summaryrefslogtreecommitdiffstats
path: root/dom/media/platforms/agnostic/bytestreams/gtest/TestByteStreams.cpp
blob: 911f10f1939b445fb9acaf1e3e2d87972b0fa5cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

#include "gtest/gtest.h"

#include "AnnexB.h"
#include "BufferReader.h"
#include "ByteWriter.h"
#include "H264.h"
#include "H265.h"
#include "mozilla/Types.h"

namespace mozilla {

// Create AVCC style extra data (the contents on an AVCC box). Note
// NALLengthSize will be 4 so AVCC samples need to set their data up
// accordingly.
static already_AddRefed<MediaByteBuffer> GetExtraData() {
  // Extra data with
  // - baseline profile(0x42 == 66).
  // - constraint flags 0 and 1 set(0xc0) -- normal for baseline profile.
  // - level 4.0 (0x28 == 40).
  // - 1280 * 720 resolution.
  return H264::CreateExtraData(0x42, 0xc0, 0x28, {1280, 720});
}

// Create an AVCC style sample with requested size in bytes. This sample is
// setup to contain a single NAL (in practice samples can contain many). The
// sample sets its NAL size to aSampleSize - 4 and stores that size in the first
// 4 bytes. Aside from the NAL size at the start, the data is uninitialized
// (beware)! aSampleSize is a uint32_t as samples larger than can be expressed
// by a uint32_t are not to spec.
static already_AddRefed<MediaRawData> GetAvccSample(uint32_t aSampleSize) {
  if (aSampleSize < 4) {
    // Stop tests asking for insane samples.
    EXPECT_FALSE(true) << "Samples should be requested with sane sizes";
  }
  nsTArray<uint8_t> sampleData;

  // Write the NAL size.
  ByteWriter<BigEndian> writer(sampleData);
  EXPECT_TRUE(writer.WriteU32(aSampleSize - 4));

  // Write the 'NAL'. Beware, this data is uninitialized.
  sampleData.AppendElements(static_cast<size_t>(aSampleSize) - 4);
  RefPtr<MediaRawData> rawData =
      new MediaRawData{sampleData.Elements(), sampleData.Length()};
  EXPECT_NE(rawData->Data(), nullptr);

  // Set extra data.
  rawData->mExtraData = GetExtraData();
  return rawData.forget();
}

static const uint8_t sHvccBytesBuffer[] = {
    1 /* version */,
    1 /* general_profile_space/general_tier_flag/general_profile_idc */,
    0x60 /* general_profile_compatibility_flags 1/4 */,
    0 /* general_profile_compatibility_flags 2/4 */,
    0 /* general_profile_compatibility_flags 3/4 */,
    0 /* general_profile_compatibility_flags 4/4 */,
    0x90 /* general_constraint_indicator_flags 1/6 */,
    0 /* general_constraint_indicator_flags 2/6 */,
    0 /* general_constraint_indicator_flags 3/6 */,
    0 /* general_constraint_indicator_flags 4/6 */,
    0 /* general_constraint_indicator_flags 5/6 */,
    0 /* general_constraint_indicator_flags 6/6 */,
    0x5A /* general_level_idc */,
    0 /* min_spatial_segmentation_idc 1/2 */,
    0 /* min_spatial_segmentation_idc 2/2 */,
    0 /* parallelismType */,
    1 /* chroma_format_idc */,
    0 /* bit_depth_luma_minus8 */,
    0 /* bit_depth_chroma_minus8 */,
    0 /* avgFrameRate 1/2 */,
    0 /* avgFrameRate 2/2 */,
    0x0F /* constantFrameRate/numTemporalLayers/temporalIdNested/lengthSizeMinusOne
          */
    ,
    2 /* numOfArrays */,
    /* SPS Array */
    0x21 /* NAL_unit_type (SPS) */,
    0 /* numNalus 1/2 */,
    1 /* numNalus 2/2 */,

    /* SPS */
    0 /* nalUnitLength 1/2 */,
    8 /* nalUnitLength 2/2 (header + rsbp) */,
    0x42 /* NALU header 1/2 */,
    0 /* NALU header 2/2 */,
    0 /* rbsp 1/6 */,
    0 /* rbsp 2/6 */,
    0 /* rbsp 3/6 */,
    0 /* rbsp 4/6 */,
    0 /* rbsp 5/6 */,
    0 /* rbsp 6/6 */,

    /* PPS Array */
    0x22 /* NAL_unit_type (PPS) */,
    0 /* numNalus 1/2 */,
    1 /* numNalus 2/2 */,

    /* PPS */
    0 /* nalUnitLength 1/2 */,
    3 /* nalUnitLength 2/2 (header + rsbp) */,
    0x44 /* NALU header 1/2 */,
    0 /* NALU header 2/2 */,
    0 /* rbsp */,
};

// Create a HVCC sample, which contain fake data, in given size.
static already_AddRefed<MediaRawData> GetHVCCSample(uint32_t aSampleSize) {
  if (aSampleSize < 4) {
    // Stop tests asking for insane samples.
    EXPECT_FALSE(true) << "Samples should be requested with sane sizes";
  }
  auto extradata = MakeRefPtr<mozilla::MediaByteBuffer>();
  extradata->AppendElements(sHvccBytesBuffer, ArrayLength(sHvccBytesBuffer));

