diff options
Diffstat (limited to 'third_party/rust/zerocopy/src/byteorder.rs')
-rw-r--r-- | third_party/rust/zerocopy/src/byteorder.rs | 1075 |
1 files changed, 1075 insertions, 0 deletions
diff --git a/third_party/rust/zerocopy/src/byteorder.rs b/third_party/rust/zerocopy/src/byteorder.rs new file mode 100644 index 0000000000..2769410451 --- /dev/null +++ b/third_party/rust/zerocopy/src/byteorder.rs @@ -0,0 +1,1075 @@ +// Copyright 2019 The Fuchsia Authors +// +// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 +// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT +// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. +// This file may not be copied, modified, or distributed except according to +// those terms. + +//! Byte order-aware numeric primitives. +//! +//! This module contains equivalents of the native multi-byte integer types with +//! no alignment requirement and supporting byte order conversions. +//! +//! For each native multi-byte integer type - `u16`, `i16`, `u32`, etc - and +//! floating point type - `f32` and `f64` - an equivalent type is defined by +//! this module - [`U16`], [`I16`], [`U32`], [`F64`], etc. Unlike their native +//! counterparts, these types have alignment 1, and take a type parameter +//! specifying the byte order in which the bytes are stored in memory. Each type +//! implements the [`FromBytes`], [`AsBytes`], and [`Unaligned`] traits. +//! +//! These two properties, taken together, make these types useful for defining +//! data structures whose memory layout matches a wire format such as that of a +//! network protocol or a file format. Such formats often have multi-byte values +//! at offsets that do not respect the alignment requirements of the equivalent +//! native types, and stored in a byte order not necessarily the same as that of +//! the target platform. +//! +//! Type aliases are provided for common byte orders in the [`big_endian`], +//! [`little_endian`], [`network_endian`], and [`native_endian`] submodules. +//! +//! # Example +//! +//! One use of these types is for representing network packet formats, such as +//! UDP: +//! +//! ```rust,edition2021 +//! # #[cfg(feature = "derive")] { // This example uses derives, and won't compile without them +//! use zerocopy::{AsBytes, ByteSlice, FromBytes, FromZeroes, Ref, Unaligned}; +//! use zerocopy::byteorder::network_endian::U16; +//! +//! #[derive(FromZeroes, FromBytes, AsBytes, Unaligned)] +//! #[repr(C)] +//! struct UdpHeader { +//! src_port: U16, +//! dst_port: U16, +//! length: U16, +//! checksum: U16, +//! } +//! +//! struct UdpPacket<B: ByteSlice> { +//! header: Ref<B, UdpHeader>, +//! body: B, +//! } +//! +//! impl<B: ByteSlice> UdpPacket<B> { +//! fn parse(bytes: B) -> Option<UdpPacket<B>> { +//! let (header, body) = Ref::new_from_prefix(bytes)?; +//! Some(UdpPacket { header, body }) +//! } +//! +//! fn src_port(&self) -> u16 { +//! self.header.src_port.get() +//! } +//! +//! // more getters... +//! } +//! # } +//! ``` + +use core::{ + convert::{TryFrom, TryInto}, + fmt::{self, Binary, Debug, Display, Formatter, LowerHex, Octal, UpperHex}, + marker::PhantomData, + num::TryFromIntError, +}; + +// We don't reexport `WriteBytesExt` or `ReadBytesExt` because those are only +// available with the `std` feature enabled, and zerocopy is `no_std` by +// default. +pub use ::byteorder::{BigEndian, ByteOrder, LittleEndian, NativeEndian, NetworkEndian, BE, LE}; + +use super::*; + +macro_rules! impl_fmt_trait { + ($name:ident, $native:ident, $trait:ident) => { + impl<O: ByteOrder> $trait for $name<O> { + #[inline(always)] + fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { + $trait::fmt(&self.get(), f) + } + } + }; +} + +macro_rules! impl_fmt_traits { + ($name:ident, $native:ident, "floating point number") => { + impl_fmt_trait!($name, $native, Display); + }; + ($name:ident, $native:ident, "unsigned integer") => { + impl_fmt_traits!($name, $native, @all_types); + }; + ($name:ident, $native:ident, "signed integer") => { + impl_fmt_traits!($name, $native, @all_types); + }; + ($name:ident, $native:ident, @all_types) => { + impl_fmt_trait!