summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regex-automata/src/hybrid/search.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/regex-automata/src/hybrid/search.rs')
-rw-r--r--third_party/rust/regex-automata/src/hybrid/search.rs802
1 files changed, 802 insertions, 0 deletions
diff --git a/third_party/rust/regex-automata/src/hybrid/search.rs b/third_party/rust/regex-automata/src/hybrid/search.rs
new file mode 100644
index 0000000000..f232836854
--- /dev/null
+++ b/third_party/rust/regex-automata/src/hybrid/search.rs
@@ -0,0 +1,802 @@
+use crate::{
+ hybrid::{
+ dfa::{Cache, OverlappingState, DFA},
+ id::LazyStateID,
+ },
+ util::{
+ prefilter::Prefilter,
+ search::{HalfMatch, Input, MatchError, Span},
+ },
+};
+
+#[inline(never)]
+pub(crate) fn find_fwd(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+) -> Result<Option<HalfMatch>, MatchError> {
+ if input.is_done() {
+ return Ok(None);
+ }
+ let pre = if input.get_anchored().is_anchored() {
+ None
+ } else {
+ dfa.get_config().get_prefilter()
+ };
+ // So what we do here is specialize four different versions of 'find_fwd':
+ // one for each of the combinations for 'has prefilter' and 'is earliest
+ // search'. The reason for doing this is that both of these things require
+ // branches and special handling in some code that can be very hot,
+ // and shaving off as much as we can when we don't need it tends to be
+ // beneficial in ad hoc benchmarks. To see these differences, you often
+ // need a query with a high match count. In other words, specializing these
+ // four routines *tends* to help latency more than throughput.
+ if pre.is_some() {
+ if input.get_earliest() {
+ find_fwd_imp(dfa, cache, input, pre, true)
+ } else {
+ find_fwd_imp(dfa, cache, input, pre, false)
+ }
+ } else {
+ if input.get_earliest() {
+ find_fwd_imp(dfa, cache, input, None, true)
+ } else {
+ find_fwd_imp(dfa, cache, input, None, false)
+ }
+ }
+}
+
+#[cfg_attr(feature = "perf-inline", inline(always))]
+fn find_fwd_imp(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ pre: Option<&'_ Prefilter>,
+ earliest: bool,
+) -> Result<Option<HalfMatch>, MatchError> {
+ // See 'prefilter_restart' docs for explanation.
+ let universal_start = dfa.get_nfa().look_set_prefix_any().is_empty();
+ let mut mat = None;
+ let mut sid = init_fwd(dfa, cache, input)?;
+ let mut at = input.start();
+ // This could just be a closure, but then I think it would be unsound
+ // because it would need to be safe to invoke. This way, the lack of safety
+ // is clearer in the code below.
+ macro_rules! next_unchecked {
+ ($sid:expr, $at:expr) => {{
+ let byte = *input.haystack().get_unchecked($at);
+ dfa.next_state_untagged_unchecked(cache, $sid, byte)
+ }};
+ }
+
+ if let Some(ref pre) = pre {
+ let span = Span::from(at..input.end());
+ match pre.find(input.haystack(), span) {
+ None => return Ok(mat),
+ Some(ref span) => {
+ at = span.start;
+ if !universal_start {
+ sid = prefilter_restart(dfa, cache, &input, at)?;
+ }
+ }
+ }
+ }
+ cache.search_start(at);
+ while at < input.end() {
+ if sid.is_tagged() {
+ cache.search_update(at);
+ sid = dfa
+ .next_state(cache, sid, input.haystack()[at])
+ .map_err(|_| gave_up(at))?;
+ } else {
+ // SAFETY: There are two safety invariants we need to uphold
+ // here in the loops below: that 'sid' and 'prev_sid' are valid
+ // state IDs for this DFA, and that 'at' is a valid index into
+ // 'haystack'. For the former, we rely on the invariant that
+ // next_state* and start_state_forward always returns a valid state
+ // ID (given a valid state ID in the former case), and that we are
+ // only at this place in the code if 'sid' is untagged. Moreover,
+ // every call to next_state_untagged_unchecked below is guarded by
+ // a check that sid is untagged. For the latter safety invariant,
+ // we always guard unchecked access with a check that 'at' is less
+ // than 'end', where 'end <= haystack.len()'. In the unrolled loop
+ // below, we ensure that 'at' is always in bounds.