  // Write the NAL size.
  nsTArray<uint8_t> sampleData;
  ByteWriter<BigEndian> writer(sampleData);
  EXPECT_TRUE(writer.WriteU32(aSampleSize - 4));  // Assume it's a 4 bytes NALU

  // Fill fake empty data
  for (uint32_t idx = 0; idx < aSampleSize - 4; idx++) {
    sampleData.AppendElement(0);
  }
  RefPtr<MediaRawData> rawData =
      new MediaRawData{sampleData.Elements(), sampleData.Length()};
  EXPECT_NE(rawData->Data(), nullptr);
  EXPECT_EQ(rawData->Size(), aSampleSize);
  rawData->mExtraData = extradata;
  return rawData.forget();
}

// Create a HVCC sample by using given data in given size.
static already_AddRefed<MediaRawData> GetHVCCSample(
    const uint8_t* aData, const uint32_t aDataLength) {
  if (aDataLength < 4) {
    // Stop tests asking for insane samples.
    EXPECT_FALSE(true) << "Samples should be requested with sane sizes";
  }
  auto extradata = MakeRefPtr<mozilla::MediaByteBuffer>();
  extradata->AppendElements(sHvccBytesBuffer, ArrayLength(sHvccBytesBuffer));

  // Write the NAL size.
  nsTArray<uint8_t> sampleData;
  ByteWriter<BigEndian> writer(sampleData);
  EXPECT_TRUE(writer.WriteU32(aDataLength));  // Assume it's a 4 bytes NALU
  sampleData.AppendElements(aData, aDataLength);

  RefPtr<MediaRawData> rawData =
      new MediaRawData{sampleData.Elements(), sampleData.Length()};
  EXPECT_NE(rawData->Data(), nullptr);
  EXPECT_EQ(rawData->Size(), aDataLength + 4);
  rawData->mExtraData = extradata;
  return rawData.forget();
}

// Test that conversion from AVCC to AnnexB works as expected.
TEST(AnnexB, AVCCToAnnexBConversion)
{
  RefPtr<MediaRawData> rawData{GetAvccSample(128)};

  {
    // Test conversion of data when not adding SPS works as expected.
    RefPtr<MediaRawData> rawDataClone = rawData->Clone();
    Result<Ok, nsresult> result =
        AnnexB::ConvertAVCCSampleToAnnexB(rawDataClone, /* aAddSps */ false);
    EXPECT_TRUE(result.isOk()) << "Conversion should succeed";
    EXPECT_EQ(rawDataClone->Size(), rawData->Size())
        << "AnnexB sample should be the same size as the AVCC sample -- the 4 "
           "byte NAL length data (AVCC) is replaced with 4 bytes of NAL "
           "separator (AnnexB)";
    EXPECT_TRUE(AnnexB::IsAnnexB(rawDataClone))
        << "The sample should be AnnexB following conversion";
  }

  {
    // Test that the SPS data is not added if the frame is not a keyframe.
    RefPtr<MediaRawData> rawDataClone = rawData->Clone();
    rawDataClone->mKeyframe =
        false;  // false is the default, but let's be sure.
    Result<Ok, nsresult> result =
        AnnexB::ConvertAVCCSampleToAnnexB(rawDataClone, /* aAddSps */ true);
    EXPECT_TRUE(result.isOk()) << "Conversion should succeed";
    EXPECT_EQ(rawDataClone->Size(), rawData->Size())
        << "AnnexB sample should be the same size as the AVCC sample -- the 4 "
           "byte NAL length data (AVCC) is replaced with 4 bytes of NAL "
           "separator (AnnexB) and SPS data is not added as the frame is not a "
           "keyframe";
    EXPECT_TRUE(AnnexB::IsAnnexB(rawDataClone))
        << "The sample should be AnnexB following conversion";
  }

  {
    // Test that the SPS data is added to keyframes.
    RefPtr<MediaRawData> rawDataClone = rawData->Clone();
    rawDataClone->mKeyframe = true;
    Result<Ok, nsresult> result =
        AnnexB::ConvertAVCCSampleToAnnexB(rawDataClone, /* aAddSps */ true);
    EXPECT_TRUE(result.isOk()) << "Conversion should succeed";
    EXPECT_GT(rawDataClone->Size(), rawData->Size())
        << "AnnexB sample should be larger than the AVCC sample because we've "
           "added SPS data";
    EXPECT_TRUE(AnnexB::IsAnnexB(rawDataClone))
        << "The sample should be AnnexB following conversion";
    // We could verify the SPS and PPS data we add, but we don't have great
    // tooling to do so. Consider doing so in future.
  }

  {
    // Test conversion involving subsample encryption doesn't overflow vlaues.
    const uint32_t sampleSize = UINT16_MAX * 2;
    RefPtr<MediaRawData> rawCryptoData{GetAvccSample(sampleSize)};
    // Need to be a keyframe to test prepending SPS + PPS to sample.
    rawCryptoData->mKeyframe = true;
    UniquePtr<MediaRawDataWriter> rawDataWriter = rawCryptoData->CreateWriter();

    rawDataWriter->mCrypto.mCryptoScheme = CryptoScheme::Cenc;