($name, $native, Display); + impl_fmt_trait!($name, $native, Octal); + impl_fmt_trait!($name, $native, LowerHex); + impl_fmt_trait!($name, $native, UpperHex); + impl_fmt_trait!($name, $native, Binary); + }; +} + +macro_rules! impl_ops_traits { + ($name:ident, $native:ident, "floating point number") => { + impl_ops_traits!($name, $native, @all_types); + impl_ops_traits!($name, $native, @signed_integer_floating_point); + }; + ($name:ident, $native:ident, "unsigned integer") => { + impl_ops_traits!($name, $native, @signed_unsigned_integer); + impl_ops_traits!($name, $native, @all_types); + }; + ($name:ident, $native:ident, "signed integer") => { + impl_ops_traits!($name, $native, @signed_unsigned_integer); + impl_ops_traits!($name, $native, @signed_integer_floating_point); + impl_ops_traits!($name, $native, @all_types); + }; + ($name:ident, $native:ident, @signed_unsigned_integer) => { + impl_ops_traits!(@without_byteorder_swap $name, $native, BitAnd, bitand, BitAndAssign, bitand_assign); + impl_ops_traits!(@without_byteorder_swap $name, $native, BitOr, bitor, BitOrAssign, bitor_assign); + impl_ops_traits!(@without_byteorder_swap $name, $native, BitXor, bitxor, BitXorAssign, bitxor_assign); + impl_ops_traits!(@with_byteorder_swap $name, $native, Shl, shl, ShlAssign, shl_assign); + impl_ops_traits!(@with_byteorder_swap $name, $native, Shr, shr, ShrAssign, shr_assign); + + impl<O> core::ops::Not for $name<O> { + type Output = $name<O>; + + #[inline(always)] + fn not(self) -> $name<O> { + let self_native = $native::from_ne_bytes(self.0); + $name((!self_native).to_ne_bytes(), PhantomData) + } + } + }; + ($name:ident, $native:ident, @signed_integer_floating_point) => { + impl<O: ByteOrder> core::ops::Neg for $name<O> { + type Output = $name<O>; + + #[inline(always)] + fn neg(self) -> $name<O> { + let self_native: $native = self.get(); + #[allow(clippy::arithmetic_side_effects)] + $name::<O>::new(-self_native) + } + } + }; + ($name:ident, $native:ident, @all_types) => { + impl_ops_traits!(@with_byteorder_swap $name, $native, Add, add, AddAssign, add_assign); + impl_ops_traits!(@with_byteorder_swap $name, $native, Div, div, DivAssign, div_assign); + impl_ops_traits!(@with_byteorder_swap $name, $native, Mul, mul, MulAssign, mul_assign); + impl_ops_traits!(@with_byteorder_swap $name, $native, Rem, rem, RemAssign, rem_assign); + impl_ops_traits!(@with_byteorder_swap $name, $native, Sub, sub, SubAssign, sub_assign); + }; + (@with_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => { + impl<O: ByteOrder> core::ops::$trait for $name<O> { + type Output = $name<O>; + + #[inline(always)] + fn $method(self, rhs: $name<O>) -> $name<O> { + let self_native: $native = self.get(); + let rhs_native: $native = rhs.get(); + let result_native = core::ops::$trait::$method(self_native, rhs_native); + $name::<O>::new(result_native) + } + } + + impl<O: ByteOrder> core::ops::$trait_assign for $name<O> { + #[inline(always)] + fn $method_assign(&mut self, rhs: $name<O>) { + *self = core::ops::$trait::$method(*self, rhs); + } + } + }; + // Implement traits in terms of the same trait on the native type, but + // without performing a byte order swap. This only works for bitwise + // operations like `&`, `|`, etc. + (@without_byteorder_swap $name:ident, $native:ident, $trait:ident, $method:ident, $trait_assign:ident, $method_assign:ident) => { + impl<O: ByteOrder> core::ops::$trait for $name<O> { + type Output = $name<O>; + + #[inline(always)] + fn $method(self, rhs: $name<O>) -> $name<O> { + let self_native = $native::from_ne_bytes(self.0); + let rhs_native = $native::from_ne_bytes(rhs.0); + let result_native = core::ops::$trait::$method(self_native, rhs_native); + $name(result_native.to_ne_bytes(), PhantomData) + } + } + + impl<O: ByteOrder> core::ops::$trait_assign for $name<O> { + #[inline(always)] + fn $method_assign(&mut self, rhs: $name<O>) { + *self = core::ops::$trait::$method(*self, rhs); + } + } + }; +} + +macro_rules! doc_comment { + ($x:expr, $($tt:tt)*) => { + #[doc = $x] + $($tt)* + }; +} + +macro_rules! define_max_value_constant { + ($name:ident, $bytes:expr, "unsigned