summaryrefslogtreecommitdiffstats
path: root/build/unix/elfhack/relrhack.cpp
blob: c55103ea70a46348aea55228abc266172d46e511 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// This program acts as a linker wrapper. Its executable name is meant
// to be that of a linker, and it will find the next linker with the same
// name in $PATH. However, if for some reason the next linker cannot be
// found this way, the caller may pass its path via the --real-linker
// option.
//
// More in-depth background on https://glandium.org/blog/?p=4297

#include "relrhack.h"
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <optional>
#include <spawn.h>
#include <sstream>
#include <stdexcept>
#include <sys/wait.h>
#include <unistd.h>
#include <unordered_map>
#include <utility>
#include <vector>

#include "mozilla/ScopeExit.h"

namespace fs = std::filesystem;

class CantSwapSections : public std::runtime_error {
 public:
  CantSwapSections(const char* what) : std::runtime_error(what) {}
};

template <int bits>
struct Elf {};

#define ELF(bits)                        \
  template <>                            \
  struct Elf<bits> {                     \
    using Ehdr = Elf##bits##_Ehdr;       \
    using Phdr = Elf##bits##_Phdr;       \
    using Shdr = Elf##bits##_Shdr;       \
    using Dyn = Elf##bits##_Dyn;         \
    using Addr = Elf##bits##_Addr;       \
    using Word = Elf##bits##_Word;       \
    using Off = Elf##bits##_Off;         \
    using Verneed = Elf##bits##_Verneed; \
    using Vernaux = Elf##bits##_Vernaux; \
  }

ELF(32);
ELF(64);

template <int bits>
struct RelR : public Elf<bits> {
  using Elf_Ehdr = typename Elf<bits>::Ehdr;
  using Elf_Phdr = typename Elf<bits>::Phdr;
  using Elf_Shdr = typename Elf<bits>::Shdr;
  using Elf_Dyn = typename Elf<bits>::Dyn;
  using Elf_Addr = typename Elf<bits>::Addr;
  using Elf_Word = typename Elf<bits>::Word;
  using Elf_Off = typename Elf<bits>::Off;
  using Elf_Verneed = typename Elf<bits>::Verneed;
  using Elf_Vernaux = typename Elf<bits>::Vernaux;

#define TAG_NAME(t) \
  { t, #t }
  class DynInfo {
   public:
    using Tag = decltype(Elf_Dyn::d_tag);
    using Value = decltype(Elf_Dyn::d_un.d_val);
    bool is_wanted(Tag tag) const { return tag_names.count(tag); }
    void insert(off_t offset, Tag tag, Value val) {
      data[tag] = std::make_pair(offset, val);
    }
    off_t offset(Tag tag) const { return data.at(tag).first; }
    bool contains(Tag tag) const { return data.count(tag); }
    Value& operator[](Tag tag) {
      if (!is_wanted(tag)) {
        std::stringstream msg;
        msg << "Tag 0x" << std::hex << tag << " is not in DynInfo::tag_names";
        throw std::runtime_error(msg.str());
      }
      return data[tag].second;
    }
    const char* name(Tag tag) const { return tag_names.at(tag); }

   private:
    std::unordered_map<Tag, std::pair<off_t, Value>> data;

    const std::unordered_map<Tag, const char*> tag_names = {
        TAG_NAME(DT_JMPREL),  TAG_NAME(DT_PLTRELSZ), TAG_NAME(DT_RELR),
        TAG_NAME(DT_RELRENT), TAG_NAME(DT_RELRSZ),   TAG_NAME(DT_RELA),
        TAG_NAME(DT_RELASZ),  TAG_NAME(DT_RELAENT),  TAG_NAME(DT_REL),
        TAG_NAME(DT_RELSZ),   TAG_NAME(DT_RELENT),   TAG_NAME(DT_STRTAB),
        TAG_NAME(DT_STRSZ),   TAG_NAME(DT_VERNEED),  TAG_NAME(DT_VERNEEDNUM),
    };
  };

