summaryrefslogtreecommitdiffstats
path: root/third_party/rust/slab/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/slab/src/lib.rs')
-rw-r--r--third_party/rust/slab/src/lib.rs1571
1 files changed, 1571 insertions, 0 deletions
diff --git a/third_party/rust/slab/src/lib.rs b/third_party/rust/slab/src/lib.rs
new file mode 100644
index 0000000000..e23ead9129
--- /dev/null
+++ b/third_party/rust/slab/src/lib.rs
@@ -0,0 +1,1571 @@
+#![cfg_attr(not(feature = "std"), no_std)]
+#![warn(
+ missing_debug_implementations,
+ missing_docs,
+ rust_2018_idioms,
+ unreachable_pub
+)]
+#![doc(test(
+ no_crate_inject,
+ attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
+))]
+
+//! Pre-allocated storage for a uniform data type.
+//!
+//! `Slab` provides pre-allocated storage for a single data type. If many values
+//! of a single type are being allocated, it can be more efficient to
+//! pre-allocate the necessary storage. Since the size of the type is uniform,
+//! memory fragmentation can be avoided. Storing, clearing, and lookup
+//! operations become very cheap.
+//!
+//! While `Slab` may look like other Rust collections, it is not intended to be
+//! used as a general purpose collection. The primary difference between `Slab`
+//! and `Vec` is that `Slab` returns the key when storing the value.
+//!
+//! It is important to note that keys may be reused. In other words, once a
+//! value associated with a given key is removed from a slab, that key may be
+//! returned from future calls to `insert`.
+//!
+//! # Examples
+//!
+//! Basic storing and retrieval.
+//!
+//! ```
+//! # use slab::*;
+//! let mut slab = Slab::new();
+//!
+//! let hello = slab.insert("hello");
+//! let world = slab.insert("world");
+//!
+//! assert_eq!(slab[hello], "hello");
+//! assert_eq!(slab[world], "world");
+//!
+//! slab[world] = "earth";
+//! assert_eq!(slab[world], "earth");
+//! ```
+//!
+//! Sometimes it is useful to be able to associate the key with the value being
+//! inserted in the slab. This can be done with the `vacant_entry` API as such:
+//!
+//! ```
+//! # use slab::*;
+//! let mut slab = Slab::new();
+//!
+//! let hello = {
+//! let entry = slab.vacant_entry();
+//! let key = entry.key();
+//!
+//! entry.insert((key, "hello"));
+//! key
+//! };
+//!
+//! assert_eq!(hello, slab[hello].0);
+//! assert_eq!("hello", slab[hello].1);
+//! ```
+//!
+//! It is generally a good idea to specify the desired capacity of a slab at
+//! creation time. Note that `Slab` will grow the internal capacity when
+//! attempting to insert a new value once the existing capacity has been reached.
+//! To avoid this, add a check.
+//!
+//! ```
+//! # use slab::*;
+//! let mut slab = Slab::with_capacity(1024);
+//!
+//! // ... use the slab
+//!
+//! if slab.len() == slab.capacity() {
+//! panic!("slab full");
+//! }
+//!
+//! slab.insert("the slab is not at capacity yet");
+//! ```
+//!
+//! # Capacity and reallocation
+//!
+//! The capacity of a slab is the amount of space allocated for any future
+//! values that will be inserted in the slab. This is not to be confused with
+//! the *length* of the slab, which specifies the number of actual values
+//! currently being inserted. If a slab's length is equal to its capacity, the
+//! next value inserted into the slab will require growing the slab by
+//! reallocating.
+//!
+//! For example, a slab with capacity 10 and length 0 would be an empty slab
+//! with space for 10 more stored values. Storing 10 or fewer elements into the
+//! slab will not change its capacity or cause reallocation to occur. However,
+//! if the slab length is increased to 11 (due to another `insert`), it will
+//! have to reallocate, which can be slow. For this reason, it is recommended to
+//! use [`Slab::with_capacity`] whenever possible to specify how many values the
+//! slab is expected to store.
+//!
+//! # Implementation
+//!
+//! `Slab` is backed by a `Vec` of slots. Each slot is either occupied or
+//! vacant. `Slab` maintains a stack of vacant slots using a linked list. To
+//! find a vacant slot, the stack is popped. When a slot is released, it is
+//! pushed onto the stack.
+//!
+//! If there are no more available slots in the stack, then `Vec::reserve(1)` is
+//! called and a new slot is created.
+//!
+//! [`Slab::with_capacity`]: struct.Slab.html#with_capacity
+
+#[cfg(not(feature = "std"))]
+extern crate alloc;
+#[cfg(feature = "std")]
+extern crate std as alloc;
+
+#[cfg(feature = "serde")]
+mod serde;
+
+mod builder;
+
+use alloc::vec::{self, Vec};
+use core::iter::{self, FromIterator, FusedIterator};
+use core::{fmt, mem, ops, slice};
+
+/// Pre-allocated storage for a uniform data type
+///
+/// See the [module documentation] for more details.
+///
+/// [module documentation]: index.html
+#[derive(Clone)]
+pub struct Slab<T> {
+ // Chunk of memory
+ entries: Vec<Entry<T>>,
+
+ // Number of Filled elements currently in the slab
+ len: usize,
+
+ // Offset of the next available slot in the slab. Set to the slab's
+ // capacity when the slab is full.
+ next: usize,
+}
+
+impl<T> Default for Slab<T> {
+ fn default() -> Self {
+ Slab::new()
+ }
+}
+
+/// A handle to a vacant entry in a `Slab`.
+///
+/// `VacantEntry` allows constructing values with the key that they will be
+/// assigned to.