+ //
+ // PERF: For justification of omitting bounds checks, it gives us a
+ // ~10% bump in search time. This was used for a benchmark:
+ //
+ // regex-cli find hybrid dfa @bigfile '(?m)^.+$' -UBb
+ //
+ // PERF: For justification for the loop unrolling, we use a few
+ // different tests:
+ //
+ // regex-cli find hybrid dfa @$bigfile '\w{50}' -UBb
+ // regex-cli find hybrid dfa @$bigfile '(?m)^.+$' -UBb
+ // regex-cli find hybrid dfa @$bigfile 'ZQZQZQZQ' -UBb
+ //
+ // And there are three different configurations:
+ //
+ // nounroll: this entire 'else' block vanishes and we just
+ // always use 'dfa.next_state(..)'.
+ // unroll1: just the outer loop below
+ // unroll2: just the inner loop below
+ // unroll3: both the outer and inner loops below
+ //
+ // This results in a matrix of timings for each of the above
+ // regexes with each of the above unrolling configurations:
+ //
+ // '\w{50}' '(?m)^.+$' 'ZQZQZQZQ'
+ // nounroll 1.51s 2.34s 1.51s
+ // unroll1 1.53s 2.32s 1.56s
+ // unroll2 2.22s 1.50s 0.61s
+ // unroll3 1.67s 1.45s 0.61s
+ //
+ // Ideally we'd be able to find a configuration that yields the
+ // best time for all regexes, but alas we settle for unroll3 that
+ // gives us *almost* the best for '\w{50}' and the best for the
+ // other two regexes.
+ //
+ // So what exactly is going on here? The first unrolling (grouping
+ // together runs of untagged transitions) specifically targets
+ // our choice of representation. The second unrolling (grouping
+ // together runs of self-transitions) specifically targets a common
+ // DFA topology. Let's dig in a little bit by looking at our
+ // regexes:
+ //
+ // '\w{50}': This regex spends a lot of time outside of the DFA's
+ // start state matching some part of the '\w' repetition. This
+ // means that it's a bit of a worst case for loop unrolling that
+ // targets self-transitions since the self-transitions in '\w{50}'
+ // are not particularly active for this haystack. However, the
+ // first unrolling (grouping together untagged transitions)
+ // does apply quite well here since very few transitions hit
+ // match/dead/quit/unknown states. It is however worth mentioning
+ // that if start states are configured to be tagged (which you
+ // typically want to do if you have a prefilter), then this regex
+ // actually slows way down because it is constantly ping-ponging
+ // out of the unrolled loop and into the handling of a tagged start
+ // state below. But when start states aren't tagged, the unrolled
+ // loop stays hot. (This is why it's imperative that start state
+ // tagging be disabled when there isn't a prefilter!)
+ //
+ // '(?m)^.+$': There are two important aspects of this regex: 1)
+ // on this haystack, its match count is very high, much higher
+ // than the other two regex and 2) it spends the vast majority
+ // of its time matching '.+'. Since Unicode mode is disabled,
+ // this corresponds to repeatedly following self transitions for
+ // the vast majority of the input. This does benefit from the
+ // untagged unrolling since most of the transitions will be to
+ // untagged states, but the untagged unrolling does more work than
+ // what is actually required. Namely, it has to keep track of the
+ // previous and next state IDs, which I guess requires a bit more
+ // shuffling. This is supported by the fact that nounroll+unroll1
+ // are both slower than unroll2+unroll3, where the latter has a
+ // loop unrolling that specifically targets self-transitions.
+ //
+ // 'ZQZQZQZQ': This one is very similar to '(?m)^.+$' because it
+ // spends the vast majority of its time in self-transitions for
+ // the (implicit) unanchored prefix. The main difference with
+ // '(?m)^.+$' is that it has a much lower match count. So there
+ // isn't much time spent in the overhead of reporting matches. This
+ // is the primary explainer in the perf difference here. We include
+ // this regex and the former to make sure we have comparison points
+ // with high and low match counts.
+ //
+ // NOTE: I used 'OpenSubtitles2018.raw.sample.en' for 'bigfile'.
