blob: 08b516b25a6013e616f067eba319ff2fdabccd5b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MediaStatistics_h_
#define MediaStatistics_h_
namespace mozilla {
struct MediaStatistics {
// Estimate of the current playback rate (bytes/second).
double mPlaybackRate;
// Estimate of the current download rate (bytes/second). This
// ignores time that the channel was paused by Gecko.
double mDownloadRate;
// Total length of media stream in bytes; -1 if not known
int64_t mTotalBytes;
// Current position of the download, in bytes. This is the offset of
// the first uncached byte after the decoder position.
int64_t mDownloadPosition;
// Current position of playback, in bytes
int64_t mPlaybackPosition;
// If false, then mDownloadRate cannot be considered a reliable
// estimate (probably because the download has only been running
// a short time).
bool mDownloadRateReliable;
// If false, then mPlaybackRate cannot be considered a reliable
// estimate (probably because playback has only been running
// a short time).
bool mPlaybackRateReliable;
bool CanPlayThrough() {
// Number of estimated seconds worth of data we need to have buffered
// ahead of the current playback position before we allow the media decoder
// to report that it can play through the entire media without the decode
// catching up with the download. Having this margin make the
// CanPlayThrough() calculation more stable in the case of
// fluctuating bitrates.
static const int64_t CAN_PLAY_THROUGH_MARGIN = 1;
if ((mTotalBytes < 0 && mDownloadRateReliable) ||
(mTotalBytes >= 0 && mTotalBytes == mDownloadPosition)) {
return true;
}
if (!mDownloadRateReliable || !mPlaybackRateReliable) {
return false;
}
int64_t bytesToDownload = mTotalBytes - mDownloadPosition;
int64_t bytesToPlayback = mTotalBytes - mPlaybackPosition;
double timeToDownload = bytesToDownload / mDownloadRate;
double timeToPlay = bytesToPlayback / mPlaybackRate;
if (timeToDownload > timeToPlay) {
// Estimated time to download is greater than the estimated time to play.
// We probably can't play through without having to stop to buffer.
return false;
}
// Estimated time to download is less than the estimated time to play.
// We can probably play through without having to buffer, but ensure that
// we've got a reasonable amount of data buffered after the current
// playback position, so that if the bitrate of the media fluctuates, or if
// our download rate or decode rate estimation is otherwise inaccurate,
// we don't suddenly discover that we need to buffer. This is particularly
// required near the start of the media, when not much data is downloaded.
int64_t readAheadMargin =
static_cast<int64_t>(mPlaybackRate * CAN_PLAY_THROUGH_MARGIN);
return mDownloadPosition > mPlaybackPosition + readAheadMargin;
}
};
} // namespace mozilla
#endif // MediaStatistics_h_
|