+///
+/// # Examples
+///
+/// ```
+/// # use slab::*;
+/// let mut slab = Slab::new();
+///
+/// let hello = {
+/// let entry = slab.vacant_entry();
+/// let key = entry.key();
+///
+/// entry.insert((key, "hello"));
+/// key
+/// };
+///
+/// assert_eq!(hello, slab[hello].0);
+/// assert_eq!("hello", slab[hello].1);
+/// ```
+#[derive(Debug)]
+pub struct VacantEntry<'a, T> {
+ slab: &'a mut Slab<T>,
+ key: usize,
+}
+
+/// A consuming iterator over the values stored in a `Slab`
+pub struct IntoIter<T> {
+ entries: iter::Enumerate<vec::IntoIter<Entry<T>>>,
+ len: usize,
+}
+
+/// An iterator over the values stored in the `Slab`
+pub struct Iter<'a, T> {
+ entries: iter::Enumerate<slice::Iter<'a, Entry<T>>>,
+ len: usize,
+}
+
+impl<'a, T> Clone for Iter<'a, T> {
+ fn clone(&self) -> Self {
+ Self {
+ entries: self.entries.clone(),
+ len: self.len,
+ }
+ }
+}
+
+/// A mutable iterator over the values stored in the `Slab`
+pub struct IterMut<'a, T> {
+ entries: iter::Enumerate<slice::IterMut<'a, Entry<T>>>,
+ len: usize,
+}
+
+/// A draining iterator for `Slab`
+pub struct Drain<'a, T> {
+ inner: vec::Drain<'a, Entry<T>>,
+ len: usize,
+}
+
+#[derive(Clone)]
+enum Entry<T> {
+ Vacant(usize),
+ Occupied(T),
+}
+
+impl<T> Slab<T> {
+ /// Construct a new, empty `Slab`.
+ ///
+ /// The function does not allocate and the returned slab will have no
+ /// capacity until `insert` is called or capacity is explicitly reserved.
+ ///
+ /// This is `const fn` on Rust 1.39+.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let slab: Slab<i32> = Slab::new();
+ /// ```
+ #[cfg(not(slab_no_const_vec_new))]
+ pub const fn new() -> Self {
+ Self {
+ entries: Vec::new(),
+ next: 0,
+ len: 0,
+ }
+ }
+ /// Construct a new, empty `Slab`.
+ ///
+ /// The function does not allocate and the returned slab will have no
+ /// capacity until `insert` is called or capacity is explicitly reserved.
+ ///
+ /// This is `const fn` on Rust 1.39+.
+ #[cfg(slab_no_const_vec_new)]
+ pub fn new() -> Self {
+ Self {
+ entries: Vec::new(),
+ next: 0,
+ len: 0,
+ }
+ }
+
+ /// Construct a new, empty `Slab` with the specified capacity.
+ ///
+ /// The returned slab will be able to store exactly `capacity` without
+ /// reallocating. If `capacity` is 0, the slab will not allocate.
+ ///
+ /// It is important to note that this function does not specify the *length*
+ /// of the returned slab, but only the capacity. For an explanation of the
+ /// difference between length and capacity, see [Capacity and
+ /// reallocation](index.html#capacity-and-reallocation).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::with_capacity(10);
+ ///
+ /// // The slab contains no values, even though it has capacity for more
+ /// assert_eq!(slab.len(), 0);
+ ///
+ /// // These are all done without reallocating...
+ /// for i in 0..10 {
+ /// slab.insert(i);
+ /// }
+ ///
+ /// // ...but this may make the slab reallocate
+ /// slab.insert(11);
+ /// ```
+ pub fn with_capacity(capacity: usize) -> Slab<T> {
+ Slab {
+ entries: Vec::with_capacity(capacity),
+ next: 0,
+ len: 0,
+ }
+ }
+
+ /// Return the number of values the slab can store without reallocating.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let slab: Slab<i32> = Slab::with_capacity(10);
+ /// assert_eq!(slab.capacity(), 10);
+ /// ```
+ pub fn capacity(&self) -> usize {
+ self.entries.capacity()
+ }
+
+ /// Reserve capacity for at least `additional` more values to be stored
+ /// without allocating.
+ ///
+ /// `reserve` does nothing if the slab already has sufficient capacity for
+ /// `additional` more values. If more capacity is required, a new segment of
+ /// memory will be allocated and all existing values will be copied into it.
+ /// As such, if the slab is already very large, a call to `reserve` can end
+ /// up being expensive.
+ ///
+ /// The slab may reserve more than `additional` extra space in order to
+ /// avoid frequent reallocations. Use `reserve_exact` instead to guarantee
+ /// that only the requested space is allocated.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds `isize::MAX` bytes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ /// slab.insert("hello");
+ /// slab.reserve(10);
+ /// assert!(slab.capacity() >= 11);
+ /// ```
+ pub fn reserve(&mut self, additional: usize) {
+ if self.capacity() - self.len >= additional {
+ return;
+ }
+ let need_add = additional - (self.entries.len() - self.len);
+ self.entries.reserve(need_add);
+ }
+
+ /// Reserve the minimum capacity required to store exactly `additional`
+ /// more values.
+ ///
+ /// `reserve_exact` does nothing if the slab already has sufficient capacity
+ /// for `additional` more values. If more capacity is required, a new segment
+ /// of memory will be allocated and all existing values will be copied into
+ /// it. As such, if the slab is already very large, a call to `reserve` can
+ /// end up being expensive.
+ ///
+ /// Note that the allocator may give the slab more space than it requests.
+ /// Therefore capacity can not be relied upon to be precisely minimal.