  // Translate a virtual address into an offset in the file based on the program
  // headers' PT_LOAD.
  static Elf_Addr get_offset(const std::vector<Elf_Phdr>& phdr, Elf_Addr addr) {
    for (const auto& p : phdr) {
      if (p.p_type == PT_LOAD && addr >= p.p_vaddr &&
          addr < p.p_vaddr + p.p_filesz) {
        return addr - (p.p_vaddr - p.p_paddr);
      }
    }
    return 0;
  }

  static bool hack(std::fstream& f);
};

template <typename T>
T read_one_at(std::istream& in, off_t pos) {
  T result;
  in.seekg(pos, std::ios::beg);
  in.read(reinterpret_cast<char*>(&result), sizeof(T));
  return result;
}

template <typename T>
std::vector<T> read_vector_at(std::istream& in, off_t pos, size_t num) {
  std::vector<T> result(num);
  in.seekg(pos, std::ios::beg);
  in.read(reinterpret_cast<char*>(result.data()), num * sizeof(T));
  return result;
}

void write_at(std::ostream& out, off_t pos, const char* buf, size_t len) {
  out.seekp(pos, std::ios::beg);
  out.write(buf, len);
}

template <typename T>
void write_one_at(std::ostream& out, off_t pos, const T& data) {
  write_at(out, pos, reinterpret_cast<const char*>(&data), sizeof(T));
}

template <typename T>
void write_vector_at(std::ostream& out, off_t pos, const std::vector<T>& vec) {
  write_at(out, pos, reinterpret_cast<const char*>(&vec.front()),
           vec.size() * sizeof(T));
}

template <int bits>
bool RelR<bits>::hack(std::fstream& f) {
  auto ehdr = read_one_at<Elf_Ehdr>(f, 0);
  if (ehdr.e_phentsize != sizeof(Elf_Phdr)) {
    throw std::runtime_error("Invalid ELF?");
  }
  auto phdr = read_vector_at<Elf_Phdr>(f, ehdr.e_phoff, ehdr.e_phnum);
  const auto& dyn_phdr =
      std::find_if(phdr.begin(), phdr.end(),
                   [](const auto& p) { return p.p_type == PT_DYNAMIC; });
  if (dyn_phdr == phdr.end()) {
    return false;
  }
  if (dyn_phdr->p_filesz % sizeof(Elf_Dyn)) {
    throw std::runtime_error("Invalid ELF?");
  }
  auto dyn = read_vector_at<Elf_Dyn>(f, dyn_phdr->p_offset,
                                     dyn_phdr->p_filesz / sizeof(Elf_Dyn));
  off_t dyn_offset = dyn_phdr->p_offset;
  DynInfo dyn_info;
  for (const auto& d : dyn) {
    if (d.d_tag == DT_NULL) {
      break;
    }

    if (dyn_info.is_wanted(d.d_tag)) {
      if (dyn_info.contains(d.d_tag)) {
        std::stringstream msg;
        msg << dyn_info.name(d.d_tag) << " appears twice?";
        throw std::runtime_error(msg.str());
      }
      dyn_info.insert(dyn_offset, d.d_tag, d.d_un.d_val);
    }
    dyn_offset += sizeof(Elf_Dyn);
  }

  // Find the location and size of the SHT_RELR section, which contains the
  // packed-relative-relocs.
  Elf_Addr relr_off =
      dyn_info.contains(DT_RELR) ? get_offset(phdr, dyn_info[DT_RELR]) : 0;
  Elf_Off relrsz = dyn_info[DT_RELRSZ];
  const decltype(Elf_Dyn::d_tag) rel_tags[3][2] = {
      {DT_REL, DT_RELA}, {DT_RELSZ, DT_RELASZ}, {DT_RELENT, DT_RELAENT}};
  for (const auto& [rel_tag, rela_tag] : rel_tags) {
    if (dyn_info.contains(rel_tag) && dyn_info.contains(rela_tag)) {
      std::stringstream msg;
      msg << "Both " << dyn_info.name(rel_tag) << " and "
          << dyn_info.name(rela_tag) << " appear?";
      throw std::runtime_error(msg.str());
    }
  }
  Elf_Off relent =
      dyn_info.contains(DT_RELENT) ? dyn_info[DT_RELENT] : dyn_info[DT_RELAENT];

