self) -> StateID {
+ self.starts[0]
+ }
+
+ /// Returns the anchored start state for matching the given pattern. If
+ /// 'starts_for_each_pattern'
+ /// was not enabled, then this returns an error. If the given pattern is
+ /// not in this DFA, then `Ok(None)` is returned.
+ fn start_pattern(&self, pid: PatternID) -> Result<StateID, MatchError> {
+ if !self.config.get_starts_for_each_pattern() {
+ return Err(MatchError::unsupported_anchored(Anchored::Pattern(
+ pid,
+ )));
+ }
+ // 'starts' always has non-zero length. The first entry is always the
+ // anchored starting state for all patterns, and the following entries
+ // are optional and correspond to the anchored starting states for
+ // patterns at pid+1. Thus, starts.len()-1 corresponds to the total
+ // number of patterns that one can explicitly search for. (And it may
+ // be zero.)
+ Ok(self.starts.get(pid.one_more()).copied().unwrap_or(DEAD))
+ }
+
+ /// Returns the transition from the given state ID and byte of input. The
+ /// transition includes the next state ID, the slots that should be saved
+ /// and any conditional epsilon transitions that must be satisfied in order
+ /// to take this transition.
+ fn transition(&self, sid: StateID, byte: u8) -> Transition {
+ let offset = sid.as_usize() << self.stride2();
+ let class = self.classes.get(byte).as_usize();
+ self.table[offset + class]
+ }
+
+ /// Set the transition from the given state ID and byte of input to the
+ /// transition given.
+ fn set_transition(&mut self, sid: StateID, byte: u8, to: Transition) {
+ let offset = sid.as_usize() << self.stride2();
+ let class = self.classes.get(byte).as_usize();
+ self.table[offset + class] = to;
+ }
+
+ /// Return an iterator of "sparse" transitions for the given state ID.
+ /// "sparse" in this context means that consecutive transitions that are
+ /// equivalent are returned as one group, and transitions to the DEAD state
+ /// are ignored.
+ ///
+ /// This winds up being useful for debug printing, since it's much terser
+ /// to display runs of equivalent transitions than the transition for every
+ /// possible byte value. Indeed, in practice, it's very common for runs
+ /// of equivalent transitions to appear.
+ fn sparse_transitions(&self, sid: StateID) -> SparseTransitionIter<'_> {
+ let start = sid.as_usize() << self.stride2();
+ let end = start + self.alphabet_len();
+ SparseTransitionIter {
+ it: self.table[start..end].iter().enumerate(),
+ cur: None,
+ }
+ }
+
+ /// Return the pattern epsilons for the given state ID.
+ ///
+ /// If the given state ID does not correspond to a match state ID, then the
+ /// pattern epsilons returned is empty.
+ fn pattern_epsilons(&self, sid: StateID) -> PatternEpsilons {
+ let offset = sid.as_usize() << self.stride2();
+ PatternEpsilons(self.table[offset + self.pateps_offset].0)
+ }
+
+ /// Set the pattern epsilons for the given state ID.
+ fn set_pattern_epsilons(&mut self, sid: StateID, pateps: PatternEpsilons) {
+ let offset = sid.as_usize() << self.stride2();
+ self.table[offset + self.pateps_offset] = Transition(pateps.0);
+ }
+
+ /// Returns the state ID prior to the one given. This returns None if the
+ /// given ID is the first DFA state.
+ fn prev_state_id(&self, id: StateID) -> Option<StateID> {
+ if id == DEAD {
+ None
+ } else {
+ // CORRECTNESS: Since 'id' is not the first state, subtracting 1
+ // is always valid.
+ Some(StateID::new_unchecked(id.as_usize().checked_sub(1).unwrap()))
+ }
+ }
+
+ /// Returns the state ID of the last state in this DFA's transition table.
+ /// "last" in this context means the last state to appear in memory, i.e.,
+ /// the one with the greatest ID.
+ fn last_state_id(&self) -> StateID {
+ // CORRECTNESS: A DFA table is always non-empty since it always at
+ // least contains a DEAD state. Since every state has the same stride,
+ // we can just compute what the "next" state ID would have been and
+ // then subtract 1 from it.
+ StateID::new_unchecked(
+ (self.table.len() >> self.stride2()).checked_sub(1).unwrap(),
+ )
+ }
+
+ /// Move the transitions from 'id1' to 'id2' and vice versa.
+ ///
+ /// WARNING: This does not update the rest of the transition table to have
+ /// transitions to 'id1' changed to 'id2' and vice versa. This merely moves
+ /// the states in memory.