+ /// Prefer `reserve` if future insertions are expected.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds `isize::MAX` bytes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ /// slab.insert("hello");
+ /// slab.reserve_exact(10);
+ /// assert!(slab.capacity() >= 11);
+ /// ```
+ pub fn reserve_exact(&mut self, additional: usize) {
+ if self.capacity() - self.len >= additional {
+ return;
+ }
+ let need_add = additional - (self.entries.len() - self.len);
+ self.entries.reserve_exact(need_add);
+ }
+
+ /// Shrink the capacity of the slab as much as possible without invalidating keys.
+ ///
+ /// Because values cannot be moved to a different index, the slab cannot
+ /// shrink past any stored values.
+ /// It will drop down as close as possible to the length but the allocator may
+ /// still inform the underlying vector that there is space for a few more elements.
+ ///
+ /// This function can take O(n) time even when the capacity cannot be reduced
+ /// or the allocation is shrunk in place. Repeated calls run in O(1) though.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::with_capacity(10);
+ ///
+ /// for i in 0..3 {
+ /// slab.insert(i);
+ /// }
+ ///
+ /// slab.shrink_to_fit();
+ /// assert!(slab.capacity() >= 3 && slab.capacity() < 10);
+ /// ```
+ ///
+ /// The slab cannot shrink past the last present value even if previous
+ /// values are removed:
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::with_capacity(10);
+ ///
+ /// for i in 0..4 {
+ /// slab.insert(i);
+ /// }
+ ///
+ /// slab.remove(0);
+ /// slab.remove(3);
+ ///
+ /// slab.shrink_to_fit();
+ /// assert!(slab.capacity() >= 3 && slab.capacity() < 10);
+ /// ```
+ pub fn shrink_to_fit(&mut self) {
+ // Remove all vacant entries after the last occupied one, so that
+ // the capacity can be reduced to what is actually needed.
+ // If the slab is empty the vector can simply be cleared, but that
+ // optimization would not affect time complexity when T: Drop.
+ let len_before = self.entries.len();
+ while let Some(&Entry::Vacant(_)) = self.entries.last() {
+ self.entries.pop();
+ }
+
+ // Removing entries breaks the list of vacant entries,
+ // so it must be repaired
+ if self.entries.len() != len_before {
+ // Some vacant entries were removed, so the list now likely¹
+ // either contains references to the removed entries, or has an
+ // invalid end marker. Fix this by recreating the list.
+ self.recreate_vacant_list();
+ // ¹: If the removed entries formed the tail of the list, with the
+ // most recently popped entry being the head of them, (so that its
+ // index is now the end marker) the list is still valid.
+ // Checking for that unlikely scenario of this infrequently called
+ // is not worth the code complexity.
+ }
+
+ self.entries.shrink_to_fit();
+ }
+
+ /// Iterate through all entries to recreate and repair the vacant list.
+ /// self.len must be correct and is not modified.
+ fn recreate_vacant_list(&mut self) {
+ self.next = self.entries.len();
+ // We can stop once we've found all vacant entries
+ let mut remaining_vacant = self.entries.len() - self.len;
+ if remaining_vacant == 0 {
+ return;
+ }
+
+ // Iterate in reverse order so that lower keys are at the start of
+ // the vacant list. This way future shrinks are more likely to be
+ // able to remove vacant entries.
+ for (i, entry) in self.entries.iter_mut().enumerate().rev() {
+ if let Entry::Vacant(ref mut next) = *entry {
+ *next = self.next;
+ self.next = i;
+ remaining_vacant -= 1;
+ if remaining_vacant == 0 {
+ break;
+ }
+ }
+ }
+ }
+
+ /// Reduce the capacity as much as possible, changing the key for elements when necessary.
+ ///
+ /// To allow updating references to the elements which must be moved to a new key,
+ /// this function takes a closure which is called before moving each element.
+ /// The second and third parameters to the closure are the current key and
+ /// new key respectively.
+ /// In case changing the key for one element turns out not to be possible,
+ /// the move can be cancelled by returning `false` from the closure.
+ /// In that case no further attempts at relocating elements is made.
+ /// If the closure unwinds, the slab will be left in a consistent state,
+ /// but the value that the closure panicked on might be removed.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ ///
+ /// let mut slab = Slab::with_capacity(10);
+ /// let a = slab.insert('a');
+ /// slab.insert('b');
+ /// slab.insert('c');
+ /// slab.remove(a);
+ /// slab.compact(|&mut value, from, to| {
+ /// assert_eq!((value, from, to), ('c', 2, 0));
+ /// true
+ /// });
+ /// assert!(slab.capacity() >= 2 && slab.capacity() < 10);
+ /// ```
+ ///
+ /// The value is not moved when the closure returns `Err`:
+ ///
+ /// ```
+ /// # use slab::*;
+ ///
+ /// let mut slab = Slab::with_capacity(100);
+ /// let a = slab.insert('a');
+ /// let b = slab.insert('b');
+ /// slab.remove(a);
+ /// slab.compact(|&mut value, from, to| false);
+ /// assert_eq!(slab.iter().next(), Some((b, &'b')));
+ /// ```
+ pub fn compact<F>(&mut self, mut rekey: F)
+ where
+ F: FnMut(&mut T, usize, usize) -> bool,
+ {
+ // If the closure unwinds, we need to restore a valid list of vacant entries
+ struct CleanupGuard<'a, T> {
+ slab: &'a mut Slab<T>,
+ decrement: bool,
+ }
+ impl<T> Drop for CleanupGuard<'_, T> {
+ fn drop(&mut self) {
+ if self.decrement {
+ // Value was popped and not pushed back on
+ self.slab.len -= 1;
+ }
+ self.slab.recreate_vacant_list();
+ }
+ }
+ let mut guard = CleanupGuard {
+ slab: self,
+ decrement: true,
+ };
+
+ let mut occupied_until = 0;
+ // While there are vacant entries
+ while guard.slab.entries.len() > guard.slab.len {
+ // Find a value that needs to be moved,
+ // by popping entries until we find an occupied one.