  // Estimate the size of the unpacked relative relocations corresponding
  // to the SHT_RELR section.
  auto relr = read_vector_at<Elf_Addr>(f, relr_off, relrsz / sizeof(Elf_Addr));
  size_t relocs = 0;
  for (const auto& entry : relr) {
    if ((entry & 1) == 0) {
      // LSB is 0, this is a pointer for a single relocation.
      relocs++;
    } else {
      // LSB is 1, remaining bits are a bitmap. Each bit represents a
      // relocation.
      relocs += __builtin_popcount(entry) - 1;
    }
  }
  // If the packed relocations + some overhead (we pick 4K arbitrarily, the
  // real size would require digging into the section sizes of the injected
  // .o file, which is not worth the error) is larger than the estimated
  // unpacked relocations, we'll just relink without packed relocations.
  if (relocs * relent < relrsz + 4096) {
    return false;
  }

  // Change DT_RELR* tags to add DT_RELRHACK_BIT.
  for (const auto tag : {DT_RELR, DT_RELRSZ, DT_RELRENT}) {
    write_one_at(f, dyn_info.offset(tag), tag | DT_RELRHACK_BIT);
  }

  bool is_glibc = false;

  if (dyn_info.contains(DT_VERNEEDNUM) && dyn_info.contains(DT_VERNEED) &&
      dyn_info.contains(DT_STRSZ) && dyn_info.contains(DT_STRTAB)) {
    // Scan SHT_VERNEED for the GLIBC_ABI_DT_RELR version on the libc
    // library.
    Elf_Addr verneed_off = get_offset(phdr, dyn_info[DT_VERNEED]);
    Elf_Off verneednum = dyn_info[DT_VERNEEDNUM];
    // SHT_STRTAB section, which contains the string table for, among other
    // things, the symbol versions in the SHT_VERNEED section.
    auto strtab = read_vector_at<char>(f, get_offset(phdr, dyn_info[DT_STRTAB]),
                                       dyn_info[DT_STRSZ]);
    // Guarantee a nul character at the end of the string table.
    strtab.push_back(0);
    while (verneednum--) {
      auto verneed = read_one_at<Elf_Verneed>(f, verneed_off);
      if (std::string_view{"libc.so.6"} == &strtab.at(verneed.vn_file)) {
        is_glibc = true;
        Elf_Addr vernaux_off = verneed_off + verneed.vn_aux;
        Elf_Addr relr = 0;
        Elf_Vernaux reuse;
        for (auto n = 0; n < verneed.vn_cnt; n++) {
          auto vernaux = read_one_at<Elf_Vernaux>(f, vernaux_off);
          if (std::string_view{"GLIBC_ABI_DT_RELR"} ==
              &strtab.at(vernaux.vna_name)) {
            relr = vernaux_off;
          } else {
            reuse = vernaux;
          }
          vernaux_off += vernaux.vna_next;
        }
        // In the case where we do have the GLIBC_ABI_DT_RELR version, we
        // need to edit the binary to make the following changes:
        // - Remove the GLIBC_ABI_DT_RELR version, we replace it with an
        // arbitrary other version entry, which is simpler than completely
        // removing it. We need to remove it because older versions of glibc
        // don't have the version (after all, that's why the symbol version
        // is there in the first place, to avoid running against older versions
        // of glibc that don't support packed relocations).
        // - Alter the DT_RELR* tags in the dynamic section, so that they
        // are not recognized by ld.so, because, while all versions of ld.so
        // ignore tags they don't know, glibc's ld.so versions that support
        // packed relocations don't want to load a binary that has DT_RELR*
        // tags but *not* a dependency on the GLIBC_ABI_DT_RELR version.
        if (relr) {
          // Don't overwrite vn_aux.
          write_at(f, relr, reinterpret_cast<char*>(&reuse),
                   sizeof(reuse) - sizeof(Elf_Word));
        }
      }
      verneed_off += verneed.vn_next;
    }
  }