+ pub(super) fn swap_states(&mut self, id1: StateID, id2: StateID) {
+ let o1 = id1.as_usize() << self.stride2();
+ let o2 = id2.as_usize() << self.stride2();
+ for b in 0..self.stride() {
+ self.table.swap(o1 + b, o2 + b);
+ }
+ }
+
+ /// Map all state IDs in this DFA (transition table + start states)
+ /// according to the closure given.
+ pub(super) fn remap(&mut self, map: impl Fn(StateID) -> StateID) {
+ for i in 0..self.state_len() {
+ let offset = i << self.stride2();
+ for b in 0..self.alphabet_len() {
+ let next = self.table[offset + b].state_id();
+ self.table[offset + b].set_state_id(map(next));
+ }
+ }
+ for i in 0..self.starts.len() {
+ self.starts[i] = map(self.starts[i]);
+ }
+ }
+}
+
+impl core::fmt::Debug for DFA {
+ fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+ fn debug_state_transitions(
+ f: &mut core::fmt::Formatter,
+ dfa: &DFA,
+ sid: StateID,
+ ) -> core::fmt::Result {
+ for (i, (start, end, trans)) in
+ dfa.sparse_transitions(sid).enumerate()
+ {
+ let next = trans.state_id();
+ if i > 0 {
+ write!(f, ", ")?;
+ }
+ if start == end {
+ write!(
+ f,
+ "{:?} => {:?}",
+ DebugByte(start),
+ next.as_usize(),
+ )?;
+ } else {
+ write!(
+ f,
+ "{:?}-{:?} => {:?}",
+ DebugByte(start),
+ DebugByte(end),
+ next.as_usize(),
+ )?;
+ }
+ if trans.match_wins() {
+ write!(f, " (MW)")?;
+ }
+ if !trans.epsilons().is_empty() {
+ write!(f, " ({:?})", trans.epsilons())?;
+ }
+ }
+ Ok(())
+ }
+
+ writeln!(f, "onepass::DFA(")?;
+ for index in 0..self.state_len() {
+ let sid = StateID::must(index);
+ let pateps = self.pattern_epsilons(sid);
+ if sid == DEAD {
+ write!(f, "D ")?;
+ } else if pateps.pattern_id().is_some() {
+ write!(f, "* ")?;
+ } else {
+ write!(f, " ")?;
+ }
+ write!(f, "{:06?}", sid.as_usize())?;
+ if !pateps.is_empty() {
+ write!(f, " ({:?})", pateps)?;
+ }
+ write!(f, ": ")?;
+ debug_state_transitions(f, self, sid)?;
+ write!(f, "\n")?;
+ }
+ writeln!(f, "")?;
+ for (i, &sid) in self.starts.iter().enumerate() {
+ if i == 0 {
+ writeln!(f, "START(ALL): {:?}", sid.as_usize())?;
+ } else {
+ writeln!(
+ f,
+ "START(pattern: {:?}): {:?}",
+ i - 1,
+ sid.as_usize(),
+ )?;
+ }
+ }
+ writeln!(f, "state length: {:?}", self.state_len())?;
+ writeln!(f, "pattern length: {:?}", self.pattern_len())?;
+ writeln!(f, ")")?;
+ Ok(())
+ }
+}
+
+/// An iterator over groups of consecutive equivalent transitions in a single
+/// state.
+#[derive(Debug)]
+struct SparseTransitionIter<'a> {
+ it: core::iter::Enumerate<core::slice::Iter<'a, Transition>>,
+ cur: Option<(u8, u8, Transition)>,
+}
+
+impl<'a> Iterator for SparseTransitionIter<'a> {
+ type Item = (u8, u8, Transition);
+
+ fn next(&mut self) -> Option<(u8, u8, Transition)> {
+ while let Some((b, &trans)) = self.it.next() {
+ // Fine because we'll never have more than u8::MAX transitions in
+ // one state.
+ let b = b.as_u8();
+ let (prev_start, prev_end, prev_trans) = match self.cur {
+ Some(t) => t,
+ None => {
+ self.cur = Some((b, b, trans));
+ continue;
+ }
+ };
+ if prev_trans == trans {
+ self.cur = Some((prev_start, b, prev_trans));
+ } else {
+ self.cur = Some((b, b, trans));
+ if prev_trans.state_id() != DEAD {
+ return Some((prev_start, prev_end, prev_trans));
+ }
+ }
+ }
+ if let Some((start, end, trans)) = self.cur.take() {
+ if trans.state_id() != DEAD {
+ return Some((start, end, trans));
+ }
+ }
+ None
+ }
+}
+
+/// A cache represents mutable state that a one-pass [`DFA`] requires during a
+/// search.