+ // (entries cannot be empty because 0 is not greater than anything)
+ if let Some(Entry::Occupied(mut value)) = guard.slab.entries.pop() {
+ // Found one, now find a vacant entry to move it to
+ while let Some(&Entry::Occupied(_)) = guard.slab.entries.get(occupied_until) {
+ occupied_until += 1;
+ }
+ // Let the caller try to update references to the key
+ if !rekey(&mut value, guard.slab.entries.len(), occupied_until) {
+ // Changing the key failed, so push the entry back on at its old index.
+ guard.slab.entries.push(Entry::Occupied(value));
+ guard.decrement = false;
+ guard.slab.entries.shrink_to_fit();
+ return;
+ // Guard drop handles cleanup
+ }
+ // Put the value in its new spot
+ guard.slab.entries[occupied_until] = Entry::Occupied(value);
+ // ... and mark it as occupied (this is optional)
+ occupied_until += 1;
+ }
+ }
+ guard.slab.next = guard.slab.len;
+ guard.slab.entries.shrink_to_fit();
+ // Normal cleanup is not necessary
+ mem::forget(guard);
+ }
+
+ /// Clear the slab of all values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// for i in 0..3 {
+ /// slab.insert(i);
+ /// }
+ ///
+ /// slab.clear();
+ /// assert!(slab.is_empty());
+ /// ```
+ pub fn clear(&mut self) {
+ self.entries.clear();
+ self.len = 0;
+ self.next = 0;
+ }
+
+ /// Return the number of stored values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// for i in 0..3 {
+ /// slab.insert(i);
+ /// }
+ ///
+ /// assert_eq!(3, slab.len());
+ /// ```
+ pub fn len(&self) -> usize {
+ self.len
+ }
+
+ /// Return `true` if there are no values stored in the slab.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ /// assert!(slab.is_empty());
+ ///
+ /// slab.insert(1);
+ /// assert!(!slab.is_empty());
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ self.len == 0
+ }
+
+ /// Return an iterator over the slab.
+ ///
+ /// This function should generally be **avoided** as it is not efficient.
+ /// Iterators must iterate over every slot in the slab even if it is
+ /// vacant. As such, a slab with a capacity of 1 million but only one
+ /// stored value must still iterate the million slots.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// for i in 0..3 {
+ /// slab.insert(i);
+ /// }
+ ///
+ /// let mut iterator = slab.iter();
+ ///
+ /// assert_eq!(iterator.next(), Some((0, &0)));
+ /// assert_eq!(iterator.next(), Some((1, &1)));
+ /// assert_eq!(iterator.next(), Some((2, &2)));
+ /// assert_eq!(iterator.next(), None);
+ /// ```
+ pub fn iter(&self) -> Iter<'_, T> {
+ Iter {
+ entries: self.entries.iter().enumerate(),
+ len: self.len,
+ }
+ }
+
+ /// Return an iterator that allows modifying each value.
+ ///
+ /// This function should generally be **avoided** as it is not efficient.
+ /// Iterators must iterate over every slot in the slab even if it is
+ /// vacant. As such, a slab with a capacity of 1 million but only one
+ /// stored value must still iterate the million slots.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// let key1 = slab.insert(0);
+ /// let key2 = slab.insert(1);
+ ///
+ /// for (key, val) in slab.iter_mut() {
+ /// if key == key1 {
+ /// *val += 2;
+ /// }
+ /// }
+ ///
+ /// assert_eq!(slab[key1], 2);
+ /// assert_eq!(slab[key2], 1);
+ /// ```
+ pub fn iter_mut(&mut self) -> IterMut<'_, T> {
+ IterMut {
+ entries: self.entries.iter_mut().enumerate(),
+ len: self.len,
+ }
+ }
+
+ /// Return a reference to the value associated with the given key.
+ ///
+ /// If the given key is not associated with a value, then `None` is
+ /// returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ /// let key = slab.insert("hello");
+ ///
+ /// assert_eq!(slab.get(key), Some(&"hello"));
+ /// assert_eq!(slab.get(123), None);
+ /// ```
+ pub fn get(&self, key: usize) -> Option<&T> {
+ match self.entries.get(key) {
+ Some(Entry::Occupied(val)) => Some(val),
+ _ => None,
+ }
+ }
+
+ /// Return a mutable reference to the value associated with the given key.
+ ///
+ /// If the given key is not associated with a value, then `None` is
+ /// returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ /// let key = slab.insert("hello");
+ ///
+ /// *slab.get_mut(key).unwrap() = "world";
+ ///
+ /// assert_eq!(slab[key], "world");
+ /// assert_eq!(slab.get_mut(123), None);
+ /// ```
+ pub fn get_mut(&mut self, key: usize) -> Option<&mut T> {
+ match self.entries.get_mut(key) {
+ Some(&mut Entry::Occupied(ref mut val)) => Some(val),
+ _ => None,
+ }
+ }
+
+ /// Return two mutable references to the values associated with the two
+ /// given keys simultaneously.
+ ///
+ /// If any one of the given keys is not associated with a value, then `None`
+ /// is returned.