    // We want to check that the clear size doesn't overflow during conversion.
    // This size originates in a uint16_t, but since it can grow during AnnexB
    // we cover it here.
    const uint16_t clearSize = UINT16_MAX - 10;
    // Set a clear size very close to uint16_t max value.
    rawDataWriter->mCrypto.mPlainSizes.AppendElement(clearSize);
    rawDataWriter->mCrypto.mEncryptedSizes.AppendElement(sampleSize -
                                                         clearSize);

    RefPtr<MediaRawData> rawCryptoDataClone = rawCryptoData->Clone();
    Result<Ok, nsresult> result = AnnexB::ConvertAVCCSampleToAnnexB(
        rawCryptoDataClone, /* aAddSps */ true);
    EXPECT_TRUE(result.isOk()) << "Conversion should succeed";
    EXPECT_GT(rawCryptoDataClone->Size(), rawCryptoData->Size())
        << "AnnexB sample should be larger than the AVCC sample because we've "
           "added SPS data";
    EXPECT_GT(rawCryptoDataClone->mCrypto.mPlainSizes[0],
              rawCryptoData->mCrypto.mPlainSizes[0])
        << "Conversion should have increased clear data sizes without overflow";
    EXPECT_EQ(rawCryptoDataClone->mCrypto.mEncryptedSizes[0],
              rawCryptoData->mCrypto.mEncryptedSizes[0])
        << "Conversion should not affect encrypted sizes";
    EXPECT_TRUE(AnnexB::IsAnnexB(rawCryptoDataClone))
        << "The sample should be AnnexB following conversion";
  }
}

TEST(AnnexB, HVCCToAnnexBConversion)
{
  RefPtr<MediaRawData> rawData{GetHVCCSample(128)};
  {
    // Test conversion of data when not adding SPS works as expected.
    RefPtr<MediaRawData> rawDataClone = rawData->Clone();
    Result<Ok, nsresult> result =
        AnnexB::ConvertHVCCSampleToAnnexB(rawDataClone, /* aAddSps */ false);
    EXPECT_TRUE(result.isOk()) << "Conversion should succeed";
    EXPECT_EQ(rawDataClone->Size(), rawData->Size())
        << "AnnexB sample should be the same size as the HVCC sample -- the 4 "
           "byte NAL length data (HVCC) is replaced with 4 bytes of NAL "
           "separator (AnnexB)";
    EXPECT_TRUE(AnnexB::IsAnnexB(rawDataClone))
        << "The sample should be AnnexB following conversion";
  }
  {
    // Test that the SPS data is not added if the frame is not a keyframe.
    RefPtr<MediaRawData> rawDataClone = rawData->Clone();
    rawDataClone->mKeyframe =
        false;  // false is the default, but let's be sure.
    Result<Ok, nsresult> result =
        AnnexB::ConvertHVCCSampleToAnnexB(rawDataClone, /* aAddSps */ true);
    EXPECT_TRUE(result.isOk()) << "Conversion should succeed";
    EXPECT_EQ(rawDataClone->Size(), rawData->Size())
        << "AnnexB sample should be the same size as the HVCC sample -- the 4 "
           "byte NAL length data (HVCC) is replaced with 4 bytes of NAL "
           "separator (AnnexB) and SPS data is not added as the frame is not a "
           "keyframe";
    EXPECT_TRUE(AnnexB::IsAnnexB(rawDataClone))
        << "The sample should be AnnexB following conversion";
  }
  {
    // Test that the SPS data is added to keyframes.
    RefPtr<MediaRawData> rawDataClone = rawData->Clone();
    rawDataClone->mKeyframe = true;
    Result<Ok, nsresult> result =
        AnnexB::ConvertHVCCSampleToAnnexB(rawDataClone, /* aAddSps */ true);
    EXPECT_TRUE(result.isOk()) << "Conversion should succeed";
    EXPECT_GT(rawDataClone->Size(), rawData->Size())
        << "AnnexB sample should be larger than the HVCC sample because we've "
           "added SPS data";
    EXPECT_TRUE(AnnexB::IsAnnexB(rawDataClone))
        << "The sample should be AnnexB following conversion";
    // We could verify the SPS and PPS data we add, but we don't have great
    // tooling to do so. Consider doing so in future.
  }
  {
    // Test conversion involving subsample encryption doesn't overflow values.
    const uint32_t sampleSize = UINT16_MAX * 2;
    RefPtr<MediaRawData> rawCryptoData{GetHVCCSample(sampleSize)};
    // Need to be a keyframe to test prepending SPS + PPS to sample.
    rawCryptoData->mKeyframe = true;
    UniquePtr<MediaRawDataWriter> rawDataWriter = rawCryptoData->CreateWriter();

    rawDataWriter->mCrypto.mCryptoScheme = CryptoScheme::Cenc;

    // We want to check that the clear size doesn't overflow during conversion.
    // This size originates in a uint16_t, but since it can grow during AnnexB
    // we cover it here.
    const uint16_t clearSize = UINT16_MAX - 10;
    // Set a clear size very close to uint16_t max value.
    rawDataWriter->mCrypto.mPlainSizes.AppendElement(clearSize);
    rawDataWriter->mCrypto.mEncryptedSizes.AppendElement(sampleSize -
                                                         clearSize);