+///
+/// For a given one-pass DFA, its corresponding cache may be created either via
+/// [`DFA::create_cache`], or via [`Cache::new`]. They are equivalent in every
+/// way, except the former does not require explicitly importing `Cache`.
+///
+/// A particular `Cache` is coupled with the one-pass DFA from which it was
+/// created. It may only be used with that one-pass DFA. A cache and its
+/// allocations may be re-purposed via [`Cache::reset`], in which case, it can
+/// only be used with the new one-pass DFA (and not the old one).
+#[derive(Clone, Debug)]
+pub struct Cache {
+ /// Scratch space used to store slots during a search. Basically, we use
+ /// the caller provided slots to store slots known when a match occurs.
+ /// But after a match occurs, we might continue a search but ultimately
+ /// fail to extend the match. When continuing the search, we need some
+ /// place to store candidate capture offsets without overwriting the slot
+ /// offsets recorded for the most recently seen match.
+ explicit_slots: Vec<Option<NonMaxUsize>>,
+ /// The number of slots in the caller-provided 'Captures' value for the
+ /// current search. This is always at most 'explicit_slots.len()', but
+ /// might be less than it, if the caller provided fewer slots to fill.
+ explicit_slot_len: usize,
+}
+
+impl Cache {
+ /// Create a new [`onepass::DFA`](DFA) cache.
+ ///
+ /// A potentially more convenient routine to create a cache is
+ /// [`DFA::create_cache`], as it does not require also importing the
+ /// `Cache` type.
+ ///
+ /// If you want to reuse the returned `Cache` with some other one-pass DFA,
+ /// then you must call [`Cache::reset`] with the desired one-pass DFA.
+ pub fn new(re: &DFA) -> Cache {
+ let mut cache = Cache { explicit_slots: vec![], explicit_slot_len: 0 };
+ cache.reset(re);
+ cache
+ }
+
+ /// Reset this cache such that it can be used for searching with a
+ /// different [`onepass::DFA`](DFA).
+ ///
+ /// A cache reset permits reusing memory already allocated in this cache
+ /// with a different one-pass DFA.
+ ///
+ /// # Example
+ ///
+ /// This shows how to re-purpose a cache for use with a different one-pass
+ /// DFA.
+ ///
+ /// ```
+ /// # if cfg!(miri) { return Ok(()); } // miri takes too long
+ /// use regex_automata::{dfa::onepass::DFA, Match};
+ ///
+ /// let re1 = DFA::new(r"\w")?;
+ /// let re2 = DFA::new(r"\W")?;
+ /// let mut caps1 = re1.create_captures();
+ /// let mut caps2 = re2.create_captures();
+ ///
+ /// let mut cache = re1.create_cache();
+ /// assert_eq!(
+ /// Some(Match::must(0, 0..2)),
+ /// { re1.captures(&mut cache, "Δ", &mut caps1); caps1.get_match() },
+ /// );
+ ///
+ /// // Using 'cache' with re2 is not allowed. It may result in panics or
+ /// // incorrect results. In order to re-purpose the cache, we must reset
+ /// // it with the one-pass DFA we'd like to use it with.
+ /// //
+ /// // Similarly, after this reset, using the cache with 're1' is also not
+ /// // allowed.
+ /// re2.reset_cache(&mut cache);
+ /// assert_eq!(
+ /// Some(Match::must(0, 0..3)),
+ /// { re2.captures(&mut cache, "☃", &mut caps2); caps2.get_match() },
+ /// );
+ ///
+ /// # Ok::<(), Box<dyn std::error::Error>>(())
+ /// ```
+ pub fn reset(&mut self, re: &DFA) {
+ let explicit_slot_len = re.get_nfa().group_info().explicit_slot_len();
+ self.explicit_slots.resize(explicit_slot_len, None);
+ self.explicit_slot_len = explicit_slot_len;
+ }
+
+ /// Returns the heap memory usage, in bytes, of this cache.
+ ///
+ /// This does **not** include the stack size used up by this cache. To
+ /// compute that, use `std::mem::size_of::<Cache>()`.
+ pub fn memory_usage(&self) -> usize {
+ self.explicit_slots.len() * core::mem::size_of::<Option<NonMaxUsize>>()
+ }
+
+ fn explicit_slots(&mut self) -> &mut [Option<NonMaxUsize>] {
+ &mut self.explicit_slots[..self.explicit_slot_len]
+ }
+
+ fn setup_search(&mut self, explicit_slot_len: usize) {
+ self.explicit_slot_len = explicit_slot_len;
+ }
+}
+
+/// Represents a single transition in a one-pass DFA.