+ ///
+ /// This function can be used to get two mutable references out of one slab,
+ /// so that you can manipulate both of them at the same time, eg. swap them.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if `key1` and `key2` are the same.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// use std::mem;
+ ///
+ /// let mut slab = Slab::new();
+ /// let key1 = slab.insert(1);
+ /// let key2 = slab.insert(2);
+ /// let (value1, value2) = slab.get2_mut(key1, key2).unwrap();
+ /// mem::swap(value1, value2);
+ /// assert_eq!(slab[key1], 2);
+ /// assert_eq!(slab[key2], 1);
+ /// ```
+ pub fn get2_mut(&mut self, key1: usize, key2: usize) -> Option<(&mut T, &mut T)> {
+ assert!(key1 != key2);
+
+ let (entry1, entry2);
+
+ if key1 > key2 {
+ let (slice1, slice2) = self.entries.split_at_mut(key1);
+ entry1 = slice2.get_mut(0);
+ entry2 = slice1.get_mut(key2);
+ } else {
+ let (slice1, slice2) = self.entries.split_at_mut(key2);
+ entry1 = slice1.get_mut(key1);
+ entry2 = slice2.get_mut(0);
+ }
+
+ match (entry1, entry2) {
+ (
+ Some(&mut Entry::Occupied(ref mut val1)),
+ Some(&mut Entry::Occupied(ref mut val2)),
+ ) => Some((val1, val2)),
+ _ => None,
+ }
+ }
+
+ /// Return a reference to the value associated with the given key without
+ /// performing bounds checking.
+ ///
+ /// For a safe alternative see [`get`](Slab::get).
+ ///
+ /// This function should be used with care.
+ ///
+ /// # Safety
+ ///
+ /// The key must be within bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ /// let key = slab.insert(2);
+ ///
+ /// unsafe {
+ /// assert_eq!(slab.get_unchecked(key), &2);
+ /// }
+ /// ```
+ pub unsafe fn get_unchecked(&self, key: usize) -> &T {
+ match *self.entries.get_unchecked(key) {
+ Entry::Occupied(ref val) => val,
+ _ => unreachable!(),
+ }
+ }
+
+ /// Return a mutable reference to the value associated with the given key
+ /// without performing bounds checking.
+ ///
+ /// For a safe alternative see [`get_mut`](Slab::get_mut).
+ ///
+ /// This function should be used with care.
+ ///
+ /// # Safety
+ ///
+ /// The key must be within bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ /// let key = slab.insert(2);
+ ///
+ /// unsafe {
+ /// let val = slab.get_unchecked_mut(key);
+ /// *val = 13;
+ /// }
+ ///
+ /// assert_eq!(slab[key], 13);
+ /// ```
+ pub unsafe fn get_unchecked_mut(&mut self, key: usize) -> &mut T {
+ match *self.entries.get_unchecked_mut(key) {
+ Entry::Occupied(ref mut val) => val,
+ _ => unreachable!(),
+ }
+ }
+
+ /// Return two mutable references to the values associated with the two
+ /// given keys simultaneously without performing bounds checking and safety
+ /// condition checking.
+ ///
+ /// For a safe alternative see [`get2_mut`](Slab::get2_mut).
+ ///
+ /// This function should be used with care.
+ ///
+ /// # Safety
+ ///
+ /// - Both keys must be within bounds.
+ /// - The condition `key1 != key2` must hold.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// use std::mem;
+ ///
+ /// let mut slab = Slab::new();
+ /// let key1 = slab.insert(1);
+ /// let key2 = slab.insert(2);
+ /// let (value1, value2) = unsafe { slab.get2_unchecked_mut(key1, key2) };
+ /// mem::swap(value1, value2);
+ /// assert_eq!(slab[key1], 2);
+ /// assert_eq!(slab[key2], 1);
+ /// ```
+ pub unsafe fn get2_unchecked_mut(&mut self, key1: usize, key2: usize) -> (&mut T, &mut T) {
+ debug_assert_ne!(key1, key2);
+ let ptr = self.entries.as_mut_ptr();
+ let ptr1 = ptr.add(key1);
+ let ptr2 = ptr.add(key2);
+ match (&mut *ptr1, &mut *ptr2) {
+ (&mut Entry::Occupied(ref mut val1), &mut Entry::Occupied(ref mut val2)) => {
+ (val1, val2)
+ }
+ _ => unreachable!(),
+ }
+ }
+
+ /// Get the key for an element in the slab.
+ ///
+ /// The reference must point to an element owned by the slab.
+ /// Otherwise this function will panic.
+ /// This is a constant-time operation because the key can be calculated
+ /// from the reference with pointer arithmetic.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the reference does not point to an element
+ /// of the slab.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ ///
+ /// let mut slab = Slab::new();
+ /// let key = slab.insert(String::from("foo"));
+ /// let value = &slab[key];
+ /// assert_eq!(slab.key_of(value), key);
+ /// ```
+ ///
+ /// Values are not compared, so passing a reference to a different location
+ /// will result in a panic:
+ ///
+ /// ```should_panic
+ /// # use slab::*;
+ ///
+ /// let mut slab = Slab::new();
+ /// let key = slab.insert(0);
+ /// let bad = &0;
+ /// slab.key_of(bad); // this will panic
+ /// unreachable!();
+ /// ```
+ #[cfg_attr(not(slab_no_track_caller), track_caller)]
+ pub fn key_of(&self, present_element: &T) -> usize {
+ let element_ptr = present_element as *const T as usize;
+ let base_ptr = self.entries.as_ptr() as usize;
+ // Use wrapping subtraction in case the reference is bad
+ let byte_offset = element_ptr.wrapping_sub(base_ptr);
+ // The division rounds away any offset of T inside Entry
+ // The size of Entry<T> is never zero even if T is due to Vacant(usize)
+ let key = byte_offset / mem::size_of::<Entry<T>>();
+ // Prevent returning unspecified (but out of bounds) values
+ if key >= self.entries.len() {
+ panic!("The reference points to a value outside this slab");
+ }
+ // The reference cannot point to a vacant entry, because then it would not be valid
+ key
+ }
+
+ /// Insert a value in the slab, returning key assigned to the value.