integer") => { + /// The maximum value. + /// + /// This constant should be preferred to constructing a new value using + /// `new`, as `new` may perform an endianness swap depending on the + /// endianness `O` and the endianness of the platform. + pub const MAX_VALUE: $name<O> = $name([0xFFu8; $bytes], PhantomData); + }; + // We don't provide maximum and minimum value constants for signed values + // and floats because there's no way to do it generically - it would require + // a different value depending on the value of the `ByteOrder` type + // parameter. Currently, one workaround would be to provide implementations + // for concrete implementations of that trait. In the long term, if we are + // ever able to make the `new` constructor a const fn, we could use that + // instead. + ($name:ident, $bytes:expr, "signed integer") => {}; + ($name:ident, $bytes:expr, "floating point number") => {}; +} + +macro_rules! define_type { + ($article:ident, + $name:ident, + $native:ident, + $bits:expr, + $bytes:expr, + $read_method:ident, + $write_method:ident, + $number_kind:tt, + [$($larger_native:ty),*], + [$($larger_native_try:ty),*], + [$($larger_byteorder:ident),*], + [$($larger_byteorder_try:ident),*]) => { + doc_comment! { + concat!("A ", stringify!($bits), "-bit ", $number_kind, + " stored in a given byte order. + +`", stringify!($name), "` is like the native `", stringify!($native), "` type with +two major differences: First, it has no alignment requirement (its alignment is 1). +Second, the endianness of its memory layout is given by the type parameter `O`, +which can be any type which implements [`ByteOrder`]. In particular, this refers +to [`BigEndian`], [`LittleEndian`], [`NativeEndian`], and [`NetworkEndian`]. + +", stringify!($article), " `", stringify!($name), "` can be constructed using +the [`new`] method, and its contained value can be obtained as a native +`",stringify!($native), "` using the [`get`] method, or updated in place with +the [`set`] method. In all cases, if the endianness `O` is not the same as the +endianness of the current platform, an endianness swap will be performed in +order to uphold the invariants that a) the layout of `", stringify!($name), "` +has endianness `O` and that, b) the layout of `", stringify!($native), "` has +the platform's native endianness. + +`", stringify!($name), "` implements [`FromBytes`], [`AsBytes`], and [`Unaligned`], +making it useful for parsing and serialization. See the module documentation for an +example of how it can be used for parsing UDP packets. + +[`new`]: crate::byteorder::", stringify!($name), "::new +[`get`]: crate::byteorder::", stringify!($name), "::get +[`set`]: crate::byteorder::", stringify!($name), "::set +[`FromBytes`]: crate::FromBytes +[`AsBytes`]: crate::AsBytes +[`Unaligned`]: crate::Unaligned"), + #[derive(Copy, Clone, Eq, PartialEq, Hash)] + #[cfg_attr(any(feature = "derive", test), derive(KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned))] + #[repr(transparent)] + pub struct $name<O>([u8; $bytes], PhantomData<O>); + } + + #[cfg(not(any(feature = "derive", test)))] + impl_known_layout!(O => $name<O>); + + safety_comment! { + /// SAFETY: + /// `$name<O>` is `repr(transparent)`, and so it has the same layout + /// as its only non-zero field, which is a `u8` array. `u8` arrays + /// are `FromZeroes`, `FromBytes`, `AsBytes`, and `Unaligned`. + impl_or_verify!(O => FromZeroes for $name<O>); + impl_or_verify!(O => FromBytes for $name<O>); + impl_or_verify!(O => AsBytes for $name<O>); + impl_or_verify!(O => Unaligned for $name<O>); + } + + impl<O> Default for $name<O> { + #[inline(always)] + fn default() -> $name<O> { + $name::ZERO + } + } + + impl<O> $name<O> { + /// The value zero. + /// + /// This constant should be preferred to constructing a new value + /// using `new`, as `new` may perform an endianness swap depending + /// on the endianness and platform. + pub const ZERO: $name<O> = $name([0u8; $bytes], PhantomData); + + define_max_value_constant!