  // Location of the .rel.plt section.
  Elf_Addr jmprel = dyn_info.contains(DT_JMPREL) ? dyn_info[DT_JMPREL] : 0;
  if (is_glibc) {
#ifndef MOZ_STDCXX_COMPAT
    try {
#endif
      // ld.so in glibc 2.16 to 2.23 expects .rel.plt to strictly follow
      // .rel.dyn. (https://sourceware.org/bugzilla/show_bug.cgi?id=14341)
      // BFD ld places .relr.dyn after .rel.plt, so this works fine, but lld
      // places it between both sections, which doesn't work out for us. In that
      // case, we want to swap .relr.dyn and .rel.plt.
      Elf_Addr rel_end = dyn_info.contains(DT_REL)
                             ? (dyn_info[DT_REL] + dyn_info[DT_RELSZ])
                             : (dyn_info[DT_RELA] + dyn_info[DT_RELASZ]);
      if (dyn_info.contains(DT_JMPREL) && dyn_info[DT_PLTRELSZ] &&
          dyn_info[DT_JMPREL] != rel_end) {
        if (dyn_info[DT_RELR] != rel_end) {
          throw CantSwapSections("RELR section doesn't follow REL/RELA?");
        }
        if (dyn_info[DT_JMPREL] != dyn_info[DT_RELR] + dyn_info[DT_RELRSZ]) {
          throw CantSwapSections("PLT REL/RELA doesn't follow RELR?");
        }
        auto plt_rel = read_vector_at<char>(
            f, get_offset(phdr, dyn_info[DT_JMPREL]), dyn_info[DT_PLTRELSZ]);
        // Write the content of both sections swapped, and adjust the
        // corresponding PT_DYNAMIC entries.
        write_vector_at(f, relr_off, plt_rel);
        write_vector_at(f, relr_off + plt_rel.size(), relr);
        dyn_info[DT_JMPREL] = rel_end;
        dyn_info[DT_RELR] = rel_end + plt_rel.size();
        for (const auto tag : {DT_JMPREL, DT_RELR}) {
          write_one_at(f, dyn_info.offset(tag) + sizeof(typename DynInfo::Tag),
                       dyn_info[tag]);
        }
      }
#ifndef MOZ_STDCXX_COMPAT
    } catch (const CantSwapSections& err) {
      // When binary compatibility with older libstdc++/glibc is not enabled, we
      // only emit a warning about why swapping the sections is not happening.
      std::cerr << "WARNING: " << err.what() << std::endl;
    }
#endif
  }

  off_t shdr_offset = ehdr.e_shoff;
  auto shdr = read_vector_at<Elf_Shdr>(f, ehdr.e_shoff, ehdr.e_shnum);
  for (auto& s : shdr) {
    // Some tools don't like sections of types they don't know, so change
    // SHT_RELR, which might be unknown on older systems, to SHT_PROGBITS.
    if (s.sh_type == SHT_RELR) {
      s.sh_type = SHT_PROGBITS;
      // If DT_RELR has been adjusted to swap with DT_JMPREL, also adjust
      // the corresponding SHT_RELR section header.
      if (s.sh_addr != dyn_info[DT_RELR]) {
        s.sh_offset += dyn_info[DT_RELR] - s.sh_addr;
        s.sh_addr = dyn_info[DT_RELR];
      }
      write_one_at(f, shdr_offset, s);
    } else if (jmprel && (s.sh_addr == jmprel) &&
               (s.sh_addr != dyn_info[DT_JMPREL])) {
      // If DT_JMPREL has been adjusted to swap with DT_RELR, also adjust
      // the corresponding section header.
      s.sh_offset -= s.sh_addr - dyn_info[DT_JMPREL];
      s.sh_addr = dyn_info[DT_JMPREL];
      write_one_at(f, shdr_offset, s);
    }
    shdr_offset += sizeof(Elf_Shdr);
  }
  return true;
}

std::vector<std::string> get_path() {
  std::vector<std::string> result;
  std::stringstream stream{std::getenv("PATH")};
  std::string item;

  while (std::getline(stream, item, ':')) {
    result.push_back(std::move(item));
  }

  return result;
}

std::optional<fs::path> next_program(fs::path& this_program,
                                     std::optional<fs::path>& program) {
  auto program_name = program ? *program : this_program.filename();
  for (const auto& dir : get_path()) {
    auto path = fs::path(dir) / program_name;
    auto status = fs::status(path);
    if ((status.type() == fs::file_type::regular) &&
        ((status.permissions() & fs::perms::owner_exec) ==
         fs::perms::owner_exec) &&
        !fs::equivalent(path, this_program))
      return path;
  }
  return std::nullopt;
}