    RefPtr<MediaRawData> rawCryptoDataClone = rawCryptoData->Clone();
    Result<Ok, nsresult> result = AnnexB::ConvertHVCCSampleToAnnexB(
        rawCryptoDataClone, /* aAddSps */ true);
    EXPECT_TRUE(result.isOk()) << "Conversion should succeed";
    EXPECT_GT(rawCryptoDataClone->Size(), rawCryptoData->Size())
        << "AnnexB sample should be larger than the HVCC sample because we've "
           "added SPS data";
    EXPECT_GT(rawCryptoDataClone->mCrypto.mPlainSizes[0],
              rawCryptoData->mCrypto.mPlainSizes[0])
        << "Conversion should have increased clear data sizes without overflow";
    EXPECT_EQ(rawCryptoDataClone->mCrypto.mEncryptedSizes[0],
              rawCryptoData->mCrypto.mEncryptedSizes[0])
        << "Conversion should not affect encrypted sizes";
    EXPECT_TRUE(AnnexB::IsAnnexB(rawCryptoDataClone))
        << "The sample should be AnnexB following conversion";
  }
}

TEST(H264, AVCCParsingSuccess)
{
  auto extradata = MakeRefPtr<mozilla::MediaByteBuffer>();
  uint8_t avccBytesBuffer[] = {
      1 /* version */,
      0x64 /* profile (High) */,
      0 /* profile compat (0) */,
      40 /* level (40) */,
      0xfc | 3 /* nal size - 1 */,
      0xe0 /* num SPS (0) */,
      0 /* num PPS (0) */
  };
  extradata->AppendElements(avccBytesBuffer, ArrayLength(avccBytesBuffer));
  auto rv = AVCCConfig::Parse(extradata);
  EXPECT_TRUE(rv.isOk());
  const auto avcc = rv.unwrap();
  EXPECT_EQ(avcc.mConfigurationVersion, 1);
  EXPECT_EQ(avcc.mAVCProfileIndication, 0x64);
  EXPECT_EQ(avcc.mProfileCompatibility, 0);
  EXPECT_EQ(avcc.mAVCLevelIndication, 40);
  EXPECT_EQ(avcc.NALUSize(), 4);
  EXPECT_EQ(avcc.mNumSPS, 0);
}

TEST(H264, AVCCParsingFailure)
{
  {
    // Incorrect version
    auto extradata = MakeRefPtr<mozilla::MediaByteBuffer>();
    uint8_t avccBytesBuffer[] = {
        2 /* version */,
        0x64 /* profile (High) */,
        0 /* profile compat (0) */,
        40 /* level (40) */,
        0xfc | 3 /* nal size - 1 */,
        0xe0 /* num SPS (0) */,
        0 /* num PPS (0) */
    };
    extradata->AppendElements(avccBytesBuffer, ArrayLength(avccBytesBuffer));
    auto avcc = AVCCConfig::Parse(extradata);
    EXPECT_TRUE(avcc.isErr());
  }
  {
    // Insuffient data (lacking of PPS)
    auto extradata = MakeRefPtr<mozilla::MediaByteBuffer>();
    uint8_t avccBytesBuffer[] = {
        1 /* version */,
        0x64 /* profile (High) */,
        0 /* profile compat (0) */,
        40 /* level (40) */,
        0xfc | 3 /* nal size - 1 */,
        0xe0 /* num SPS (0) */,
    };
    extradata->AppendElements(avccBytesBuffer, ArrayLength(avccBytesBuffer));
    auto avcc = AVCCConfig::Parse(extradata);
    EXPECT_TRUE(avcc.isErr());
  }
}