($name, $bytes, $number_kind); + + /// Constructs a new value from bytes which are already in the + /// endianness `O`. + #[inline(always)] + pub const fn from_bytes(bytes: [u8; $bytes]) -> $name<O> { + $name(bytes, PhantomData) + } + } + + impl<O: ByteOrder> $name<O> { + // TODO(joshlf): Make these const fns if the `ByteOrder` methods + // ever become const fns. + + /// Constructs a new value, possibly performing an endianness swap + /// to guarantee that the returned value has endianness `O`. + #[inline(always)] + pub fn new(n: $native) -> $name<O> { + let mut out = $name::default(); + O::$write_method(&mut out.0[..], n); + out + } + + /// Returns the value as a primitive type, possibly performing an + /// endianness swap to guarantee that the return value has the + /// endianness of the native platform. + #[inline(always)] + pub fn get(self) -> $native { + O::$read_method(&self.0[..]) + } + + /// Updates the value in place as a primitive type, possibly + /// performing an endianness swap to guarantee that the stored value + /// has the endianness `O`. + #[inline(always)] + pub fn set(&mut self, n: $native) { + O::$write_method(&mut self.0[..], n); + } + } + + // The reasoning behind which traits to implement here is to only + // implement traits which won't cause inference issues. Notably, + // comparison traits like PartialEq and PartialOrd tend to cause + // inference issues. + + impl<O: ByteOrder> From<$name<O>> for [u8; $bytes] { + #[inline(always)] + fn from(x: $name<O>) -> [u8; $bytes] { + x.0 + } + } + + impl<O: ByteOrder> From<[u8; $bytes]> for $name<O> { + #[inline(always)] + fn from(bytes: [u8; $bytes]) -> $name<O> { + $name(bytes, PhantomData) + } + } + + impl<O: ByteOrder> From<$name<O>> for $native { + #[inline(always)] + fn from(x: $name<O>) -> $native { + x.get() + } + } + + impl<O: ByteOrder> From<$native> for $name<O> { + #[inline(always)] + fn from(x: $native) -> $name<O> { + $name::new(x) + } + } + + $( + impl<O: ByteOrder> From<$name<O>> for $larger_native { + #[inline(always)] + fn from(x: $name<O>) -> $larger_native { + x.get().into() + } + } + )* + + $( + impl<O: ByteOrder> TryFrom<$larger_native_try> for $name<O> { + type Error = TryFromIntError; + #[inline(always)] + fn try_from(x: $larger_native_try) -> Result<$name<O>, TryFromIntError> { + $native::try_from(x).map($name::new) + } + } + )* + + $( + impl<O: ByteOrder, P: ByteOrder> From<$name<O>> for $larger_byteorder<P> { + #[inline(always)] + fn from(x: $name<O>) -> $larger_byteorder<P> { + $larger_byteorder::new(x.get().into()) + } + } + )* + + $( + impl<O: ByteOrder, P: ByteOrder> TryFrom<$larger_byteorder_try<P>> for $name<O> { + type Error = TryFromIntError; + #[inline(always)] + fn try_from(x: $larger_byteorder_try<P>) -> Result<$name<O>, TryFromIntError> { + x.get().try_into().map($name::new) + } + } + )* + + impl<O: ByteOrder> AsRef<[u8; $bytes]> for $name<O> { + #[inline(always)] + fn as_ref(&self) -> &[u8; $bytes] { + &self.0 + } + } + + impl<O: ByteOrder> AsMut<[u8; $bytes]> for $name<O> { + #[inline(always)] + fn as_mut(&mut self) -> &mut [u8; $bytes] { + &mut self.0 + } + } + + impl<O: ByteOrder> PartialEq<$name<O>> for [u8; $bytes] { + #[inline(always)] + fn eq(&self, other: &$name<O>) -> bool { + self.eq(&other.0) + } + } + + impl<O: ByteOrder> PartialEq<[u8; $bytes]> for $name<O> { + #[inline(always)] + fn eq(&self, other: &[u8; $bytes]) -> bool { + self.0.eq(other) + } + } + + impl_fmt_traits!($name, $native, $number_kind); + impl_ops_traits!($name, $native, $number_kind); + + impl<O: ByteOrder> Debug for $name<O> { + #[inline] + fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { + // This results in a format like "U16(42)". + f.debug_tuple(stringify!($name)).field(&self.get()).finish() + } + } + }; +} + +define_type!( + A, + U16, + u16, + 16, + 2, + read_u16, + write_u16, + "unsigned integer", + [u32, u64, u128, usize], + [u32, u64, u128, usize], + [U32, U64, U128], + [U32, U64, U128] +); +define_type!( + A, + U32, + u32, + 32, + 4, + read_u32, + write_u32, + "unsigned integer", + [u64, u128], + [u64, u128], + [U64, U128], + [U64, U128] +); +define_type!( + A, + U64, + u64, + 64, + 8, + read_u64, + write_u64, + "unsigned integer", + [u128], + [u128], + [U128], + [U128] +); +define_type!