1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "HRTFPanner.h"
#include "HRTFDatabaseLoader.h"
#include "FFTConvolver.h"
#include "HRTFDatabase.h"
#include "AudioBlock.h"
using namespace mozilla;
using dom::ChannelInterpretation;
namespace WebCore {
// The value of 2 milliseconds is larger than the largest delay which exists in
// any HRTFKernel from the default HRTFDatabase (0.0136 seconds). We ASSERT the
// delay values used in process() with this value.
const float MaxDelayTimeSeconds = 0.002f;
const int UninitializedAzimuth = -1;
HRTFPanner::HRTFPanner(float sampleRate,
already_AddRefed<HRTFDatabaseLoader> databaseLoader)
: m_databaseLoader(databaseLoader),
m_sampleRate(sampleRate),
m_crossfadeSelection(CrossfadeSelection1),
m_azimuthIndex1(UninitializedAzimuth),
m_azimuthIndex2(UninitializedAzimuth)
// m_elevation1 and m_elevation2 are initialized in pan()
,
m_crossfadeX(0),
m_crossfadeIncr(0),
m_convolverL1(HRTFElevation::fftSizeForSampleRate(sampleRate)),
m_convolverR1(m_convolverL1.fftSize()),
m_convolverL2(m_convolverL1.fftSize()),
m_convolverR2(m_convolverL1.fftSize()),
m_delayLine(MaxDelayTimeSeconds * sampleRate) {
MOZ_ASSERT(m_databaseLoader);
MOZ_COUNT_CTOR(HRTFPanner);
}
HRTFPanner::~HRTFPanner() { MOZ_COUNT_DTOR(HRTFPanner); }
size_t HRTFPanner::sizeOfIncludingThis(
mozilla::MallocSizeOf aMallocSizeOf) const {
size_t amount = aMallocSizeOf(this);
// NB: m_databaseLoader can be shared, so it is not measured here
amount += m_convolverL1.sizeOfExcludingThis(aMallocSizeOf);
amount += m_convolverR1.sizeOfExcludingThis(aMallocSizeOf);
amount += m_convolverL2.sizeOfExcludingThis(aMallocSizeOf);
amount += m_convolverR2.sizeOfExcludingThis(aMallocSizeOf);
amount += m_delayLine.SizeOfExcludingThis(aMallocSizeOf);
return amount;
}
void HRTFPanner::reset() {
m_azimuthIndex1 = UninitializedAzimuth;
m_azimuthIndex2 = UninitializedAzimuth;
// m_elevation1 and m_elevation2 are initialized in pan()
m_crossfadeSelection = CrossfadeSelection1;
m_crossfadeX = 0.0f;
m_crossfadeIncr = 0.0f;
m_convolverL1.reset();
m_convolverR1.reset();
m_convolverL2.reset();
m_convolverR2.reset();
m_delayLine.Reset();
}
int HRTFPanner::calculateDesiredAzimuthIndexAndBlend(double azimuth,
double& azimuthBlend) {
// Convert the azimuth angle from the range -180 -> +180 into the range 0 ->
// 360. The azimuth index may then be calculated from this positive value.
if (azimuth < 0) azimuth += 360.0;
int numberOfAzimuths = HRTFDatabase::numberOfAzimuths();
const double angleBetweenAzimuths = 360.0 / numberOfAzimuths;
// Calculate the azimuth index and the blend (0 -> 1) for interpolation.
double desiredAzimuthIndexFloat = azimuth / angleBetweenAzimuths;
int desiredAzimuthIndex = static_cast<int>(desiredAzimuthIndexFloat);
azimuthBlend =
desiredAzimuthIndexFloat - static_cast<double>(desiredAzimuthIndex);
// We don't immediately start using this azimuth index, but instead approach
// this index from the last index we rendered at. This minimizes the clicks
// and graininess for moving sources which occur otherwise.