TEST(H265, HVCCParsingSuccess)
{
  {
    auto extradata = MakeRefPtr<mozilla::MediaByteBuffer>();
    uint8_t hvccBytesBuffer[] = {
        1 /* version */,
        1 /* general_profile_space/general_tier_flag/general_profile_idc */,
        0x60 /* general_profile_compatibility_flags 1/4 */,
        0 /* general_profile_compatibility_flags 2/4 */,
        0 /* general_profile_compatibility_flags 3/4 */,
        0 /* general_profile_compatibility_flags 4/4 */,
        0x90 /* general_constraint_indicator_flags 1/6 */,
        0 /* general_constraint_indicator_flags 2/6 */,
        0 /* general_constraint_indicator_flags 3/6 */,
        0 /* general_constraint_indicator_flags 4/6 */,
        0 /* general_constraint_indicator_flags 5/6 */,
        0 /* general_constraint_indicator_flags 6/6 */,
        0x5A /* general_level_idc */,
        0 /* min_spatial_segmentation_idc 1/2 */,
        0 /* min_spatial_segmentation_idc 2/2 */,
        0 /* parallelismType */,
        1 /* chroma_format_idc */,
        0 /* bit_depth_luma_minus8 */,
        0 /* bit_depth_chroma_minus8 */,
        0 /* avgFrameRate 1/2 */,
        0 /* avgFrameRate 2/2 */,
        0x0F /* constantFrameRate/numTemporalLayers/temporalIdNested/lengthSizeMinusOne
              */
        ,
        0 /* numOfArrays */,
    };
    extradata->AppendElements(hvccBytesBuffer, ArrayLength(hvccBytesBuffer));
    auto rv = HVCCConfig::Parse(extradata);
    EXPECT_TRUE(rv.isOk());
    auto hvcc = rv.unwrap();
    EXPECT_EQ(hvcc.configurationVersion, 1);
    EXPECT_EQ(hvcc.general_profile_space, 0);
    EXPECT_EQ(hvcc.general_tier_flag, false);
    EXPECT_EQ(hvcc.general_profile_idc, 1);
    EXPECT_EQ(hvcc.general_profile_compatibility_flags, (uint32_t)0x60000000);
    EXPECT_EQ(hvcc.general_constraint_indicator_flags,
              (uint64_t)0x900000000000);
    EXPECT_EQ(hvcc.general_level_idc, 0x5A);
    EXPECT_EQ(hvcc.min_spatial_segmentation_idc, 0);
    EXPECT_EQ(hvcc.parallelismType, 0);
    EXPECT_EQ(hvcc.chroma_format_idc, 1);
    EXPECT_EQ(hvcc.bit_depth_luma_minus8, 0);
    EXPECT_EQ(hvcc.bit_depth_chroma_minus8, 0);
    EXPECT_EQ(hvcc.avgFrameRate, 0);
    EXPECT_EQ(hvcc.constantFrameRate, 0);
    EXPECT_EQ(hvcc.numTemporalLayers, 1);
    EXPECT_EQ(hvcc.temporalIdNested, true);
    EXPECT_EQ(hvcc.NALUSize(), 4);
    EXPECT_EQ(hvcc.mNALUs.Length(), uint32_t(0));
  }
  {
    // Multple NALUs
    auto extradata = MakeRefPtr<mozilla::MediaByteBuffer>();
    uint8_t hvccBytesBuffer[] = {
        1 /* version */,
        1 /* general_profile_space/general_tier_flag/general_profile_idc */,
        0x60 /* general_profile_compatibility_flags 1/4 */,
        0 /* general_profile_compatibility_flags 2/4 */,
        0 /* general_profile_compatibility_flags 3/4 */,
        0 /* general_profile_compatibility_flags 4/4 */,
        0x90 /* general_constraint_indicator_flags 1/6 */,
        0 /* general_constraint_indicator_flags 2/6 */,
        0 /* general_constraint_indicator_flags 3/6 */,
        0 /* general_constraint_indicator_flags 4/6 */,
        0 /* general_constraint_indicator_flags 5/6 */,
        0 /* general_constraint_indicator_flags 6/6 */,
        0x5A /* general_level_idc */,
        0 /* min_spatial_segmentation_idc 1/2 */,
        0 /* min_spatial_segmentation_idc 2/2 */,
        0 /* parallelismType */,
        1 /* chroma_format_idc */,
        0 /* bit_depth_luma_minus8 */,
        0 /* bit_depth_chroma_minus8 */,
        0 /* avgFrameRate 1/2 */,
        0 /* avgFrameRate 2/2 */,
        0x0F /* constantFrameRate/numTemporalLayers/temporalIdNested/lengthSizeMinusOne
              */
        ,
        2 /* numOfArrays */,
        /* SPS Array */
        0x21 /* NAL_unit_type (SPS) */,
        0 /* numNalus 1/2 */,
        1 /* numNalus 2/2 */,

        /* SPS */
        0 /* nalUnitLength 1/2 */,
        8 /* nalUnitLength 2/2 (header + rsbp) */,
        0x42 /* NALU header 1/2 */,
        0 /* NALU header 2/2 */,
        0 /* rbsp 1/6 */,
        0 /* rbsp 2/6 */,
        0 /* rbsp 3/6 */,
        0 /* rbsp 4/6 */,
        0 /* rbsp 5/6 */,
        0 /* rbsp 6/6 */,

        /* PPS Array */
        0x22 /* NAL_unit_type (PPS) */,
        0 /* numNalus 1/2 */,
        2 /* numNalus 2/2 */,

        /* PPS 1 */
        0 /* nalUnitLength 1/2 */,
        3 /* nalUnitLength 2/2 (header + rsbp) */,
        0x44 /* NALU header 1/2 */,
        0 /* NALU header 2/2 */,
        0 /* rbsp */,

        /* PPS 2 */
        0 /* nalUnitLength 1/2 */,
        3 /* nalUnitLength 2/2 (header + rsbp) */,
        0x44 /* NALU header 1/2 */,
        0 /* NALU header 2/2 */,
        0 /* rbsp */,
    };
    extradata->AppendElements(hvccBytesBuffer, ArrayLength(hvccBytesBuffer));
    auto rv = HVCCConfig::Parse(extradata);
    EXPECT_TRUE(rv.isOk());
    auto hvcc = rv.unwrap();
    // Check NALU, it should contain 1 SPS and 2 PPS.
    EXPECT_EQ(hvcc.mNALUs.Length(), uint32_t(3));
    EXPECT_EQ(hvcc.mNALUs[0].mNalUnitType, H265NALU::NAL_TYPES::SPS_NUT);
    EXPECT_EQ(hvcc.mNALUs[0].mNuhLayerId, 0);
    EXPECT_EQ(hvcc.mNALUs[0].mNuhTemporalIdPlus1, 0);
    EXPECT_EQ(hvcc.mNALUs[0].IsSPS(), true);
    EXPECT_EQ(hvcc.mNALUs[0].mNALU.Length(), 8u);