+///
+/// The high 24 bits corresponds to the state ID. The low 48 bits corresponds
+/// to the transition epsilons, which contains the slots that should be saved
+/// when this transition is followed and the conditional epsilon transitions
+/// that must be satisfied in order to follow this transition.
+#[derive(Clone, Copy, Eq, PartialEq)]
+struct Transition(u64);
+
+impl Transition {
+ const STATE_ID_BITS: u64 = 21;
+ const STATE_ID_SHIFT: u64 = 64 - Transition::STATE_ID_BITS;
+ const STATE_ID_LIMIT: u64 = 1 << Transition::STATE_ID_BITS;
+ const MATCH_WINS_SHIFT: u64 = 64 - (Transition::STATE_ID_BITS + 1);
+ const INFO_MASK: u64 = 0x000003FF_FFFFFFFF;
+
+ /// Return a new transition to the given state ID with the given epsilons.
+ fn new(match_wins: bool, sid: StateID, epsilons: Epsilons) -> Transition {
+ let match_wins =
+ if match_wins { 1 << Transition::MATCH_WINS_SHIFT } else { 0 };
+ let sid = sid.as_u64() << Transition::STATE_ID_SHIFT;
+ Transition(sid | match_wins | epsilons.0)
+ }
+
+ /// Returns true if and only if this transition points to the DEAD state.
+ fn is_dead(self) -> bool {
+ self.state_id() == DEAD
+ }
+
+ /// Return whether this transition has a "match wins" property.
+ ///
+ /// When a transition has this property, it means that if a match has been
+ /// found and the search uses leftmost-first semantics, then that match
+ /// should be returned immediately instead of continuing on.
+ ///
+ /// The "match wins" name comes from RE2, which uses a pretty much
+ /// identical mechanism for implementing leftmost-first semantics.
+ fn match_wins(&self) -> bool {
+ (self.0 >> Transition::MATCH_WINS_SHIFT & 1) == 1
+ }
+
+ /// Return the "next" state ID that this transition points to.
+ fn state_id(&self) -> StateID {
+ // OK because a Transition has a valid StateID in its upper bits by
+ // construction. The cast to usize is also correct, even on 16-bit
+ // targets because, again, we know the upper bits is a valid StateID,
+ // which can never overflow usize on any supported target.
+ StateID::new_unchecked(
+ (self.0 >> Transition::STATE_ID_SHIFT).as_usize(),
+ )
+ }
+
+ /// Set the "next" state ID in this transition.
+ fn set_state_id(&mut self, sid: StateID) {
+ *self = Transition::new(self.match_wins(), sid, self.epsilons());
+ }
+
+ /// Return the epsilons embedded in this transition.
+ fn epsilons(&self) -> Epsilons {
+ Epsilons(self.0 & Transition::INFO_MASK)
+ }
+}
+
+impl core::fmt::Debug for Transition {
+ fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+ if self.is_dead() {
+ return write!(f, "0");
+ }
+ write!(f, "{}", self.state_id().as_usize())?;
+ if self.match_wins() {
+ write!(f, "-MW")?;
+ }
+ if !self.epsilons().is_empty() {
+ write!(f, "-{:?}", self.epsilons())?;
+ }
+ Ok(())
+ }
+}
+
+/// A representation of a match state's pattern ID along with the epsilons for
+/// when a match occurs.
+///
+/// A match state in a one-pass DFA, unlike in a more general DFA, has exactly
+/// one pattern ID. If it had more, then the original NFA would not have been
+/// one-pass.
+///
+/// The "epsilons" part of this corresponds to what was found in the epsilon
+/// transitions between the transition taken in the last byte of input and the
+/// ultimate match state. This might include saving slots and/or conditional
+/// epsilon transitions that must be satisfied before one can report the match.
+///
+/// Technically, every state has room for a 'PatternEpsilons', but it is only
+/// ever non-empty for match states.
+#[derive(Clone, Copy)]
+struct PatternEpsilons(u64);
+
+impl PatternEpsilons {
+ const PATTERN_ID_BITS: u64 = 22;
+ const PATTERN_ID_SHIFT: u64 = 64 - PatternEpsilons::PATTERN_ID_BITS;
+ // A sentinel value indicating that this is not a match state. We don't
+ // use 0 since 0 is a valid pattern ID.
+ const PATTERN_ID_NONE: u64 = 0x00000000_003FFFFF;
+ const PATTERN_ID_LIMIT: u64 = PatternEpsilons::PATTERN_ID_NONE;
+ const PATTERN_ID_MASK: u64 = 0xFFFFFC00_00000000;
+ const EPSILONS_MASK: u64 = 0x000003FF_FFFFFFFF;
+
+ /// Return a new empty pattern epsilons that has no pattern ID and has no
+ /// epsilons. This is suitable for non-match states.