+ //
+ // NOTE: In a follow-up, it turns out that the "inner" loop
+ // mentioned above was a pretty big pessimization in some other
+ // cases. Namely, it resulted in too much ping-ponging into and out
+ // of the loop, which resulted in nearly ~2x regressions in search
+ // time when compared to the originally lazy DFA in the regex crate.
+ // So I've removed the second loop unrolling that targets the
+ // self-transition case.
+ let mut prev_sid = sid;
+ while at < input.end() {
+ prev_sid = unsafe { next_unchecked!(sid, at) };
+ if prev_sid.is_tagged() || at + 3 >= input.end() {
+ core::mem::swap(&mut prev_sid, &mut sid);
+ break;
+ }
+ at += 1;
+
+ sid = unsafe { next_unchecked!(prev_sid, at) };
+ if sid.is_tagged() {
+ break;
+ }
+ at += 1;
+
+ prev_sid = unsafe { next_unchecked!(sid, at) };
+ if prev_sid.is_tagged() {
+ core::mem::swap(&mut prev_sid, &mut sid);
+ break;
+ }
+ at += 1;
+
+ sid = unsafe { next_unchecked!(prev_sid, at) };
+ if sid.is_tagged() {
+ break;
+ }
+ at += 1;
+ }
+ // If we quit out of the code above with an unknown state ID at
+ // any point, then we need to re-compute that transition using
+ // 'next_state', which will do NFA powerset construction for us.
+ if sid.is_unknown() {
+ cache.search_update(at);
+ sid = dfa
+ .next_state(cache, prev_sid, input.haystack()[at])
+ .map_err(|_| gave_up(at))?;
+ }
+ }
+ if sid.is_tagged() {
+ if sid.is_start() {
+ if let Some(ref pre) = pre {
+ let span = Span::from(at..input.end());
+ match pre.find(input.haystack(), span) {
+ None => {
+ cache.search_finish(span.end);
+ return Ok(mat);
+ }
+ Some(ref span) => {
+ // We want to skip any update to 'at' below
+ // at the end of this iteration and just
+ // jump immediately back to the next state
+ // transition at the leading position of the
+ // candidate match.
+ //
+ // ... but only if we actually made progress
+ // with our prefilter, otherwise if the start
+ // state has a self-loop, we can get stuck.
+ if span.start > at {
+ at = span.start;
+ if !universal_start {
+ sid = prefilter_restart(
+ dfa, cache, &input, at,
+ )?;
+ }
+ continue;
+ }
+ }
+ }
+ }
+ } else if sid.is_match() {
+ let pattern = dfa.match_pattern(cache, sid, 0);
+ // Since slice ranges are inclusive at the beginning and
+ // exclusive at the end, and since forward searches report
+ // the end, we can return 'at' as-is. This only works because
+ // matches are delayed by 1 byte. So by the time we observe a
+ // match, 'at' has already been set to 1 byte past the actual
+ // match location, which is precisely the exclusive ending
+ // bound of the match.
+ mat = Some(HalfMatch::new(pattern, at));
+ if earliest {
+ cache.search_finish(at);
+ return Ok(mat);
+ }
+ } else if sid.is_dead() {
+ cache.search_finish(at);
+ return Ok(mat);
+ } else if sid.is_quit() {
+ cache.search_finish(at);
+ return Err(MatchError::quit(input.haystack()[at], at));
+ } else {
+ debug_assert!(sid.is_unknown());
+ unreachable!("sid being unknown is a bug");
+ }
+ }
+ at += 1;
+ }
+ eoi_fwd(dfa, cache, input, &mut sid, &mut mat)?;
+ cache.search_finish(input.end());
+ Ok(mat)
+}
+
+#[inline(never)]
+pub(crate) fn find_rev(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+) -> Result<Option<HalfMatch>, MatchError> {
+ if input.is_done() {
+ return Ok(None);
+ }
+ if input.get_earliest() {
+ find_rev_imp(dfa, cache, input, true)
+ } else {
+ find_rev_imp(dfa, cache, input, false)
+ }
+}
+
+#[cfg_attr(feature = "perf-inline", inline(always))]
+fn find_rev_imp(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ earliest: bool,
+) -> Result<Option<HalfMatch>, MatchError> {
+ let mut mat = None;
+ let mut sid = init_rev(dfa, cache, input)?;
+ // In reverse search, the loop below can't handle the case of searching an
+ // empty slice. Ideally we could write something congruent to the forward
+ // search, i.e., 'while at >= start', but 'start' might be 0. Since we use
+ // an unsigned offset, 'at >= 0' is trivially always true. We could avoid
+ // this extra case handling by using a signed offset, but Rust makes it
+ // annoying to do. So... We just handle the empty case separately.