    EXPECT_EQ(hvcc.mNALUs[1].mNalUnitType, H265NALU::NAL_TYPES::PPS_NUT);
    EXPECT_EQ(hvcc.mNALUs[1].mNuhLayerId, 0);
    EXPECT_EQ(hvcc.mNALUs[1].mNuhTemporalIdPlus1, 0);
    EXPECT_EQ(hvcc.mNALUs[1].IsSPS(), false);
    EXPECT_EQ(hvcc.mNALUs[1].mNALU.Length(), 3u);

    EXPECT_EQ(hvcc.mNALUs[2].mNalUnitType, H265NALU::NAL_TYPES::PPS_NUT);
    EXPECT_EQ(hvcc.mNALUs[2].mNuhLayerId, 0);
    EXPECT_EQ(hvcc.mNALUs[2].mNuhTemporalIdPlus1, 0);
    EXPECT_EQ(hvcc.mNALUs[2].IsSPS(), false);
    EXPECT_EQ(hvcc.mNALUs[2].mNALU.Length(), 3u);
  }
}

TEST(H265, HVCCParsingFailure)
{
  {
    // Incorrect version
    auto extradata = MakeRefPtr<mozilla::MediaByteBuffer>();
    uint8_t hvccBytesBuffer[] = {
        2 /* version */,
        1 /* general_profile_space/general_tier_flag/general_profile_idc */,
        0x60 /* general_profile_compatibility_flags 1/4 */,
        0 /* general_profile_compatibility_flags 2/4 */,
        0 /* general_profile_compatibility_flags 3/4 */,
        0 /* general_profile_compatibility_flags 4/4 */,
        0x90 /* general_constraint_indicator_flags 1/6 */,
        0 /* general_constraint_indicator_flags 2/6 */,
        0 /* general_constraint_indicator_flags 3/6 */,
        0 /* general_constraint_indicator_flags 4/6 */,
        0 /* general_constraint_indicator_flags 5/6 */,
        0 /* general_constraint_indicator_flags 6/6 */,
        0x5A /* general_level_idc */,
        0 /* min_spatial_segmentation_idc 1/2 */,
        0 /* min_spatial_segmentation_idc 2/2 */,
        0 /* parallelismType */,
        1 /* chroma_format_idc */,
        0 /* bit_depth_luma_minus8 */,
        0 /* bit_depth_chroma_minus8 */,
        0 /* avgFrameRate 1/2 */,
        0 /* avgFrameRate 2/2 */,
        0x0F /* constantFrameRate/numTemporalLayers/temporalIdNested/lengthSizeMinusOne
              */
        ,
        0 /* numOfArrays */,
    };
    extradata->AppendElements(hvccBytesBuffer, ArrayLength(hvccBytesBuffer));
    auto avcc = HVCCConfig::Parse(extradata);
    EXPECT_TRUE(avcc.isErr());
  }
  {
    // Insuffient data
    auto extradata = MakeRefPtr<mozilla::MediaByteBuffer>();
    uint8_t hvccBytesBuffer[] = {
        1 /* version */,
        1 /* general_profile_space/general_tier_flag/general_profile_idc */,
        0x60 /* general_profile_compatibility_flags 1/4 */,
        0 /* general_profile_compatibility_flags 2/4 */,
        0 /* general_profile_compatibility_flags 3/4 */,
        0 /* general_profile_compatibility_flags 4/4 */,
        0x90 /* general_constraint_indicator_flags 1/6 */,
        0 /* general_constraint_indicator_flags 2/6 */,
        0 /* general_constraint_indicator_flags 3/6 */,
        0 /* general_constraint_indicator_flags 4/6 */,
        0 /* general_constraint_indicator_flags 5/6 */,
        0 /* general_constraint_indicator_flags 6/6 */,
        0x5A /* general_level_idc */
    };
    extradata->AppendElements(hvccBytesBuffer, ArrayLength(hvccBytesBuffer));
    auto avcc = HVCCConfig::Parse(extradata);
    EXPECT_TRUE(avcc.isErr());
  }
}

TEST(H265, HVCCToAnnexB)
{
  auto extradata = MakeRefPtr<mozilla::MediaByteBuffer>();
  uint8_t hvccBytesBuffer[] = {
      1 /* version */,
      1 /* general_profile_space/general_tier_flag/general_profile_idc */,
      0x60 /* general_profile_compatibility_flags 1/4 */,
      0 /* general_profile_compatibility_flags 2/4 */,
      0 /* general_profile_compatibility_flags 3/4 */,
      0 /* general_profile_compatibility_flags 4/4 */,
      0x90 /* general_constraint_indicator_flags 1/6 */,
      0 /* general_constraint_indicator_flags 2/6 */,
      0 /* general_constraint_indicator_flags 3/6 */,
      0 /* general_constraint_indicator_flags 4/6 */,
      0 /* general_constraint_indicator_flags 5/6 */,
      0 /* general_constraint_indicator_flags 6/6 */,
      0x5A /* general_level_idc */,
      0 /* min_spatial_segmentation_idc 1/2 */,
      0 /* min_spatial_segmentation_idc 2/2 */,
      0 /* parallelismType */,
      1 /* chroma_format_idc */,
      0 /* bit_depth_luma_minus8 */,
      0 /* bit_depth_chroma_minus8 */,
      0 /* avgFrameRate 1/2 */,
      0 /* avgFrameRate 2/2 */,
      0x0F /* constantFrameRate/numTemporalLayers/temporalIdNested/lengthSizeMinusOne
            */
      ,
      2 /* numOfArrays */,
      /* SPS Array */
      0x21 /* NAL_unit_type (SPS) */,
      0 /* numNalus 1/2 */,
      1 /* numNalus 2/2 */,

