1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef FFTBlock_h_
#define FFTBlock_h_
#include "AlignedTArray.h"
#include "AudioNodeEngine.h"
#include "FFVPXRuntimeLinker.h"
#include "ffvpx/tx.h"
namespace mozilla {
// This class defines an FFT block, loosely modeled after Blink's FFTFrame
// class to make sharing code with Blink easy.
class FFTBlock final {
union ComplexU {
float f[2];
struct {
float r;
float i;
};
};
public:
static void MainThreadInit() {
FFVPXRuntimeLinker::Init();
if (!sFFTFuncs.init) {
FFVPXRuntimeLinker::GetFFTFuncs(&sFFTFuncs);
}
}
explicit FFTBlock(uint32_t aFFTSize, float aInverseScaling = 1.0f)
: mInverseScaling(aInverseScaling) {
MOZ_COUNT_CTOR(FFTBlock);
SetFFTSize(aFFTSize);
}
~FFTBlock() {
MOZ_COUNT_DTOR(FFTBlock);
Clear();
}
// Return a new FFTBlock with frequency components interpolated between
// |block0| and |block1| with |interp| between 0.0 and 1.0.
static FFTBlock* CreateInterpolatedBlock(const FFTBlock& block0,
const FFTBlock& block1,
double interp);
// Transform FFTSize() points of aData and store the result internally.
void PerformFFT(const float* aData) {
if (!EnsureFFT()) {
return;
}
mFn(mTxCtx, mOutputBuffer.Elements()->f, const_cast<float*>(aData),
2 * sizeof(float));
#ifdef DEBUG
mInversePerformed = false;
#endif
}
// Inverse-transform internal frequency data and store the resulting
// FFTSize() points in |aDataOut|. If frequency data has not already been
// scaled, then the output will need scaling by 1/FFTSize().
void GetInverse(float* aDataOut) {
if (!EnsureIFFT()) {
std::fill_n(aDataOut, mFFTSize, 0.0f);
return;
};
// When performing an inverse transform, tx overwrites the input. This
// asserts that forward / inverse transforms are interleaved to avoid having
// to keep the input around.
MOZ_ASSERT(!mInversePerformed);
mIFn(mITxCtx, aDataOut, mOutputBuffer.Elements()->f, 2 * sizeof(float));
#ifdef DEBUG
mInversePerformed = true;
#endif
}
void Multiply(const FFTBlock& aFrame) {
MOZ_ASSERT(!mInversePerformed);
uint32_t halfSize = mFFTSize / 2;
// DFTs are not packed.
MOZ_ASSERT(mOutputBuffer[0].i == 0);
MOZ_ASSERT(aFrame.mOutputBuffer[0].i == 0);
BufferComplexMultiply(mOutputBuffer.Elements()->f,
aFrame.mOutputBuffer.Elements()->f,
mOutputBuffer.Elements()->f, halfSize);
mOutputBuffer[halfSize].r *= aFrame.mOutputBuffer[halfSize].r;
// This would have been set to NaN if either real component was NaN.
mOutputBuffer[0].i = 0.0f;
}
// Perform a forward FFT on |aData|, assuming zeros after dataSize samples,
// and pre-scale the generated internal frequency domain coefficients so
// that GetInverseWithoutScaling() can be used to transform to the time
// domain. This is useful for convolution kernels.
void PadAndMakeScaledDFT(const float* aData, size_t dataSize) {
MOZ_ASSERT(dataSize <= FFTSize());
AlignedTArray<float> paddedData;
paddedData.SetLength(FFTSize());
AudioBufferCopyWithScale(aData, 1.0f / AssertedCast<float>(FFTSize()),
paddedData.Elements(), dataSize);
PodZero(paddedData.Elements() + dataSize, mFFTSize - dataSize);
PerformFFT(paddedData.Elements());
}
// aSize must be a power of 2
void SetFFTSize(uint32_t aSize) {
MOZ_ASSERT(CountPopulation32(aSize) == 1);
mFFTSize = aSize;
mOutputBuffer.SetLength(aSize / 2 + 1);
PodZero(mOutputBuffer.Elements(), aSize / 2 + 1);
Clear();
}
// Return the average group delay and removes this from the frequency data.
double ExtractAverageGroupDelay();
uint32_t FFTSize() const { return mFFTSize; }
float RealData(uint32_t aIndex) const {
MOZ_ASSERT(!mInversePerformed);
return mOutputBuffer[aIndex].r;
}
float& RealData(uint32_t aIndex) {
MOZ_ASSERT(!mInversePerformed);
return mOutputBuffer[aIndex].r;
}
float ImagData(uint32_t aIndex) const {
MOZ_ASSERT(!mInversePerformed);
return mOutputBuffer[aIndex].i;
}
float& ImagData(uint32_t aIndex) {
MOZ_ASSERT(!mInversePerformed);
return mOutputBuffer[aIndex].i;
}
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
size_t amount = 0;
// malloc_usable_size can't be used here because the pointer isn't
// necessarily from malloc. This value has been manually checked.
if (mTxCtx) {
amount += 711;
}
if (mTxCtx) {
amount += 711;
}
amount += mOutputBuffer.ShallowSizeOfExcludingThis(aMallocSizeOf);
return amount;
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
FFTBlock(const FFTBlock& other) = delete;
void operator=(const FFTBlock& other) = delete;
private:
bool EnsureFFT() {
if (!mTxCtx) {
if (!sFFTFuncs.init) {
return false;
}
// Forward transform is always unscaled for our purpose.
float scale = 1.0f;
int rv = sFFTFuncs.init(&mTxCtx, &mFn, AV_TX_FLOAT_RDFT, 0 /* forward */,
AssertedCast<int>(mFFTSize), &scale, 0);
MOZ_ASSERT(!rv, "av_tx_init: invalid parameters (forward)");
return !rv;
}
return true;
}
bool EnsureIFFT() {
if (!mITxCtx) {
if (!sFFTFuncs.init) {
return false;
}
int rv =
sFFTFuncs.init(&mITxCtx, &mIFn, AV_TX_FLOAT_RDFT, 1 /* inverse */,
AssertedCast<int>(mFFTSize), &mInverseScaling, 0);
MOZ_ASSERT(!rv, "av_tx_init: invalid parameters (inverse)");
return !rv;
}
return true;
}
void Clear() {
if (mTxCtx) {
sFFTFuncs.uninit(&mTxCtx);
mTxCtx = nullptr;
mFn = nullptr;
}
if (mITxCtx) {
sFFTFuncs.uninit(&mITxCtx);
mITxCtx = nullptr;
mIFn = nullptr;
}
}
void AddConstantGroupDelay(double sampleFrameDelay);
void InterpolateFrequencyComponents(const FFTBlock& block0,
const FFTBlock& block1, double interp);
static FFmpegFFTFuncs sFFTFuncs;
// Context and function pointer for forward transform
AVTXContext* mTxCtx{};
av_tx_fn mFn{};
// Context and function pointer for inverse transform
AVTXContext* mITxCtx{};
av_tx_fn mIFn{};
AlignedTArray<ComplexU> mOutputBuffer;
uint32_t mFFTSize{};
// A scaling that is performed when doing an inverse transform. The forward
// transform is always unscaled.
float mInverseScaling;
#ifdef DEBUG
bool mInversePerformed = false;
#endif
};
} // namespace mozilla
#endif
|