+ if input.start() == input.end() {
+ eoi_rev(dfa, cache, input, &mut sid, &mut mat)?;
+ return Ok(mat);
+ }
+
+ let mut at = input.end() - 1;
+ macro_rules! next_unchecked {
+ ($sid:expr, $at:expr) => {{
+ let byte = *input.haystack().get_unchecked($at);
+ dfa.next_state_untagged_unchecked(cache, $sid, byte)
+ }};
+ }
+ cache.search_start(at);
+ loop {
+ if sid.is_tagged() {
+ cache.search_update(at);
+ sid = dfa
+ .next_state(cache, sid, input.haystack()[at])
+ .map_err(|_| gave_up(at))?;
+ } else {
+ // SAFETY: See comments in 'find_fwd' for a safety argument.
+ //
+ // PERF: The comments in 'find_fwd' also provide a justification
+ // from a performance perspective as to 1) why we elide bounds
+ // checks and 2) why we do a specialized version of unrolling
+ // below. The reverse search does have a slightly different
+ // consideration in that most reverse searches tend to be
+ // anchored and on shorter haystacks. However, this still makes a
+ // difference. Take this command for example:
+ //
+ // regex-cli find hybrid regex @$bigfile '(?m)^.+$' -UBb
+ //
+ // (Notice that we use 'find hybrid regex', not 'find hybrid dfa'
+ // like in the justification for the forward direction. The 'regex'
+ // sub-command will find start-of-match and thus run the reverse
+ // direction.)
+ //
+ // Without unrolling below, the above command takes around 3.76s.
+ // But with the unrolling below, we get down to 2.55s. If we keep
+ // the unrolling but add in bounds checks, then we get 2.86s.
+ //
+ // NOTE: I used 'OpenSubtitles2018.raw.sample.en' for 'bigfile'.
+ let mut prev_sid = sid;
+ while at >= input.start() {
+ prev_sid = unsafe { next_unchecked!(sid, at) };
+ if prev_sid.is_tagged()
+ || at <= input.start().saturating_add(3)
+ {
+ core::mem::swap(&mut prev_sid, &mut sid);
+ break;
+ }
+ at -= 1;
+
+ sid = unsafe { next_unchecked!(prev_sid, at) };
+ if sid.is_tagged() {
+ break;
+ }
+ at -= 1;
+
+ prev_sid = unsafe { next_unchecked!(sid, at) };
+ if prev_sid.is_tagged() {
+ core::mem::swap(&mut prev_sid, &mut sid);
+ break;
+ }
+ at -= 1;
+
+ sid = unsafe { next_unchecked!(prev_sid, at) };
+ if sid.is_tagged() {
+ break;
+ }
+ at -= 1;
+ }
+ // If we quit out of the code above with an unknown state ID at
+ // any point, then we need to re-compute that transition using
+ // 'next_state', which will do NFA powerset construction for us.
+ if sid.is_unknown() {
+ cache.search_update(at);
+ sid = dfa
+ .next_state(cache, prev_sid, input.haystack()[at])
+ .map_err(|_| gave_up(at))?;
+ }
+ }
+ if sid.is_tagged() {
+ if sid.is_start() {
+ // do nothing
+ } else if sid.is_match() {
+ let pattern = dfa.match_pattern(cache, sid, 0);
+ // Since reverse searches report the beginning of a match
+ // and the beginning is inclusive (not exclusive like the
+ // end of a match), we add 1 to make it inclusive.