      /* SPS */
      0 /* nalUnitLength 1/2 */,
      3 /* nalUnitLength 2/2 (header + rsbp) */,
      0x42 /* NALU header 1/2 */,
      0 /* NALU header 2/2 */,
      0 /* rbsp */,

      /* PPS Array */
      0x22 /* NAL_unit_type (PPS) */,
      0 /* numNalus 1/2 */,
      1 /* numNalus 2/2 */,

      /* PPS */
      0 /* nalUnitLength 1/2 */,
      3 /* nalUnitLength 2/2 (header + rsbp) */,
      0x44 /* NALU header 1/2 */,
      0 /* NALU header 2/2 */,
      0 /* rbsp */,
  };
  extradata->AppendElements(hvccBytesBuffer, ArrayLength(hvccBytesBuffer));

  // We convert hvcc extra-data to annexb format, then parse each nalu to see if
  // they are still correct or not.
  const size_t naluBytesSize = 3;  // NAL size is 3, see nalUnitLength above
  const size_t delimiterBytesSize = 4;  // 0x00000001
  const size_t naluPlusDelimiterBytesSize = naluBytesSize + delimiterBytesSize;
  RefPtr<mozilla::MediaByteBuffer> annexBExtraData =
      AnnexB::ConvertHVCCExtraDataToAnnexB(extradata);
  // 2 NALU, sps and pps
  EXPECT_EQ(annexBExtraData->Length(), naluPlusDelimiterBytesSize * 2);

  H265NALU sps(
      static_cast<uint8_t*>(annexBExtraData->Elements() + delimiterBytesSize),
      naluBytesSize);
  EXPECT_EQ(sps.mNalUnitType, H265NALU::NAL_TYPES::SPS_NUT);
  EXPECT_EQ(sps.mNuhLayerId, 0);
  EXPECT_EQ(sps.mNuhTemporalIdPlus1, 0);
  EXPECT_EQ(sps.IsSPS(), true);
  EXPECT_EQ(sps.mNALU.Length(), 3u);

  H265NALU pps(
      static_cast<uint8_t*>(annexBExtraData->Elements() +
                            naluPlusDelimiterBytesSize + delimiterBytesSize),
      naluBytesSize);
  EXPECT_EQ(pps.mNalUnitType, H265NALU::NAL_TYPES::PPS_NUT);
  EXPECT_EQ(pps.mNuhLayerId, 0);
  EXPECT_EQ(pps.mNuhTemporalIdPlus1, 0);
  EXPECT_EQ(pps.IsSPS(), false);
  EXPECT_EQ(pps.mNALU.Length(), 3u);
}

TEST(H265, AnnexBToHVCC)
{
  RefPtr<MediaRawData> rawData{GetHVCCSample(128)};
  RefPtr<MediaRawData> rawDataClone = rawData->Clone();
  Result<Ok, nsresult> result =
      AnnexB::ConvertHVCCSampleToAnnexB(rawDataClone, /* aAddSps */ false);
  EXPECT_TRUE(result.isOk()) << "HVCC to AnnexB Conversion should succeed";
  EXPECT_TRUE(AnnexB::IsAnnexB(rawDataClone))
      << "The sample should be AnnexB following conversion";

  auto rv = AnnexB::ConvertSampleToHVCC(rawDataClone);
  EXPECT_TRUE(rv.isOk()) << "AnnexB to HVCC Conversion should succeed";
  EXPECT_TRUE(AnnexB::IsHVCC(rawDataClone))
      << "The sample should be HVCC following conversion";
}

// This is SPS from 'hevc_white_frame.mp4'
static const uint8_t sSps[] = {
    0x42, 0x01, 0x01, 0x01, 0x60, 0x00, 0x00, 0x03, 0x00, 0x90, 0x00,
    0x00, 0x03, 0x00, 0x00, 0x03, 0x00, 0x5d, 0xa0, 0x02, 0x00, 0x80,
    0x30, 0x16, 0x59, 0x59, 0xa4, 0x93, 0x2b, 0xc0, 0x5a, 0x02, 0x00,
    0x00, 0x03, 0x00, 0x02, 0x00, 0x00, 0x03, 0x00, 0x3c, 0x10};