+ fn empty() -> PatternEpsilons {
+ PatternEpsilons(
+ PatternEpsilons::PATTERN_ID_NONE
+ << PatternEpsilons::PATTERN_ID_SHIFT,
+ )
+ }
+
+ /// Whether this pattern epsilons is empty or not. It's empty when it has
+ /// no pattern ID and an empty epsilons.
+ fn is_empty(self) -> bool {
+ self.pattern_id().is_none() && self.epsilons().is_empty()
+ }
+
+ /// Return the pattern ID in this pattern epsilons if one exists.
+ fn pattern_id(self) -> Option<PatternID> {
+ let pid = self.0 >> PatternEpsilons::PATTERN_ID_SHIFT;
+ if pid == PatternEpsilons::PATTERN_ID_LIMIT {
+ None
+ } else {
+ Some(PatternID::new_unchecked(pid.as_usize()))
+ }
+ }
+
+ /// Returns the pattern ID without checking whether it's valid. If this is
+ /// called and there is no pattern ID in this `PatternEpsilons`, then this
+ /// will likely produce an incorrect result or possibly even a panic or
+ /// an overflow. But safety will not be violated.
+ ///
+ /// This is useful when you know a particular state is a match state. If
+ /// it's a match state, then it must have a pattern ID.
+ fn pattern_id_unchecked(self) -> PatternID {
+ let pid = self.0 >> PatternEpsilons::PATTERN_ID_SHIFT;
+ PatternID::new_unchecked(pid.as_usize())
+ }
+
+ /// Return a new pattern epsilons with the given pattern ID, but the same
+ /// epsilons.
+ fn set_pattern_id(self, pid: PatternID) -> PatternEpsilons {
+ PatternEpsilons(
+ (pid.as_u64() << PatternEpsilons::PATTERN_ID_SHIFT)
+ | (self.0 & PatternEpsilons::EPSILONS_MASK),
+ )
+ }
+
+ /// Return the epsilons part of this pattern epsilons.
+ fn epsilons(self) -> Epsilons {
+ Epsilons(self.0 & PatternEpsilons::EPSILONS_MASK)
+ }
+
+ /// Return a new pattern epsilons with the given epsilons, but the same
+ /// pattern ID.
+ fn set_epsilons(self, epsilons: Epsilons) -> PatternEpsilons {
+ PatternEpsilons(
+ (self.0 & PatternEpsilons::PATTERN_ID_MASK)
+ | u64::from(epsilons.0),
+ )
+ }
+}
+
+impl core::fmt::Debug for PatternEpsilons {
+ fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+ if self.is_empty() {
+ return write!(f, "N/A");
+ }
+ if let Some(pid) = self.pattern_id() {
+ write!(f, "{}", pid.as_usize())?;
+ }
+ if !self.epsilons().is_empty() {
+ if self.pattern_id().is_some() {
+ write!(f, "/")?;
+ }
+ write!(f, "{:?}", self.epsilons())?;
+ }
+ Ok(())
+ }
+}
+
+/// Epsilons represents all of the NFA epsilons transitions that went into a
+/// single transition in a single DFA state. In this case, it only represents
+/// the epsilon transitions that have some kind of non-consuming side effect:
+/// either the transition requires storing the current position of the search
+/// into a slot, or the transition is conditional and requires the current
+/// position in the input to satisfy an assertion before the transition may be
+/// taken.
+///
+/// This folds the cumulative effect of a group of NFA states (all connected
+/// by epsilon transitions) down into a single set of bits. While these bits
+/// can represent all possible conditional epsilon transitions, it only permits
+/// storing up to a somewhat small number of slots.
+///
+/// Epsilons is represented as a 42-bit integer. For example, it is packed into
+/// the lower 42 bits of a `Transition`. (Where the high 22 bits contains a
+/// `StateID` and a special "match wins" property.)
+#[derive(Clone, Copy)]
+struct Epsilons(u64);
+
+impl Epsilons {
+ const SLOT_MASK: u64 = 0x000003FF_FFFFFC00;
+ const SLOT_SHIFT: u64 = 10;
+ const LOOK_MASK: u64 = 0x00000000_000003FF;
+
+ /// Create a new empty epsilons. It has no slots and no assertions that
+ /// need to be satisfied.
+ fn empty() -> Epsilons {
+ Epsilons(0)
+ }
+
+ /// Returns true if this epsilons contains no slots and no assertions.