unsigned char get_elf_class(unsigned char (&e_ident)[EI_NIDENT]) {
  if (std::string_view{reinterpret_cast<char*>(e_ident), SELFMAG} !=
      std::string_view{ELFMAG, SELFMAG}) {
    throw std::runtime_error("Not ELF?");
  }
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  if (e_ident[EI_DATA] != ELFDATA2LSB) {
    throw std::runtime_error("Not Little Endian ELF?");
  }
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  if (e_ident[EI_DATA] != ELFDATA2MSB) {
    throw std::runtime_error("Not Big Endian ELF?");
  }
#else
#  error Unknown byte order.
#endif
  if (e_ident[EI_VERSION] != 1) {
    throw std::runtime_error("Not ELF version 1?");
  }
  auto elf_class = e_ident[EI_CLASS];
  if (elf_class != ELFCLASS32 && elf_class != ELFCLASS64) {
    throw std::runtime_error("Not 32 or 64-bits ELF?");
  }
  return elf_class;
}

unsigned char get_elf_class(std::istream& in) {
  unsigned char e_ident[EI_NIDENT];
  in.read(reinterpret_cast<char*>(e_ident), sizeof(e_ident));
  return get_elf_class(e_ident);
}

uint16_t get_elf_machine(std::istream& in) {
  // As far as e_machine is concerned, both Elf32_Ehdr and Elf64_Ehdr are equal.
  Elf32_Ehdr ehdr;
  in.read(reinterpret_cast<char*>(&ehdr), sizeof(ehdr));
  // get_elf_class will throw exceptions for the cases we don't handle.
  get_elf_class(ehdr.e_ident);
  return ehdr.e_machine;
}

int run_command(std::vector<const char*>& args, bool use_response_file) {
  std::string at_file;
  const char** argv = args.data();
  std::array<const char*, 3> args_with_atfile{};
  if (use_response_file) {
    const char* tmpdir = getenv("TMPDIR");
    if (!tmpdir) {
      tmpdir = "/tmp";
    }
    std::string tmpfile = tmpdir;
    tmpfile += "/relrhackXXXXXX";
    int fd = mkstemp(tmpfile.data());
    if (fd < 0) {
      std::cerr << "Failed to create temporary file." << std::endl;
      return 1;
    }
    close(fd);
    std::ofstream f{tmpfile, f.binary};
    for (auto arg = std::next(args.begin()); arg != args.end(); ++arg) {
      f << *arg << "\n";
    }
    at_file = "@";
    at_file += tmpfile;
    args_with_atfile = {args.front(), at_file.c_str(), nullptr};
    argv = args_with_atfile.data();
  }
  auto guard = mozilla::MakeScopeExit([&] {
    if (!at_file.empty()) {
      unlink(at_file.c_str() + 1);
    }
  });
  pid_t child_pid;
  if (posix_spawn(&child_pid, args[0], nullptr, nullptr,
                  const_cast<char* const*>(argv), environ) != 0) {
    throw std::runtime_error("posix_spawn failed");
  }

  int status;
  waitpid(child_pid, &status, 0);
  return WEXITSTATUS(status);
}

int main(int argc, char* argv[]) {
  auto this_program = fs::absolute(argv[0]);

  std::vector<const char*> args;