+ mat = Some(HalfMatch::new(pattern, at + 1));
+ if earliest {
+ cache.search_finish(at);
+ return Ok(mat);
+ }
+ } else if sid.is_dead() {
+ cache.search_finish(at);
+ return Ok(mat);
+ } else if sid.is_quit() {
+ cache.search_finish(at);
+ return Err(MatchError::quit(input.haystack()[at], at));
+ } else {
+ debug_assert!(sid.is_unknown());
+ unreachable!("sid being unknown is a bug");
+ }
+ }
+ if at == input.start() {
+ break;
+ }
+ at -= 1;
+ }
+ cache.search_finish(input.start());
+ eoi_rev(dfa, cache, input, &mut sid, &mut mat)?;
+ Ok(mat)
+}
+
+#[inline(never)]
+pub(crate) fn find_overlapping_fwd(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ state: &mut OverlappingState,
+) -> Result<(), MatchError> {
+ state.mat = None;
+ if input.is_done() {
+ return Ok(());
+ }
+ let pre = if input.get_anchored().is_anchored() {
+ None
+ } else {
+ dfa.get_config().get_prefilter()
+ };
+ if pre.is_some() {
+ find_overlapping_fwd_imp(dfa, cache, input, pre, state)
+ } else {
+ find_overlapping_fwd_imp(dfa, cache, input, None, state)
+ }
+}
+
+#[cfg_attr(feature = "perf-inline", inline(always))]
+fn find_overlapping_fwd_imp(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ pre: Option<&'_ Prefilter>,
+ state: &mut OverlappingState,
+) -> Result<(), MatchError> {
+ // See 'prefilter_restart' docs for explanation.
+ let universal_start = dfa.get_nfa().look_set_prefix_any().is_empty();
+ let mut sid = match state.id {
+ None => {
+ state.at = input.start();
+ init_fwd(dfa, cache, input)?
+ }
+ Some(sid) => {
+ if let Some(match_index) = state.next_match_index {
+ let match_len = dfa.match_len(cache, sid);
+ if match_index < match_len {
+ state.next_match_index = Some(match_index + 1);
+ let pattern = dfa.match_pattern(cache, sid, match_index);
+ state.mat = Some(HalfMatch::new(pattern, state.at));
+ return Ok(());
+ }
+ }
+ // Once we've reported all matches at a given position, we need to
+ // advance the search to the next position.
+ state.at += 1;
+ if state.at > input.end() {
+ return Ok(());
+ }
+ sid
+ }
+ };
+
+ // NOTE: We don't optimize the crap out of this routine primarily because
+ // it seems like most overlapping searches will have higher match counts,
+ // and thus, throughput is perhaps not as important. But if you have a use
+ // case for something faster, feel free to file an issue.
+ cache.search_start(state.at);
+ while state.at < input.end() {
+ sid = dfa
+ .next_state(cache, sid, input.haystack()[state.at])
+ .map_err(|_| gave_up(state.at))?;
+ if sid.is_tagged() {
+ state.id = Some(sid);
+ if sid.is_start() {
+ if let Some(ref pre) = pre {
+ let span = Span::from(state.at..input.end());
+ match pre.find(input.haystack(), span) {
+ None => return Ok(()),
+ Some(ref span) => {
+ if span.start > state.at {
+ state.at = span.start;
+ if !universal_start {
+ sid = prefilter_restart(
+ dfa, cache, &input, state.at,
+ )?;
+ }
+ continue;
+ }
+ }
+ }
+ }
+ } else if sid.is_match() {
+ state.next_match_index = Some(1);
+ let pattern = dfa.match_pattern(cache, sid, 0);
+ state.mat = Some(HalfMatch::new(pattern, state.at));
+ cache.search_finish(state.at);
+ return Ok(());
+ } else if sid.is_dead() {
+ cache.search_finish(state.at);
+ return Ok(());
+ } else if sid.is_quit() {
+ cache.search_finish(state.at);
+ return Err(MatchError::quit(
+ input.haystack()[state.at],
+ state.at,
+ ));
+ } else {
+ debug_assert!(sid.is_unknown());
+ unreachable!("sid being unknown is a bug");
+ }
+ }
+ state.at += 1;
+ cache.search_update(state.at);
+ }
+
+ let result = eoi_fwd(dfa, cache, input, &mut sid, &mut state.mat);
+ state.id = Some(sid);
+ if state.mat.is_some() {
+ // '1' is always correct here since if we get to this point, this
+ // always corresponds to the first (index '0') match discovered at
+ // this position. So the next match to report at this position (if
+ // it exists) is at index '1'.