+ fn is_empty(self) -> bool {
+ self.0 == 0
+ }
+
+ /// Returns the slot epsilon transitions.
+ fn slots(self) -> Slots {
+ Slots((self.0 >> Epsilons::SLOT_SHIFT).low_u32())
+ }
+
+ /// Set the slot epsilon transitions.
+ fn set_slots(self, slots: Slots) -> Epsilons {
+ Epsilons(
+ (u64::from(slots.0) << Epsilons::SLOT_SHIFT)
+ | (self.0 & Epsilons::LOOK_MASK),
+ )
+ }
+
+ /// Return the set of look-around assertions in these epsilon transitions.
+ fn looks(self) -> LookSet {
+ LookSet { bits: (self.0 & Epsilons::LOOK_MASK).low_u16() }
+ }
+
+ /// Set the look-around assertions on these epsilon transitions.
+ fn set_looks(self, look_set: LookSet) -> Epsilons {
+ Epsilons((self.0 & Epsilons::SLOT_MASK) | u64::from(look_set.bits))
+ }
+}
+
+impl core::fmt::Debug for Epsilons {
+ fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+ let mut wrote = false;
+ if !self.slots().is_empty() {
+ write!(f, "{:?}", self.slots())?;
+ wrote = true;
+ }
+ if !self.looks().is_empty() {
+ if wrote {
+ write!(f, "/")?;
+ }
+ write!(f, "{:?}", self.looks())?;
+ wrote = true;
+ }
+ if !wrote {
+ write!(f, "N/A")?;
+ }
+ Ok(())
+ }
+}
+
+/// The set of epsilon transitions indicating that the current position in a
+/// search should be saved to a slot.
+///
+/// This *only* represents explicit slots. So for example, the pattern
+/// `[a-z]+([0-9]+)([a-z]+)` has:
+///
+/// * 3 capturing groups, thus 6 slots.
+/// * 1 implicit capturing group, thus 2 implicit slots.
+/// * 2 explicit capturing groups, thus 4 explicit slots.
+///
+/// While implicit slots are represented by epsilon transitions in an NFA, we
+/// do not explicitly represent them here. Instead, implicit slots are assumed
+/// to be present and handled automatically in the search code. Therefore,
+/// that means we only need to represent explicit slots in our epsilon
+/// transitions.
+///
+/// Its representation is a bit set. The bit 'i' is set if and only if there
+/// exists an explicit slot at index 'c', where 'c = (#patterns * 2) + i'. That
+/// is, the bit 'i' corresponds to the first explicit slot and the first
+/// explicit slot appears immediately following the last implicit slot. (If
+/// this is confusing, see `GroupInfo` for more details on how slots works.)
+///
+/// A single `Slots` represents all the active slots in a sub-graph of an NFA,
+/// where all the states are connected by epsilon transitions. In effect, when
+/// traversing the one-pass DFA during a search, all slots set in a particular
+/// transition must be captured by recording the current search position.
+///
+/// The API of `Slots` requires the caller to handle the explicit slot offset.
+/// That is, a `Slots` doesn't know where the explicit slots start for a
+/// particular NFA. Thus, if the callers see's the bit 'i' is set, then they
+/// need to do the arithmetic above to find 'c', which is the real actual slot
+/// index in the corresponding NFA.
+#[derive(Clone, Copy)]
+struct Slots(u32);
+
+impl Slots {
+ const LIMIT: usize = 32;
+
+ /// Insert the slot at the given bit index.
+ fn insert(self, slot: usize) -> Slots {
+ debug_assert!(slot < Slots::LIMIT);
+ Slots(self.0 | (1 << slot.as_u32()))
+ }
+
+ /// Remove the slot at the given bit index.
+ fn remove(self, slot: usize) -> Slots {
+ debug_assert!(slot < Slots::LIMIT);
+ Slots(self.0 & !(1 << slot.as_u32()))
+ }
+
+ /// Returns true if and only if this set contains no slots.
+ fn is_empty(self) -> bool {
+ self.0 == 0
+ }
+
+ /// Returns an iterator over all of the set bits in this set.
+ fn iter(self) -> SlotsIter {
+ SlotsIter { slots: self }
+ }
+
+ /// For the position `at` in the current haystack, copy it to
+ /// `caller_explicit_slots` for all slots that are in this set.
+ ///
+ /// Callers may pass a slice of any length. Slots in this set bigger than
+ /// the length of the given explicit slots are simply skipped.
+ ///
+ /// The slice *must* correspond only to the explicit slots and the first
+ /// element of the slice must always correspond to the first explicit slot
+ /// in the corresponding NFA.