+ ///
+ /// The returned key can later be used to retrieve or remove the value using indexed
+ /// lookup and `remove`. Additional capacity is allocated if needed. See
+ /// [Capacity and reallocation](index.html#capacity-and-reallocation).
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new storage in the vector exceeds `isize::MAX` bytes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ /// let key = slab.insert("hello");
+ /// assert_eq!(slab[key], "hello");
+ /// ```
+ pub fn insert(&mut self, val: T) -> usize {
+ let key = self.next;
+
+ self.insert_at(key, val);
+
+ key
+ }
+
+ /// Returns the key of the next vacant entry.
+ ///
+ /// This function returns the key of the vacant entry which will be used
+ /// for the next insertion. This is equivalent to
+ /// `slab.vacant_entry().key()`, but it doesn't require mutable access.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ /// assert_eq!(slab.vacant_key(), 0);
+ ///
+ /// slab.insert(0);
+ /// assert_eq!(slab.vacant_key(), 1);
+ ///
+ /// slab.insert(1);
+ /// slab.remove(0);
+ /// assert_eq!(slab.vacant_key(), 0);
+ /// ```
+ pub fn vacant_key(&self) -> usize {
+ self.next
+ }
+
+ /// Return a handle to a vacant entry allowing for further manipulation.
+ ///
+ /// This function is useful when creating values that must contain their
+ /// slab key. The returned `VacantEntry` reserves a slot in the slab and is
+ /// able to query the associated key.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// let hello = {
+ /// let entry = slab.vacant_entry();
+ /// let key = entry.key();
+ ///
+ /// entry.insert((key, "hello"));
+ /// key
+ /// };
+ ///
+ /// assert_eq!(hello, slab[hello].0);
+ /// assert_eq!("hello", slab[hello].1);
+ /// ```
+ pub fn vacant_entry(&mut self) -> VacantEntry<'_, T> {
+ VacantEntry {
+ key: self.next,
+ slab: self,
+ }
+ }
+
+ fn insert_at(&mut self, key: usize, val: T) {
+ self.len += 1;
+
+ if key == self.entries.len() {
+ self.entries.push(Entry::Occupied(val));
+ self.next = key + 1;
+ } else {
+ self.next = match self.entries.get(key) {
+ Some(&Entry::Vacant(next)) => next,
+ _ => unreachable!(),
+ };
+ self.entries[key] = Entry::Occupied(val);
+ }
+ }
+
+ /// Tries to remove the value associated with the given key,
+ /// returning the value if the key existed.
+ ///
+ /// The key is then released and may be associated with future stored
+ /// values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// let hello = slab.insert("hello");
+ ///
+ /// assert_eq!(slab.try_remove(hello), Some("hello"));
+ /// assert!(!slab.contains(hello));
+ /// ```
+ pub fn try_remove(&mut self, key: usize) -> Option<T> {
+ if let Some(entry) = self.entries.get_mut(key) {
+ // Swap the entry at the provided value
+ let prev = mem::replace(entry, Entry::Vacant(self.next));
+
+ match prev {
+ Entry::Occupied(val) => {
+ self.len -= 1;
+ self.next = key;
+ return val.into();
+ }
+ _ => {
+ // Woops, the entry is actually vacant, restore the state
+ *entry = prev;
+ }
+ }
+ }
+ None
+ }
+
+ /// Remove and return the value associated with the given key.
+ ///
+ /// The key is then released and may be associated with future stored
+ /// values.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `key` is not associated with a value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// let hello = slab.insert("hello");
+ ///
+ /// assert_eq!(slab.remove(hello), "hello");
+ /// assert!(!slab.contains(hello));
+ /// ```
+ #[cfg_attr(not(slab_no_track_caller), track_caller)]
+ pub fn remove(&mut self, key: usize) -> T {
+ self.try_remove(key).expect("invalid key")
+ }
+
+ /// Return `true` if a value is associated with the given key.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// let hello = slab.insert("hello");
+ /// assert!(slab.contains(hello));
+ ///
+ /// slab.remove(hello);
+ ///
+ /// assert!(!slab.contains(hello));
+ /// ```
+ pub fn contains(&self, key: usize) -> bool {
+ match self.entries.get(key) {
+ Some(&Entry::Occupied(_)) => true,
+ _ => false,
+ }
+ }
+
+ /// Retain only the elements specified by the predicate.
+ ///
+ /// In other words, remove all elements `e` such that `f(usize, &mut e)`
+ /// returns false. This method operates in place and preserves the key
+ /// associated with the retained values.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// let k1 = slab.insert(0);
+ /// let k2 = slab.insert(1);
+ /// let k3 = slab.insert(2);
+ ///
+ /// slab.retain(|key, val| key == k1 || *val == 1);
+ ///
+ /// assert!(slab.contains(k1));
+ /// assert!(slab.contains(k2));
+ /// assert!(!slab.contains(k3));
+ ///
+ /// assert_eq!(2, slab.len());
+ /// ```
+ pub fn retain<F>(&mut self, mut f: F)
+ where
+ F: FnMut(usize, &mut T) -> bool,
+ {
+ for i in 0..self.entries.len() {
+ let keep = match self.entries[i] {
+ Entry::Occupied(ref mut v) => f(i, v),
+ _ => true,
+ };
+
+ if !keep {
+ self.remove(i);
+ }
+ }
+ }
+
+ /// Return a draining iterator that removes all elements from the slab and
+ /// yields the removed items.