+ state.next_match_index = Some(1);
+ }
+ cache.search_finish(input.end());
+ result
+}
+
+#[inline(never)]
+pub(crate) fn find_overlapping_rev(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ state: &mut OverlappingState,
+) -> Result<(), MatchError> {
+ state.mat = None;
+ if input.is_done() {
+ return Ok(());
+ }
+ let mut sid = match state.id {
+ None => {
+ let sid = init_rev(dfa, cache, input)?;
+ state.id = Some(sid);
+ if input.start() == input.end() {
+ state.rev_eoi = true;
+ } else {
+ state.at = input.end() - 1;
+ }
+ sid
+ }
+ Some(sid) => {
+ if let Some(match_index) = state.next_match_index {
+ let match_len = dfa.match_len(cache, sid);
+ if match_index < match_len {
+ state.next_match_index = Some(match_index + 1);
+ let pattern = dfa.match_pattern(cache, sid, match_index);
+ state.mat = Some(HalfMatch::new(pattern, state.at));
+ return Ok(());
+ }
+ }
+ // Once we've reported all matches at a given position, we need
+ // to advance the search to the next position. However, if we've
+ // already followed the EOI transition, then we know we're done
+ // with the search and there cannot be any more matches to report.
+ if state.rev_eoi {
+ return Ok(());
+ } else if state.at == input.start() {
+ // At this point, we should follow the EOI transition. This
+ // will cause us the skip the main loop below and fall through
+ // to the final 'eoi_rev' transition.
+ state.rev_eoi = true;
+ } else {
+ // We haven't hit the end of the search yet, so move on.
+ state.at -= 1;
+ }
+ sid
+ }
+ };
+ cache.search_start(state.at);
+ while !state.rev_eoi {
+ sid = dfa
+ .next_state(cache, sid, input.haystack()[state.at])
+ .map_err(|_| gave_up(state.at))?;
+ if sid.is_tagged() {
+ state.id = Some(sid);
+ if sid.is_start() {
+ // do nothing
+ } else if sid.is_match() {
+ state.next_match_index = Some(1);
+ let pattern = dfa.match_pattern(cache, sid, 0);
+ state.mat = Some(HalfMatch::new(pattern, state.at + 1));
+ cache.search_finish(state.at);
+ return Ok(());
+ } else if sid.is_dead() {
+ cache.search_finish(state.at);
+ return Ok(());
+ } else if sid.is_quit() {
+ cache.search_finish(state.at);
+ return Err(MatchError::quit(
+ input.haystack()[state.at],
+ state.at,
+ ));
+ } else {
+ debug_assert!(sid.is_unknown());
+ unreachable!("sid being unknown is a bug");
+ }
+ }
+ if state.at == input.start() {
+ break;
+ }
+ state.at -= 1;
+ cache.search_update(state.at);
+ }
+
+ let result = eoi_rev(dfa, cache, input, &mut sid, &mut state.mat);
+ state.rev_eoi = true;
+ state.id = Some(sid);
+ if state.mat.is_some() {
+ // '1' is always correct here since if we get to this point, this
+ // always corresponds to the first (index '0') match discovered at
+ // this position. So the next match to report at this position (if
+ // it exists) is at index '1'.
+ state.next_match_index = Some(1);
+ }
+ cache.search_finish(input.start());
+ result
+}
+
+#[cfg_attr(feature = "perf-inline", inline(always))]
+fn init_fwd(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+) -> Result<LazyStateID, MatchError> {
+ let sid = dfa.start_state_forward(cache, input)?;
+ // Start states can never be match states, since all matches are delayed
+ // by 1 byte.
+ debug_assert!(!sid.is_match());
+ Ok(sid)
+}
+
+#[cfg_attr(feature = "perf-inline", inline(always))]
+fn init_rev(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+) -> Result<LazyStateID, MatchError> {
+ let sid = dfa.start_state_reverse(cache, input)?;
+ // Start states can never be match states, since all matches are delayed
+ // by 1 byte.