(A, U128, u128, 128, 16, read_u128, write_u128, "unsigned integer", [], [], [], []); +define_type!( + An, + I16, + i16, + 16, + 2, + read_i16, + write_i16, + "signed integer", + [i32, i64, i128, isize], + [i32, i64, i128, isize], + [I32, I64, I128], + [I32, I64, I128] +); +define_type!( + An, + I32, + i32, + 32, + 4, + read_i32, + write_i32, + "signed integer", + [i64, i128], + [i64, i128], + [I64, I128], + [I64, I128] +); +define_type!( + An, + I64, + i64, + 64, + 8, + read_i64, + write_i64, + "signed integer", + [i128], + [i128], + [I128], + [I128] +); +define_type!(An, I128, i128, 128, 16, read_i128, write_i128, "signed integer", [], [], [], []); +define_type!( + An, + F32, + f32, + 32, + 4, + read_f32, + write_f32, + "floating point number", + [f64], + [], + [F64], + [] +); +define_type!(An, F64, f64, 64, 8, read_f64, write_f64, "floating point number", [], [], [], []); + +macro_rules! module { + ($name:ident, $trait:ident, $endianness_str:expr) => { + /// Numeric primitives stored in + #[doc = $endianness_str] + /// byte order. + pub mod $name { + use byteorder::$trait; + + module!(@ty U16, $trait, "16-bit unsigned integer", $endianness_str); + module!(@ty U32, $trait, "32-bit unsigned integer", $endianness_str); + module!(@ty U64, $trait, "64-bit unsigned integer", $endianness_str); + module!(@ty U128, $trait, "128-bit unsigned integer", $endianness_str); + module!(@ty I16, $trait, "16-bit signed integer", $endianness_str); + module!(@ty I32, $trait, "32-bit signed integer", $endianness_str); + module!(@ty I64, $trait, "64-bit signed integer", $endianness_str); + module!(@ty I128, $trait, "128-bit signed integer", $endianness_str); + module!(@ty F32, $trait, "32-bit floating point number", $endianness_str); + module!(@ty F64, $trait, "64-bit floating point number", $endianness_str); + } + }; + (@ty $ty:ident, $trait:ident, $desc_str:expr, $endianness_str:expr) => { + /// A + #[doc = $desc_str] + /// stored in + #[doc = $endianness_str] + /// byte order. + pub type $ty = crate::byteorder::$ty<$trait>; + }; +} + +module!(big_endian, BigEndian, "big-endian"); +module!(little_endian, LittleEndian, "little-endian"); +module!(network_endian, NetworkEndian, "network-endian"); +module!(native_endian, NativeEndian, "native-endian"); + +#[cfg(any(test, kani))] +mod tests { + use ::byteorder::NativeEndian; + + use { + super::*, + crate::{AsBytes, FromBytes, Unaligned}, + }; + + #[cfg(not(kani))] + mod compatibility { + pub(super) use rand::{ + distributions::{Distribution, Standard}, + rngs::SmallRng, + Rng, SeedableRng, + }; + + pub(crate) trait Arbitrary {} + + impl<T> Arbitrary for T {} + } + + #[cfg(kani)] + mod compatibility { + pub(crate) use kani::Arbitrary; + + pub(crate) struct SmallRng; + + impl SmallRng { + pub(crate) fn seed_from_u64(_state: u64) -> Self { + Self + } + } + + pub(crate) trait Rng { + fn sample<T, D: Distribution<T>>(&mut self, _distr: D) -> T + where + T: Arbitrary, + { + kani::any() + } + } + + impl Rng for SmallRng {} + + pub(crate) trait Distribution<T> {} + impl<T, U> Distribution<T> for U {} + + pub(crate) struct Standard; + } + + use compatibility::*; + + // A native integer type (u16, i32, etc). + trait Native: Arbitrary + FromBytes + AsBytes + Copy + PartialEq + Debug { + const ZERO: Self; + const MAX_VALUE: Self; + + type Distribution: Distribution<Self>; + const DIST: Self::Distribution; + + fn rand<R: Rng>(rng: &mut R) -> Self { + rng.sample(Self::DIST) + } + + #[cfg(kani)] + fn any() -> Self { + kani::any() + } + + fn checked_add(self, rhs: Self) -> Option<Self>; + fn checked_div(self, rhs: Self) -> Option<Self>; + fn checked_mul(self, rhs: Self) -> Option<Self>; + fn checked_rem(self, rhs: Self) -> Option<Self>; + fn checked_sub(self, rhs: Self) -> Option<Self>; + fn checked_shl(self, rhs: Self) -> Option<Self>; + fn checked_shr(self, rhs: Self) -> Option<Self>; + + fn is_nan(self) -> bool; + + /// For `f32` and `f64`, NaN values are not considered equal to + /// themselves. This method is like `assert_eq!