desiredAzimuthIndex = std::max(0, desiredAzimuthIndex);
desiredAzimuthIndex = std::min(numberOfAzimuths - 1, desiredAzimuthIndex);
return desiredAzimuthIndex;
}
void HRTFPanner::pan(double desiredAzimuth, double elevation,
const AudioBlock* inputBus, AudioBlock* outputBus) {
#ifdef DEBUG
unsigned numInputChannels = inputBus->IsNull() ? 0 : inputBus->ChannelCount();
MOZ_ASSERT(numInputChannels <= 2);
MOZ_ASSERT(inputBus->GetDuration() == WEBAUDIO_BLOCK_SIZE);
#endif
bool isOutputGood = outputBus && outputBus->ChannelCount() == 2 &&
outputBus->GetDuration() == WEBAUDIO_BLOCK_SIZE;
MOZ_ASSERT(isOutputGood);
if (!isOutputGood) {
if (outputBus) outputBus->SetNull(outputBus->GetDuration());
return;
}
HRTFDatabase* database = m_databaseLoader->database();
if (!database) { // not yet loaded
outputBus->SetNull(outputBus->GetDuration());
return;
}
// IRCAM HRTF azimuths values from the loaded database is reversed from the
// panner's notion of azimuth.
double azimuth = -desiredAzimuth;
bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0;
MOZ_ASSERT(isAzimuthGood);
if (!isAzimuthGood) {
outputBus->SetNull(outputBus->GetDuration());
return;
}
// Normally, we'll just be dealing with mono sources.
// If we have a stereo input, implement stereo panning with left source
// processed by left HRTF, and right source by right HRTF.
// Get destination pointers.
float* destinationL =
static_cast<float*>(const_cast<void*>(outputBus->mChannelData[0]));
float* destinationR =
static_cast<float*>(const_cast<void*>(outputBus->mChannelData[1]));
double azimuthBlend;
int desiredAzimuthIndex =
calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend);
// Initially snap azimuth and elevation values to first values encountered.
if (m_azimuthIndex1 == UninitializedAzimuth) {
m_azimuthIndex1 = desiredAzimuthIndex;
m_elevation1 = elevation;
}
if (m_azimuthIndex2 == UninitializedAzimuth) {
m_azimuthIndex2 = desiredAzimuthIndex;
m_elevation2 = elevation;
}
// Cross-fade / transition over a period of around 45 milliseconds.
// This is an empirical value tuned to be a reasonable trade-off between
// smoothness and speed.
const double fadeFrames = sampleRate() <= 48000 ? 2048 : 4096;
// Check for azimuth and elevation changes, initiating a cross-fade if needed.
if (!m_crossfadeX && m_crossfadeSelection == CrossfadeSelection1) {
if (desiredAzimuthIndex != m_azimuthIndex1 || elevation != m_elevation1) {
// Cross-fade from 1 -> 2
m_crossfadeIncr = 1 / fadeFrames;
m_azimuthIndex2 = desiredAzimuthIndex;
m_elevation2 = elevation;
}
}
if (m_crossfadeX == 1 && m_crossfadeSelection == CrossfadeSelection2) {
if (desiredAzimuthIndex != m_azimuthIndex2 || elevation != m_elevation2) {
// Cross-fade from 2 -> 1
m_crossfadeIncr = -1 / fadeFrames;
m_azimuthIndex1 = desiredAzimuthIndex;
m_elevation1 = elevation;
}
}
// Get the HRTFKernels and interpolated delays.
HRTFKernel* kernelL1;
HRTFKernel* kernelR1;
HRTFKernel* kernelL2;
HRTFKernel* kernelR2;
double frameDelayL1;
double frameDelayR1;
double frameDelayL2;
double frameDelayR2;
database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex1,
m_elevation1, kernelL1, kernelR1,
frameDelayL1, frameDelayR1);
database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex2,
m_elevation2, kernelL2, kernelR2,
frameDelayL2, frameDelayR2);
bool areKernelsGood = kernelL1 && kernelR1 && kernelL2 && kernelR2;
MOZ_ASSERT(areKernelsGood);
if (!areKernelsGood) {
outputBus->SetNull(outputBus->GetDuration());
return;
}
MOZ_ASSERT(frameDelayL1 / sampleRate() < MaxDelayTimeSeconds &&
frameDelayR1 / sampleRate() < MaxDelayTimeSeconds);
MOZ_ASSERT(frameDelayL2 / sampleRate() < MaxDelayTimeSeconds &&
frameDelayR2 / sampleRate() < MaxDelayTimeSeconds);
// Crossfade inter-aural delays based on transitions.