TEST(H265, ExtractHVCCExtraData)
{
  RefPtr<MediaRawData> rawData{GetHVCCSample(sSps, ArrayLength(sSps))};
  RefPtr<MediaByteBuffer> extradata = H265::ExtractHVCCExtraData(rawData);
  EXPECT_TRUE(extradata);
  auto rv = HVCCConfig::Parse(extradata);
  EXPECT_TRUE(rv.isOk());
  auto hvcc = rv.unwrap();
  EXPECT_EQ(hvcc.mNALUs.Length(), 1u);
  EXPECT_EQ(hvcc.mNALUs[0].mNalUnitType, H265NALU::NAL_TYPES::SPS_NUT);
  EXPECT_EQ(hvcc.mNALUs[0].mNuhLayerId, 0u);
  EXPECT_EQ(hvcc.mNALUs[0].mNuhTemporalIdPlus1, 1);
  EXPECT_EQ(hvcc.mNALUs[0].IsSPS(), true);
  EXPECT_EQ(hvcc.mNALUs[0].mNALU.Length(), 43u);
}

TEST(H265, DecodeSPSFromSPSNALU)
{
  H265NALU nalu{sSps, ArrayLength(sSps)};
  auto rv = H265::DecodeSPSFromSPSNALU(nalu);
  EXPECT_TRUE(rv.isOk());
  auto sps = rv.unwrap();
  // Examine the value by using HEVCESBrowser.
  EXPECT_EQ(sps.sps_video_parameter_set_id, 0u);
  EXPECT_EQ(sps.sps_max_sub_layers_minus1, 0u);
  EXPECT_EQ(sps.sps_temporal_id_nesting_flag, 1);
  EXPECT_EQ(sps.profile_tier_level.general_profile_space, 0u);
  EXPECT_EQ(sps.profile_tier_level.general_tier_flag, false);
  EXPECT_EQ(sps.profile_tier_level.general_profile_idc, 1u);
  EXPECT_EQ(sps.profile_tier_level.general_profile_compatibility_flags,
            0x60000000u);
  EXPECT_EQ(sps.profile_tier_level.general_progressive_source_flag, true);
  EXPECT_EQ(sps.profile_tier_level.general_interlaced_source_flag, false);
  EXPECT_EQ(sps.profile_tier_level.general_non_packed_constraint_flag, false);
  EXPECT_EQ(sps.profile_tier_level.general_frame_only_constraint_flag, true);
  EXPECT_EQ(sps.profile_tier_level.general_level_idc, 93u);
  EXPECT_EQ(sps.sps_seq_parameter_set_id, 0u);
  EXPECT_EQ(sps.chroma_format_idc, 1u);
  EXPECT_EQ(sps.separate_colour_plane_flag, false);
  EXPECT_EQ(sps.pic_width_in_luma_samples, 1024u);
  EXPECT_EQ(sps.pic_height_in_luma_samples, 768u);
  EXPECT_EQ(sps.conformance_window_flag, false);
  EXPECT_EQ(sps.bit_depth_luma_minus8, 0u);
  EXPECT_EQ(sps.bit_depth_chroma_minus8, 0u);
  EXPECT_EQ(sps.log2_max_pic_order_cnt_lsb_minus4, 4u);
  EXPECT_EQ(sps.sps_sub_layer_ordering_info_present_flag, true);
  EXPECT_EQ(sps.sps_max_dec_pic_buffering_minus1[0], 4u);
  EXPECT_EQ(sps.sps_max_num_reorder_pics[0], 2u);
  EXPECT_EQ(sps.sps_max_latency_increase_plus1[0], 5u);
  EXPECT_EQ(sps.log2_min_luma_coding_block_size_minus3, 0u);
  EXPECT_EQ(sps.log2_diff_max_min_luma_coding_block_size, 3u);
  EXPECT_EQ(sps.log2_min_luma_transform_block_size_minus2, 0u);
  EXPECT_EQ(sps.log2_diff_max_min_luma_transform_block_size, 3u);
  EXPECT_EQ(sps.max_transform_hierarchy_depth_inter, 0u);
  EXPECT_EQ(sps.max_transform_hierarchy_depth_inter, 0u);
  EXPECT_EQ(sps.pcm_enabled_flag, false);
  EXPECT_EQ(sps.num_short_term_ref_pic_sets, 0u);
  EXPECT_EQ(sps.sps_temporal_mvp_enabled_flag, true);
  EXPECT_EQ(sps.strong_intra_smoothing_enabled_flag, true);
  EXPECT_TRUE(sps.vui_parameters);
  EXPECT_EQ(sps.vui_parameters->video_full_range_flag, false);

  // Test public methods
  EXPECT_EQ(sps.BitDepthLuma(), 8u);
  EXPECT_EQ(sps.BitDepthChroma(), 8u);
  const auto imgSize = sps.GetImageSize();
  EXPECT_EQ(imgSize.Width(), 1024);
  EXPECT_EQ(imgSize.Height(), 768);
  const auto disSize = sps.GetDisplaySize();
  EXPECT_EQ(disSize, imgSize);
  EXPECT_EQ(sps.ColorDepth(), gfx::ColorDepth::COLOR_8);
  EXPECT_EQ(sps.ColorSpace(), gfx::YUVColorSpace::BT709);
  EXPECT_EQ(sps.IsFullColorRange(), false);
  EXPECT_EQ(sps.ColorPrimaries(), 2u);
  EXPECT_EQ(sps.TransferFunction(), 2u);
}

}  // namespace mozilla