`, but it treats NaN + /// values as equal. + fn assert_eq_or_nan(self, other: Self) { + let slf = (!self.is_nan()).then(|| self); + let other = (!other.is_nan()).then(|| other); + assert_eq!(slf, other); + } + } + + trait ByteArray: + FromBytes + AsBytes + Copy + AsRef<[u8]> + AsMut<[u8]> + Debug + Default + Eq + { + /// Invert the order of the bytes in the array. + fn invert(self) -> Self; + } + + trait ByteOrderType: FromBytes + AsBytes + Unaligned + Copy + Eq + Debug { + type Native: Native; + type ByteArray: ByteArray; + + const ZERO: Self; + + fn new(native: Self::Native) -> Self; + fn get(self) -> Self::Native; + fn set(&mut self, native: Self::Native); + fn from_bytes(bytes: Self::ByteArray) -> Self; + fn into_bytes(self) -> Self::ByteArray; + + /// For `f32` and `f64`, NaN values are not considered equal to + /// themselves. This method is like `assert_eq!`, but it treats NaN + /// values as equal. + fn assert_eq_or_nan(self, other: Self) { + let slf = (!self.get().is_nan()).then(|| self); + let other = (!other.get().is_nan()).then(|| other); + assert_eq!(slf, other); + } + } + + trait ByteOrderTypeUnsigned: ByteOrderType { + const MAX_VALUE: Self; + } + + macro_rules! impl_byte_array { + ($bytes:expr) => { + impl ByteArray for [u8; $bytes] { + fn invert(mut self) -> [u8; $bytes] { + self.reverse(); + self + } + } + }; + } + + impl_byte_array!(2); + impl_byte_array!(4); + impl_byte_array!(8); + impl_byte_array!(16); + + macro_rules! impl_byte_order_type_unsigned { + ($name:ident, unsigned) => { + impl<O: ByteOrder> ByteOrderTypeUnsigned for $name<O> { + const MAX_VALUE: $name<O> = $name::MAX_VALUE; + } + }; + ($name:ident, signed) => {}; + } + + macro_rules! impl_traits { + ($name:ident, $native:ident, $bytes:expr, $sign:ident $(, @$float:ident)?) => { + impl Native for $native { + // For some types, `0 as $native` is required (for example, when + // `$native` is a floating-point type; `0` is an integer), but + // for other types, it's a trivial cast. In all cases, Clippy + // thinks it's dangerous. + #[allow(trivial_numeric_casts, clippy::as_conversions)] + const ZERO: $native = 0 as $native; + const MAX_VALUE: $native = $native::MAX; + + type Distribution = Standard; + const DIST: Standard = Standard; + + impl_traits!(@float_dependent_methods $(@$float)?); + } + + impl<O: ByteOrder> ByteOrderType for $name<O> { + type Native = $native; + type ByteArray = [u8; $bytes]; + + const ZERO: $name<O> = $name::ZERO; + + fn new(native: $native) -> $name<O> { + $name::new(native) + } + + fn get(self) -> $native { + $name::get(self) + } + + fn set(&mut self, native: $native) { + $name::set(self, native) + } + + fn from_bytes(bytes: [u8; $bytes]) -> $name<O> { + $name::from(bytes) + } + + fn into_bytes(self) -> [u8; $bytes] { + <[u8; $bytes]>::from(self) + } + } + + impl_byte_order_type_unsigned!($name, $sign); + }; + (@float_dependent_methods) => { + fn checked_add(self, rhs: Self) -> Option<Self> { self.checked_add(rhs) } + fn checked_div(self, rhs: Self) -> Option<Self> { self.checked_div(rhs) } + fn checked_mul(self, rhs: Self) -> Option<Self> { self.checked_mul(rhs) } + fn checked_rem(self, rhs: Self) -> Option<Self> { self.checked_rem(rhs) } + fn checked_sub(self, rhs: Self) -> Option<Self> { self.checked_sub(rhs) } + fn checked_shl(self, rhs: Self) -> Option<Self> { self.checked_shl(rhs.try_into().unwrap_or(u32::MAX)) } + fn checked_shr(self, rhs: Self) -> Option<Self> { self.checked_shr(rhs.try_into().unwrap_or(u32::MAX)) } + fn is_nan(self) -> bool { false } + }; + (@float_dependent_methods @float) => { + fn checked_add(self, rhs: Self) -> Option<Self> { Some(self + rhs) } + fn checked_div(self, rhs: Self) -> Option<Self> { Some(self / rhs) } + fn checked_mul(self, rhs: Self) -> Option<Self> { Some(self * rhs) } + fn checked_rem(self, rhs: Self) -> Option<Self> { Some(self % rhs) } + fn checked_sub(self, rhs: Self) -> Option<Self> { Some(self - rhs) } + fn checked_shl(self, _rhs: Self) -> Option<Self> { unimplemented!() } + fn checked_shr(self, _rhs: Self) -> Option<Self> { unimplemented!() } + fn is_nan(self) -> bool { self.is_nan() } + }; + } + + impl_traits!