+ fn apply(
+ self,
+ at: usize,
+ caller_explicit_slots: &mut [Option<NonMaxUsize>],
+ ) {
+ if self.is_empty() {
+ return;
+ }
+ let at = NonMaxUsize::new(at);
+ for slot in self.iter() {
+ if slot >= caller_explicit_slots.len() {
+ break;
+ }
+ caller_explicit_slots[slot] = at;
+ }
+ }
+}
+
+impl core::fmt::Debug for Slots {
+ fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+ write!(f, "S")?;
+ for slot in self.iter() {
+ write!(f, "-{:?}", slot)?;
+ }
+ Ok(())
+ }
+}
+
+/// An iterator over all of the bits set in a slot set.
+///
+/// This returns the bit index that is set, so callers may need to offset it
+/// to get the actual NFA slot index.
+#[derive(Debug)]
+struct SlotsIter {
+ slots: Slots,
+}
+
+impl Iterator for SlotsIter {
+ type Item = usize;
+
+ fn next(&mut self) -> Option<usize> {
+ // Number of zeroes here is always <= u8::MAX, and so fits in a usize.
+ let slot = self.slots.0.trailing_zeros().as_usize();
+ if slot >= Slots::LIMIT {
+ return None;
+ }
+ self.slots = self.slots.remove(slot);
+ Some(slot)
+ }
+}
+
+/// An error that occurred during the construction of a one-pass DFA.
+///
+/// This error does not provide many introspection capabilities. There are
+/// generally only two things you can do with it:
+///
+/// * Obtain a human readable message via its `std::fmt::Display` impl.
+/// * Access an underlying [`thompson::BuildError`] type from its `source`
+/// method via the `std::error::Error` trait. This error only occurs when using
+/// convenience routines for building a one-pass DFA directly from a pattern
+/// string.
+///
+/// When the `std` feature is enabled, this implements the `std::error::Error`
+/// trait.
+#[derive(Clone, Debug)]
+pub struct BuildError {
+ kind: BuildErrorKind,
+}
+
+/// The kind of error that occurred during the construction of a one-pass DFA.
+#[derive(Clone, Debug)]
+enum BuildErrorKind {
+ NFA(crate::nfa::thompson::BuildError),
+ Word(UnicodeWordBoundaryError),
+ TooManyStates { limit: u64 },
+ TooManyPatterns { limit: u64 },
+ UnsupportedLook { look: Look },
+ ExceededSizeLimit { limit: usize },
+ NotOnePass { msg: &'static str },
+}
+
+impl BuildError {
+ fn nfa(err: crate::nfa::thompson::BuildError) -> BuildError {
+ BuildError { kind: BuildErrorKind::NFA(err) }
+ }
+
+ fn word(err: UnicodeWordBoundaryError) -> BuildError {
+ BuildError { kind: BuildErrorKind::Word(err) }
+ }
+
+ fn too_many_states(limit: u64) -> BuildError {
+ BuildError { kind: BuildErrorKind::TooManyStates { limit } }
+ }
+
+ fn too_many_patterns(limit: u64) -> BuildError {
+ BuildError { kind: BuildErrorKind::TooManyPatterns { limit } }
+ }
+
+ fn unsupported_look(look: Look) -> BuildError {
+ BuildError { kind: BuildErrorKind::UnsupportedLook { look } }
+ }
+
+ fn exceeded_size_limit(limit: usize) -> BuildError {
+ BuildError { kind: BuildErrorKind::ExceededSizeLimit { limit } }
+ }
+
+ fn not_one_pass(msg: &'static str) -> BuildError {
+ BuildError { kind: BuildErrorKind::NotOnePass { msg } }
+ }
+}
+
+#[cfg(feature = "std")]
+impl std::error::Error for BuildError {
+ fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
+ use self::BuildErrorKind::*;
+
+ match self.kind {
+ NFA(ref err) => Some(err),
+ Word(ref err) => Some(err),
+ _ => None,
+ }
+ }
+}
+
+impl core::fmt::Display for BuildError {
+ fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
+ use self::BuildErrorKind::*;
+
+ match self.kind {
+ NFA(_) => write!(f, "error building NFA"),
+ Word(_) => write!(f, "NFA contains Unicode word boundary"),
+ TooManyStates { limit } => write!(
+ f,
+ "one-pass DFA exceeded a limit of {:?} for number of states",
+ limit,
+ ),
+ TooManyPatterns { limit } => write!(
+ f,
+ "one-pass DFA exceeded a limit of {:?} for number of patterns",