+ debug_assert!(!sid.is_match());
+ Ok(sid)
+}
+
+#[cfg_attr(feature = "perf-inline", inline(always))]
+fn eoi_fwd(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ sid: &mut LazyStateID,
+ mat: &mut Option<HalfMatch>,
+) -> Result<(), MatchError> {
+ let sp = input.get_span();
+ match input.haystack().get(sp.end) {
+ Some(&b) => {
+ *sid =
+ dfa.next_state(cache, *sid, b).map_err(|_| gave_up(sp.end))?;
+ if sid.is_match() {
+ let pattern = dfa.match_pattern(cache, *sid, 0);
+ *mat = Some(HalfMatch::new(pattern, sp.end));
+ } else if sid.is_quit() {
+ return Err(MatchError::quit(b, sp.end));
+ }
+ }
+ None => {
+ *sid = dfa
+ .next_eoi_state(cache, *sid)
+ .map_err(|_| gave_up(input.haystack().len()))?;
+ if sid.is_match() {
+ let pattern = dfa.match_pattern(cache, *sid, 0);
+ *mat = Some(HalfMatch::new(pattern, input.haystack().len()));
+ }
+ // N.B. We don't have to check 'is_quit' here because the EOI
+ // transition can never lead to a quit state.
+ debug_assert!(!sid.is_quit());
+ }
+ }
+ Ok(())
+}
+
+#[cfg_attr(feature = "perf-inline", inline(always))]
+fn eoi_rev(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ sid: &mut LazyStateID,
+ mat: &mut Option<HalfMatch>,
+) -> Result<(), MatchError> {
+ let sp = input.get_span();
+ if sp.start > 0 {
+ let byte = input.haystack()[sp.start - 1];
+ *sid = dfa
+ .next_state(cache, *sid, byte)
+ .map_err(|_| gave_up(sp.start))?;
+ if sid.is_match() {
+ let pattern = dfa.match_pattern(cache, *sid, 0);
+ *mat = Some(HalfMatch::new(pattern, sp.start));
+ } else if sid.is_quit() {
+ return Err(MatchError::quit(byte, sp.start - 1));
+ }
+ } else {
+ *sid =
+ dfa.next_eoi_state(cache, *sid).map_err(|_| gave_up(sp.start))?;
+ if sid.is_match() {
+ let pattern = dfa.match_pattern(cache, *sid, 0);
+ *mat = Some(HalfMatch::new(pattern, 0));
+ }
+ // N.B. We don't have to check 'is_quit' here because the EOI
+ // transition can never lead to a quit state.
+ debug_assert!(!sid.is_quit());
+ }
+ Ok(())
+}
+
+/// Re-compute the starting state that a DFA should be in after finding a
+/// prefilter candidate match at the position `at`.
+///
+/// It is always correct to call this, but not always necessary. Namely,
+/// whenever the DFA has a universal start state, the DFA can remain in the
+/// start state that it was in when it ran the prefilter. Why? Because in that
+/// case, there is only one start state.
+///
+/// When does a DFA have a universal start state? In precisely cases where
+/// it has no look-around assertions in its prefix. So for example, `\bfoo`
+/// does not have a universal start state because the start state depends on
+/// whether the byte immediately before the start position is a word byte or
+/// not. However, `foo\b` does have a universal start state because the word
+/// boundary does not appear in the pattern's prefix.
+///
+/// So... most cases don't need this, but when a pattern doesn't have a
+/// universal start state, then after a prefilter candidate has been found, the
+/// current state *must* be re-litigated as if computing the start state at the
+/// beginning of the search because it might change. That is, not all start
+/// states are created equal.
+///
+/// Why avoid it? Because while it's not super expensive, it isn't a trivial
+/// operation to compute the start state. It is much better to avoid it and
+/// just state in the current state if you know it to be correct.
+#[cfg_attr(feature = "perf-inline", inline(always))]
+fn prefilter_restart(
+ dfa: &DFA,
+ cache: &mut Cache,
+ input: &Input<'_>,
+ at: usize,
+) -> Result<LazyStateID, MatchError> {
+ let mut input = input.clone();
+ input.set_start(at);
+ init_fwd(dfa, cache, &input)
+}
+
+/// A convenience routine for constructing a "gave up" match error.
+#[cfg_attr(feature = "perf-inline", inline(always))]
+fn gave_up(offset: usize) -> MatchError {
+ MatchError::gave_up(offset)
+}