(U16, u16, 2, unsigned); + impl_traits!(U32, u32, 4, unsigned); + impl_traits!(U64, u64, 8, unsigned); + impl_traits!(U128, u128, 16, unsigned); + impl_traits!(I16, i16, 2, signed); + impl_traits!(I32, i32, 4, signed); + impl_traits!(I64, i64, 8, signed); + impl_traits!(I128, i128, 16, signed); + impl_traits!(F32, f32, 4, signed, @float); + impl_traits!(F64, f64, 8, signed, @float); + + macro_rules! call_for_unsigned_types { + ($fn:ident, $byteorder:ident) => { + $fn::<U16<$byteorder>>(); + $fn::<U32<$byteorder>>(); + $fn::<U64<$byteorder>>(); + $fn::<U128<$byteorder>>(); + }; + } + + macro_rules! call_for_signed_types { + ($fn:ident, $byteorder:ident) => { + $fn::<I16<$byteorder>>(); + $fn::<I32<$byteorder>>(); + $fn::<I64<$byteorder>>(); + $fn::<I128<$byteorder>>(); + }; + } + + macro_rules! call_for_float_types { + ($fn:ident, $byteorder:ident) => { + $fn::<F32<$byteorder>>(); + $fn::<F64<$byteorder>>(); + }; + } + + macro_rules! call_for_all_types { + ($fn:ident, $byteorder:ident) => { + call_for_unsigned_types!($fn, $byteorder); + call_for_signed_types!($fn, $byteorder); + call_for_float_types!($fn, $byteorder); + }; + } + + #[cfg(target_endian = "big")] + type NonNativeEndian = LittleEndian; + #[cfg(target_endian = "little")] + type NonNativeEndian = BigEndian; + + // We use a `u64` seed so that we can use `SeedableRng::seed_from_u64`. + // `SmallRng`'s `SeedableRng::Seed` differs by platform, so if we wanted to + // call `SeedableRng::from_seed`, which takes a `Seed`, we would need + // conditional compilation by `target_pointer_width`. + const RNG_SEED: u64 = 0x7A03CAE2F32B5B8F; + + const RAND_ITERS: usize = if cfg!(any(miri, kani)) { + // The tests below which use this constant used to take a very long time + // on Miri, which slows down local development and CI jobs. We're not + // using Miri to check for the correctness of our code, but rather its + // soundness, and at least in the context of these particular tests, a + // single loop iteration is just as good for surfacing UB as multiple + // iterations are. + // + // As of the writing of this comment, here's one set of measurements: + // + // $ # RAND_ITERS == 1 + // $ cargo miri test -- -Z unstable-options --report-time endian + // test byteorder::tests::test_native_endian ... ok <0.049s> + // test byteorder::tests::test_non_native_endian ... ok <0.061s> + // + // $ # RAND_ITERS == 1024 + // $ cargo miri test -- -Z unstable-options --report-time endian + // test byteorder::tests::test_native_endian ... ok <25.716s> + // test byteorder::tests::test_non_native_endian ... ok <38.127s> + 1 + } else { + 1024 + }; + + #[cfg_attr(test, test)] + #[cfg_attr(kani, kani::proof)] + fn test_zero() { + fn test_zero<T: ByteOrderType>() { + assert_eq!(T::ZERO.get(), T::Native::ZERO); + } + + call_for_all_types!(test_zero, NativeEndian); + call_for_all_types!(test_zero, NonNativeEndian); + } + + #[cfg_attr(test, test)] + #[cfg_attr(kani, kani::proof)] + fn test_max_value() { + fn test_max_value<T: ByteOrderTypeUnsigned>() { + assert_eq!(T::MAX_VALUE.get(), T::Native::MAX_VALUE); + } + + call_for_unsigned_types!(test_max_value, NativeEndian); + call_for_unsigned_types!(test_max_value, NonNativeEndian); + } + + #[cfg_attr(test, test)] + #[cfg_attr(kani, kani::proof)] + fn test_endian() { + fn test<T: ByteOrderType>(invert: bool) { + let mut r = SmallRng::seed_from_u64(RNG_SEED); + for _ in 0..RAND_ITERS { + let native = T::Native::rand(&mut r); + let mut bytes = T::ByteArray::default(); + bytes.as_bytes_mut().copy_from_slice(native.as_bytes()); + if invert { + bytes = bytes.invert(); + } + let mut from_native = T::new(native); + let from_bytes = T::from_bytes(bytes); + + from_native.assert_eq_or_nan(from_bytes); + from_native.get().assert_eq_or_nan(native); + from_bytes.get().assert_eq_or_nan(native); + + assert_eq!(from_native.into_bytes(), bytes); + assert_eq!(from_bytes.into_bytes(), bytes); + + let updated = T::Native::rand(&mut r); + from_native.set(updated); + from_native.get().assert_eq_or_nan(updated); + } + } + + fn test_native<T: ByteOrderType>() { + test::<T>(false); + } + + fn test_non_native<T: ByteOrderType>() { + test::<T>(true); + } + + call_for_all_types!