+ limit,
+ ),
+ UnsupportedLook { look } => write!(
+ f,
+ "one-pass DFA does not support the {:?} assertion",
+ look,
+ ),
+ ExceededSizeLimit { limit } => write!(
+ f,
+ "one-pass DFA exceeded size limit of {:?} during building",
+ limit,
+ ),
+ NotOnePass { msg } => write!(
+ f,
+ "one-pass DFA could not be built because \
+ pattern is not one-pass: {}",
+ msg,
+ ),
+ }
+ }
+}
+
+#[cfg(all(test, feature = "syntax"))]
+mod tests {
+ use alloc::string::ToString;
+
+ use super::*;
+
+ #[test]
+ fn fail_conflicting_transition() {
+ let predicate = |err: &str| err.contains("conflicting transition");
+
+ let err = DFA::new(r"a*[ab]").unwrap_err().to_string();
+ assert!(predicate(&err), "{}", err);
+ }
+
+ #[test]
+ fn fail_multiple_epsilon() {
+ let predicate = |err: &str| {
+ err.contains("multiple epsilon transitions to same state")
+ };
+
+ let err = DFA::new(r"(^|$)a").unwrap_err().to_string();
+ assert!(predicate(&err), "{}", err);
+ }
+
+ #[test]
+ fn fail_multiple_match() {
+ let predicate = |err: &str| {
+ err.contains("multiple epsilon transitions to match state")
+ };
+
+ let err = DFA::new_many(&[r"^", r"$"]).unwrap_err().to_string();
+ assert!(predicate(&err), "{}", err);
+ }
+
+ // This test is meant to build a one-pass regex with the maximum number of
+ // possible slots.
+ //
+ // NOTE: Remember that the slot limit only applies to explicit capturing
+ // groups. Any number of implicit capturing groups is supported (up to the
+ // maximum number of supported patterns), since implicit groups are handled
+ // by the search loop itself.
+ #[test]
+ fn max_slots() {
+ // One too many...
+ let pat = r"(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m)(n)(o)(p)(q)";
+ assert!(DFA::new(pat).is_err());
+ // Just right.
+ let pat = r"(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m)(n)(o)(p)";
+ assert!(DFA::new(pat).is_ok());
+ }
+
+ // This test ensures that the one-pass DFA works with all look-around
+ // assertions that we expect it to work with.
+ //
+ // The utility of this test is that each one-pass transition has a small
+ // amount of space to store look-around assertions. Currently, there is
+ // logic in the one-pass constructor to ensure there aren't more than ten
+ // possible assertions. And indeed, there are only ten possible assertions
+ // (at time of writing), so this is okay. But conceivably, more assertions
+ // could be added. So we check that things at least work with what we
+ // expect them to work with.
+ #[test]
+ fn assertions() {
+ // haystack anchors
+ assert!(DFA::new(r"^").is_ok());
+ assert!(DFA::new(r"$").is_ok());
+
+ // line anchors
+ assert!(DFA::new(r"(?m)^").is_ok());
+ assert!(DFA::new(r"(?m)$").is_ok());
+ assert!(DFA::new(r"(?Rm)^").is_ok());
+ assert!(DFA::new(r"(?Rm)$").is_ok());
+
+ // word boundaries
+ if cfg!(feature = "unicode-word-boundary") {
+ assert!(DFA::new(r"\b").is_ok());
+ assert!(DFA::new(r"\B").is_ok());
+ }
+ assert!(DFA::new(r"(?-u)\b").is_ok());
+ assert!(DFA::new(r"(?-u)\B").is_ok());
+ }
+
+ #[cfg(not(miri))] // takes too long on miri
+ #[test]
+ fn is_one_pass() {
+ use crate::util::syntax;
+
+ assert!(DFA::new(r"a*b").is_ok());
+ if cfg!(feature = "unicode-perl") {
+ assert!(DFA::new(r"\w").is_ok());
+ }
+ assert!(DFA::new(r"(?-u)\w*\s").is_ok());
+ assert!(DFA::new(r"(?s:.)*?").is_ok());
+ assert!(DFA::builder()
+ .syntax(syntax::Config::new().utf8(false))
+ .build(r"(?s-u:.)*?")
+ .is_ok());
+ }
+
+ #[test]
+ fn is_not_one_pass() {
+ assert!(DFA::new(r"a*a").is_err());
+ assert!(DFA::new(r"(?s-u:.)*?").is_err());
+ assert!(DFA::new(r"(?s:.)*?a").is_err());
+ }
+
+ #[cfg(not(miri))]
+ #[test]
+ fn is_not_one_pass_bigger() {
+ assert!(DFA::new(r"\w*\s").is_err());
+ }
+}