+ ///
+ /// Note: Elements are removed even if the iterator is only partially
+ /// consumed or not consumed at all.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// let _ = slab.insert(0);
+ /// let _ = slab.insert(1);
+ /// let _ = slab.insert(2);
+ ///
+ /// {
+ /// let mut drain = slab.drain();
+ ///
+ /// assert_eq!(Some(0), drain.next());
+ /// assert_eq!(Some(1), drain.next());
+ /// assert_eq!(Some(2), drain.next());
+ /// assert_eq!(None, drain.next());
+ /// }
+ ///
+ /// assert!(slab.is_empty());
+ /// ```
+ pub fn drain(&mut self) -> Drain<'_, T> {
+ let old_len = self.len;
+ self.len = 0;
+ self.next = 0;
+ Drain {
+ inner: self.entries.drain(..),
+ len: old_len,
+ }
+ }
+}
+
+impl<T> ops::Index<usize> for Slab<T> {
+ type Output = T;
+
+ #[cfg_attr(not(slab_no_track_caller), track_caller)]
+ fn index(&self, key: usize) -> &T {
+ match self.entries.get(key) {
+ Some(Entry::Occupied(v)) => v,
+ _ => panic!("invalid key"),
+ }
+ }
+}
+
+impl<T> ops::IndexMut<usize> for Slab<T> {
+ #[cfg_attr(not(slab_no_track_caller), track_caller)]
+ fn index_mut(&mut self, key: usize) -> &mut T {
+ match self.entries.get_mut(key) {
+ Some(&mut Entry::Occupied(ref mut v)) => v,
+ _ => panic!("invalid key"),
+ }
+ }
+}
+
+impl<T> IntoIterator for Slab<T> {
+ type Item = (usize, T);
+ type IntoIter = IntoIter<T>;
+
+ fn into_iter(self) -> IntoIter<T> {
+ IntoIter {
+ entries: self.entries.into_iter().enumerate(),
+ len: self.len,
+ }
+ }
+}
+
+impl<'a, T> IntoIterator for &'a Slab<T> {
+ type Item = (usize, &'a T);
+ type IntoIter = Iter<'a, T>;
+
+ fn into_iter(self) -> Iter<'a, T> {
+ self.iter()
+ }
+}
+
+impl<'a, T> IntoIterator for &'a mut Slab<T> {
+ type Item = (usize, &'a mut T);
+ type IntoIter = IterMut<'a, T>;
+
+ fn into_iter(self) -> IterMut<'a, T> {
+ self.iter_mut()
+ }
+}
+
+/// Create a slab from an iterator of key-value pairs.
+///
+/// If the iterator produces duplicate keys, the previous value is replaced with the later one.
+/// The keys does not need to be sorted beforehand, and this function always
+/// takes O(n) time.
+/// Note that the returned slab will use space proportional to the largest key,
+/// so don't use `Slab` with untrusted keys.
+///
+/// # Examples
+///
+/// ```
+/// # use slab::*;
+///
+/// let vec = vec![(2,'a'), (6,'b'), (7,'c')];
+/// let slab = vec.into_iter().collect::<Slab<char>>();
+/// assert_eq!(slab.len(), 3);
+/// assert!(slab.capacity() >= 8);
+/// assert_eq!(slab[2], 'a');
+/// ```
+///
+/// With duplicate and unsorted keys:
+///
+/// ```
+/// # use slab::*;
+///
+/// let vec = vec![(20,'a'), (10,'b'), (11,'c'), (10,'d')];
+/// let slab = vec.into_iter().collect::<Slab<char>>();
+/// assert_eq!(slab.len(), 3);
+/// assert_eq!(slab[10], 'd');
+/// ```
+impl<T> FromIterator<(usize, T)> for Slab<T> {
+ fn from_iter<I>(iterable: I) -> Self
+ where
+ I: IntoIterator<Item = (usize, T)>,
+ {
+ let iterator = iterable.into_iter();
+ let mut builder = builder::Builder::with_capacity(iterator.size_hint().0);
+
+ for (key, value) in iterator {
+ builder.pair(key, value)
+ }
+ builder.build()
+ }
+}
+
+impl<T> fmt::Debug for Slab<T>
+where
+ T: fmt::Debug,
+{
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ if fmt.alternate() {
+ fmt.debug_map().entries(self.iter()).finish()
+ } else {
+ fmt.debug_struct("Slab")
+ .field("len", &self.len)
+ .field("cap", &self.capacity())
+ .finish()
+ }
+ }
+}
+
+impl<T> fmt::Debug for IntoIter<T>
+where
+ T: fmt::Debug,
+{
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("IntoIter")
+ .field("remaining", &self.len)
+ .finish()
+ }
+}
+
+impl<T> fmt::Debug for Iter<'_, T>
+where
+ T: fmt::Debug,
+{
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Iter")
+ .field("remaining", &self.len)
+ .finish()
+ }
+}
+
+impl<T> fmt::Debug for IterMut<'_, T>
+where
+ T: fmt::Debug,
+{
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("IterMut")
+ .field("remaining", &self.len)
+ .finish()
+ }
+}
+
+impl<T> fmt::Debug for Drain<'_, T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Drain").finish()
+ }
+}
+
+// ===== VacantEntry =====
+
+impl<'a, T> VacantEntry<'a, T> {
+ /// Insert a value in the entry, returning a mutable reference to the value.