(test_native, NativeEndian); + call_for_all_types!(test_non_native, NonNativeEndian); + } + + #[test] + fn test_ops_impls() { + // Test implementations of traits in `core::ops`. Some of these are + // fairly banal, but some are optimized to perform the operation without + // swapping byte order (namely, bit-wise operations which are identical + // regardless of byte order). These are important to test, and while + // we're testing those anyway, it's trivial to test all of the impls. + + fn test<T, F, G, H>(op: F, op_native: G, op_native_checked: Option<H>) + where + T: ByteOrderType, + F: Fn(T, T) -> T, + G: Fn(T::Native, T::Native) -> T::Native, + H: Fn(T::Native, T::Native) -> Option<T::Native>, + { + let mut r = SmallRng::seed_from_u64(RNG_SEED); + for _ in 0..RAND_ITERS { + let n0 = T::Native::rand(&mut r); + let n1 = T::Native::rand(&mut r); + let t0 = T::new(n0); + let t1 = T::new(n1); + + // If this operation would overflow/underflow, skip it rather + // than attempt to catch and recover from panics. + if matches!(&op_native_checked, Some(checked) if checked(n0, n1).is_none()) { + continue; + } + + let n_res = op_native(n0, n1); + let t_res = op(t0, t1); + + // For `f32` and `f64`, NaN values are not considered equal to + // themselves. We store `Option<f32>`/`Option<f64>` and store + // NaN as `None` so they can still be compared. + let n_res = (!T::Native::is_nan(n_res)).then(|| n_res); + let t_res = (!T::Native::is_nan(t_res.get())).then(|| t_res.get()); + assert_eq!(n_res, t_res); + } + } + + macro_rules! test { + (@binary $trait:ident, $method:ident $([$checked_method:ident])?, $($call_for_macros:ident),*) => {{ + test!( + @inner $trait, + core::ops::$trait::$method, + core::ops::$trait::$method, + { + #[allow(unused_mut, unused_assignments)] + let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>; + $( + op_native_checked = Some(T::Native::$checked_method); + )? + op_native_checked + }, + $($call_for_macros),* + ); + }}; + (@unary $trait:ident, $method:ident $([$checked_method:ident])?, $($call_for_macros:ident),*) => {{ + test!( + @inner $trait, + |slf, _rhs| core::ops::$trait::$method(slf), + |slf, _rhs| core::ops::$trait::$method(slf), + { + #[allow(unused_mut, unused_assignments)] + let mut op_native_checked = None::<fn(T::Native, T::Native) -> Option<T::Native>>; + $( + op_native_checked = Some(|slf, _rhs| T::Native::$checked_method(slf)); + )? + op_native_checked + }, + $($call_for_macros),* + ); + }}; + (@inner $trait:ident, $op:expr, $op_native:expr, $op_native_checked:expr, $($call_for_macros:ident),*) => {{ + fn t<T: ByteOrderType + core::ops::$trait<Output = T>>() + where + T::Native: core::ops::$trait<Output = T::Native>, + { + test::<T, _, _, _>( + $op, + $op_native, + $op_native_checked, + ); + } + + $( + $call_for_macros!(t, NativeEndian); + $call_for_macros!(t, NonNativeEndian); + )* + }}; + } + + test!(@binary Add, add[checked_add], call_for_all_types); + test!(@binary Div, div[checked_div], call_for_all_types); + test!(@binary Mul, mul[checked_mul], call_for_all_types); + test!(@binary Rem, rem[checked_rem], call_for_all_types); + test!(@binary Sub, sub[checked_sub], call_for_all_types); + + test!(@binary BitAnd, bitand, call_for_unsigned_types, call_for_signed_types); + test!(@binary BitOr, bitor, call_for_unsigned_types, call_for_signed_types); + test!(@binary BitXor, bitxor, call_for_unsigned_types, call_for_signed_types); + test!(@binary Shl, shl[checked_shl], call_for_unsigned_types, call_for_signed_types); + test!(@binary Shr, shr[checked_shr], call_for_unsigned_types, call_for_signed_types); + + test!(@unary Not, not, call_for_signed_types, call_for_unsigned_types); + test!(@unary Neg, neg, call_for_signed_types, call_for_float_types); + } + + #[test] + fn test_debug_impl() { + // Ensure that Debug applies format options to the inner value. + let val = U16::<LE>::new(10); + assert_eq!(format!("{:?}", val), "U16(10)"); + assert_eq!(format!("{:03?}", val), "U16(010)"); + assert_eq!(format!("{:x?}", val), "U16(a)"); + } +} |