  int i, crti = 0;
  std::optional<fs::path> output = std::nullopt;
  std::optional<fs::path> real_linker = std::nullopt;
  bool shared = false;
  bool is_android = false;
  bool use_response_file = false;
  std::vector<char> response_file;
  std::vector<const char*> response_file_args;
  uint16_t elf_machine = EM_NONE;
  // Scan argv in order to prepare the following:
  // - get the output file. That's the file we may need to adjust.
  // - get the --real-linker if one was passed.
  // - detect whether we're linking a shared library or something else. As of
  // now, only shared libraries are handled. Technically speaking, programs
  // could be handled as well, but for the purpose of Firefox, that actually
  // doesn't work because programs contain a memory allocator that ends up
  // being called before the injected code has any chance to apply relocations,
  // and the allocator itself needs the relocations to have been applied.
  // - detect the position of crti.o so that we can inject our own object
  // right after it, and also to detect the machine type to pick the right
  // object to inject.
  //
  // At the same time, we also construct a new list of arguments, with
  // --real-linker filtered out. We'll later inject arguments in that list.
  if (argc == 2 && argv[1] && argv[1][0] == '@') {
    // When GCC is given a response file, it wraps all arguments into a
    // new response file with all arguments, even if originally there were
    // arguments and a response file.
    // In that case, we can't scan for arguments, so we need to read the
    // response file. And as we change the arguments, we'll need to write
    // a new one.
    std::ifstream f{argv[1] + 1, f.binary | f.ate};
    if (!f) {
      std::cerr << "Failed to read " << argv[1] + 1 << std::endl;
      return 1;
    }
    size_t len = f.tellg();
    response_file = read_vector_at<char>(f, 0, len);
    std::replace(response_file.begin(), response_file.end(), '\n', '\0');
    if (len && response_file[len - 1] != '\0') {
      response_file.push_back('\0');
    }
    response_file_args.push_back(argv[0]);
    for (const char* a = response_file.data();
         a < response_file.data() + response_file.size(); a += strlen(a) + 1) {
      response_file_args.push_back(a);
    }
    argv = const_cast<char**>(response_file_args.data());
    argc = response_file_args.size();
    use_response_file = true;
  }
  for (i = 1, argv++; i < argc && *argv; argv++, i++) {
    std::string_view arg{*argv};
    if (arg == "-shared") {
      shared = true;
    } else if (arg == "-o") {
      args.push_back(*(argv++));
      ++i;
      output = *argv;
    } else if (arg == "--real-linker") {
      ++i;
      real_linker = *(++argv);
      continue;
    } else if (elf_machine == EM_NONE) {
      auto filename = fs::path(arg).filename();
      if (filename == "crti.o" || filename == "crtbegin_so.o") {
        is_android = (filename == "crtbegin_so.o");
        crti = i;
        std::fstream f{std::string(arg), f.binary | f.in};
        f.exceptions(f.failbit);
        elf_machine = get_elf_machine(f);
      }
    }
    args.push_back(*argv);
  }

  if (!output) {
    std::cerr << "Could not determine output file." << std::endl;
    return 1;
  }

  if (!crti) {
    std::cerr << "Could not find CRT object on the command line." << std::endl;
    return 1;
  }

  if (!real_linker || !real_linker->has_parent_path()) {
    auto linker = next_program(this_program, real_linker);
    if (!linker) {
      std::cerr << "Could not find next "
                << (real_linker ? real_linker->filename()
                                : this_program.filename())
                << std::endl;
      return 1;
    }
    real_linker = linker;
  }
  args.insert(args.begin(), real_linker->c_str());
  args.push_back(nullptr);

  std::string stem;
  switch (elf_machine) {
    case EM_NONE:
      std::cerr << "Could not determine target machine type." << std::endl;
      return 1;
    case EM_386:
      stem = "x86";
      break;
    case EM_X86_64:
      stem = "x86_64";
      break;
    case EM_ARM:
      stem = "arm";
      break;
    case EM_AARCH64:
      stem = "aarch64";
      break;
    default:
      std::cerr << "Unsupported target machine type." << std::endl;
      return 1;
  }
  if (is_android) {
    stem += "-android";
  }

  if (shared) {
    std::vector<const char*> hacked_args(args);
    auto inject = this_program.parent_path() / "inject" / (stem + ".o");
    hacked_args.insert(hacked_args.begin() + crti + 1, inject.c_str());
    hacked_args.insert(hacked_args.end() - 1, {"-z", "pack-relative-relocs",
                                               "-init=_relrhack_wrap_init"});
    int status = run_command(hacked_args, use_response_file);
    if (status) {
      return status;
    }
    bool hacked = false;
    try {
      std::fstream f{*output, f.binary | f.in | f.out};
      f.exceptions(f.failbit);
      auto elf_class = get_elf_class(f);
      f.seekg(0, std::ios::beg);
      if (elf_class == ELFCLASS32) {
        hacked = RelR<32>::hack(f);
      } else if (elf_class == ELFCLASS64) {
        hacked = RelR<64>::hack(f);
      }
    } catch (const std::runtime_error& err) {
      std::cerr << "Failed to hack " << output->string() << ": " << err.what()
                << std::endl;
      return 1;
    }
    if (hacked) {
      return 0;
    }
  }

  return run_command(args, use_response_file);
}