float frameDelaysL[WEBAUDIO_BLOCK_SIZE];
float frameDelaysR[WEBAUDIO_BLOCK_SIZE];
{
float x = m_crossfadeX;
float incr = m_crossfadeIncr;
for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
frameDelaysL[i] = (1 - x) * frameDelayL1 + x * frameDelayL2;
frameDelaysR[i] = (1 - x) * frameDelayR1 + x * frameDelayR2;
x += incr;
}
}
// First run through delay lines for inter-aural time difference.
m_delayLine.Write(*inputBus);
// "Speakers" means a mono input is read into both outputs (with possibly
// different delays).
m_delayLine.ReadChannel(frameDelaysL, outputBus, 0,
ChannelInterpretation::Speakers);
m_delayLine.ReadChannel(frameDelaysR, outputBus, 1,
ChannelInterpretation::Speakers);
m_delayLine.NextBlock();
bool needsCrossfading = m_crossfadeIncr;
const float* convolutionDestinationL1;
const float* convolutionDestinationR1;
const float* convolutionDestinationL2;
const float* convolutionDestinationR2;
// Now do the convolutions.
// Note that we avoid doing convolutions on both sets of convolvers if we're
// not currently cross-fading.
if (m_crossfadeSelection == CrossfadeSelection1 || needsCrossfading) {
convolutionDestinationL1 =
m_convolverL1.process(kernelL1->fftFrame(), destinationL);
convolutionDestinationR1 =
m_convolverR1.process(kernelR1->fftFrame(), destinationR);
}
if (m_crossfadeSelection == CrossfadeSelection2 || needsCrossfading) {
convolutionDestinationL2 =
m_convolverL2.process(kernelL2->fftFrame(), destinationL);
convolutionDestinationR2 =
m_convolverR2.process(kernelR2->fftFrame(), destinationR);
}
if (needsCrossfading) {
// Apply linear cross-fade.
float x = m_crossfadeX;
float incr = m_crossfadeIncr;
for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
destinationL[i] = (1 - x) * convolutionDestinationL1[i] +
x * convolutionDestinationL2[i];
destinationR[i] = (1 - x) * convolutionDestinationR1[i] +
x * convolutionDestinationR2[i];
x += incr;
}
// Update cross-fade value from local.
m_crossfadeX = x;
if (m_crossfadeIncr > 0 && fabs(m_crossfadeX - 1) < m_crossfadeIncr) {
// We've fully made the crossfade transition from 1 -> 2.
m_crossfadeSelection = CrossfadeSelection2;
m_crossfadeX = 1;
m_crossfadeIncr = 0;
} else if (m_crossfadeIncr < 0 && fabs(m_crossfadeX) < -m_crossfadeIncr) {
// We've fully made the crossfade transition from 2 -> 1.
m_crossfadeSelection = CrossfadeSelection1;
m_crossfadeX = 0;
m_crossfadeIncr = 0;
}
} else {
const float* sourceL;
const float* sourceR;
if (m_crossfadeSelection == CrossfadeSelection1) {
sourceL = convolutionDestinationL1;
sourceR = convolutionDestinationR1;
} else {
sourceL = convolutionDestinationL2;
sourceR = convolutionDestinationR2;
}
PodCopy(destinationL, sourceL, WEBAUDIO_BLOCK_SIZE);
PodCopy(destinationR, sourceR, WEBAUDIO_BLOCK_SIZE);
}
}
int HRTFPanner::maxTailFrames() const {
// Although the ideal tail time would be the length of the impulse
// response, there is additional tail time from the approximations in the
// implementation. Because HRTFPanner is implemented with a DelayKernel
// and a FFTConvolver, the tailTime of the HRTFPanner is the sum of the
// tailTime of the DelayKernel and the tailTime of the FFTConvolver. The
// FFTs of the convolver are fftSize(), half of which is latency, but this
// is aligned with blocks and so is reduced by the one block which is
// processed immediately.
return m_delayLine.MaxDelayTicks() + m_convolverL1.fftSize() / 2 +
m_convolverL1.latencyFrames();
}
} // namespace WebCore
|