+ ///
+ /// To get the key associated with the value, use `key` prior to calling
+ /// `insert`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// let hello = {
+ /// let entry = slab.vacant_entry();
+ /// let key = entry.key();
+ ///
+ /// entry.insert((key, "hello"));
+ /// key
+ /// };
+ ///
+ /// assert_eq!(hello, slab[hello].0);
+ /// assert_eq!("hello", slab[hello].1);
+ /// ```
+ pub fn insert(self, val: T) -> &'a mut T {
+ self.slab.insert_at(self.key, val);
+
+ match self.slab.entries.get_mut(self.key) {
+ Some(&mut Entry::Occupied(ref mut v)) => v,
+ _ => unreachable!(),
+ }
+ }
+
+ /// Return the key associated with this entry.
+ ///
+ /// A value stored in this entry will be associated with this key.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// # use slab::*;
+ /// let mut slab = Slab::new();
+ ///
+ /// let hello = {
+ /// let entry = slab.vacant_entry();
+ /// let key = entry.key();
+ ///
+ /// entry.insert((key, "hello"));
+ /// key
+ /// };
+ ///
+ /// assert_eq!(hello, slab[hello].0);
+ /// assert_eq!("hello", slab[hello].1);
+ /// ```
+ pub fn key(&self) -> usize {
+ self.key
+ }
+}
+
+// ===== IntoIter =====
+
+impl<T> Iterator for IntoIter<T> {
+ type Item = (usize, T);
+
+ fn next(&mut self) -> Option<Self::Item> {
+ for (key, entry) in &mut self.entries {
+ if let Entry::Occupied(v) = entry {
+ self.len -= 1;
+ return Some((key, v));
+ }
+ }
+
+ debug_assert_eq!(self.len, 0);
+ None
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (self.len, Some(self.len))
+ }
+}
+
+impl<T> DoubleEndedIterator for IntoIter<T> {
+ fn next_back(&mut self) -> Option<Self::Item> {
+ while let Some((key, entry)) = self.entries.next_back() {
+ if let Entry::Occupied(v) = entry {
+ self.len -= 1;
+ return Some((key, v));
+ }
+ }
+
+ debug_assert_eq!(self.len, 0);
+ None
+ }
+}
+
+impl<T> ExactSizeIterator for IntoIter<T> {
+ fn len(&self) -> usize {
+ self.len
+ }
+}
+
+impl<T> FusedIterator for IntoIter<T> {}
+
+// ===== Iter =====
+
+impl<'a, T> Iterator for Iter<'a, T> {
+ type Item = (usize, &'a T);
+
+ fn next(&mut self) -> Option<Self::Item> {
+ for (key, entry) in &mut self.entries {
+ if let Entry::Occupied(ref v) = *entry {
+ self.len -= 1;
+ return Some((key, v));
+ }
+ }
+
+ debug_assert_eq!(self.len, 0);
+ None
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (self.len, Some(self.len))
+ }
+}
+
+impl<T> DoubleEndedIterator for Iter<'_, T> {
+ fn next_back(&mut self) -> Option<Self::Item> {
+ while let Some((key, entry)) = self.entries.next_back() {
+ if let Entry::Occupied(ref v) = *entry {
+ self.len -= 1;
+ return Some((key, v));
+ }
+ }
+
+ debug_assert_eq!(self.len, 0);
+ None
+ }
+}
+
+impl<T> ExactSizeIterator for Iter<'_, T> {
+ fn len(&self) -> usize {
+ self.len
+ }
+}
+
+impl<T> FusedIterator for Iter<'_, T> {}
+
+// ===== IterMut =====
+
+impl<'a, T> Iterator for IterMut<'a, T> {
+ type Item = (usize, &'a mut T);
+
+ fn next(&mut self) -> Option<Self::Item> {
+ for (key, entry) in &mut self.entries {
+ if let Entry::Occupied(ref mut v) = *entry {
+ self.len -= 1;
+ return Some((key, v));
+ }
+ }
+
+ debug_assert_eq!(self.len, 0);
+ None
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (self.len, Some(self.len))
+ }
+}
+
+impl<T> DoubleEndedIterator for IterMut<'_, T> {
+ fn next_back(&mut self) -> Option<Self::Item> {
+ while let Some((key, entry)) = self.entries.next_back() {
+ if let Entry::Occupied(ref mut v) = *entry {
+ self.len -= 1;
+ return Some((key, v));
+ }
+ }
+
+ debug_assert_eq!(self.len, 0);
+ None
+ }
+}
+
+impl<T> ExactSizeIterator for IterMut<'_, T> {
+ fn len(&self) -> usize {
+ self.len
+ }
+}
+
+impl<T> FusedIterator for IterMut<'_, T> {}
+
+// ===== Drain =====
+
+impl<T> Iterator for Drain<'_, T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ for entry in &mut self.inner {
+ if let Entry::Occupied(v) = entry {
+ self.len -= 1;
+ return Some(v);
+ }
+ }
+
+ debug_assert_eq!(self.len, 0);
+ None
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (self.len, Some(self.len))
+ }
+}
+
+impl<T> DoubleEndedIterator for Drain<'_, T> {
+ fn next_back(&mut self) -> Option<Self::Item> {
+ while let Some(entry) = self.inner.next_back() {
+ if let Entry::Occupied(v) = entry {
+ self.len -= 1;
+ return Some(v);
+ }
+ }
+
+ debug_assert_eq!(self.len, 0);
+ None
+ }
+}
+
+impl<T> ExactSizeIterator for Drain<'_, T> {
+ fn len(&self) -> usize {
+ self.len
+ }
+}
+
+impl<T> FusedIterator for Drain<'_, T> {}