1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
<!DOCTYPE html>
<html>
<head>
<title>Test the decodeAudioData API and Resampling</title>
<script src="/tests/SimpleTest/SimpleTest.js"></script>
<link rel="stylesheet" type="text/css" href="/tests/SimpleTest/test.css" />
</head>
<body>
<pre id="test">
<script src="webaudio.js" type="text/javascript"></script>
<script type="text/javascript">
// These routines have been copied verbatim from WebKit, and are used in order
// to convert a memory buffer into a wave buffer.
function writeString(s, a, offset) {
for (var i = 0; i < s.length; ++i) {
a[offset + i] = s.charCodeAt(i);
}
}
function writeInt16(n, a, offset) {
n = Math.floor(n);
var b1 = n & 255;
var b2 = (n >> 8) & 255;
a[offset + 0] = b1;
a[offset + 1] = b2;
}
function writeInt32(n, a, offset) {
n = Math.floor(n);
var b1 = n & 255;
var b2 = (n >> 8) & 255;
var b3 = (n >> 16) & 255;
var b4 = (n >> 24) & 255;
a[offset + 0] = b1;
a[offset + 1] = b2;
a[offset + 2] = b3;
a[offset + 3] = b4;
}
function writeAudioBuffer(audioBuffer, a, offset) {
var n = audioBuffer.length;
var channels = audioBuffer.numberOfChannels;
for (var i = 0; i < n; ++i) {
for (var k = 0; k < channels; ++k) {
var buffer = audioBuffer.getChannelData(k);
var sample = buffer[i] * 32768.0;
// Clip samples to the limitations of 16-bit.
// If we don't do this then we'll get nasty wrap-around distortion.
if (sample < -32768)
sample = -32768;
if (sample > 32767)
sample = 32767;
writeInt16(sample, a, offset);
offset += 2;
}
}
}
function createWaveFileData(audioBuffer) {
var frameLength = audioBuffer.length;
var numberOfChannels = audioBuffer.numberOfChannels;
var sampleRate = audioBuffer.sampleRate;
var bitsPerSample = 16;
var byteRate = sampleRate * numberOfChannels * bitsPerSample / 8;
var blockAlign = numberOfChannels * bitsPerSample / 8;
var wavDataByteLength = frameLength * numberOfChannels * 2; // 16-bit audio
var headerByteLength = 44;
var totalLength = headerByteLength + wavDataByteLength;
var waveFileData = new Uint8Array(totalLength);
var subChunk1Size = 16; // for linear PCM
var subChunk2Size = wavDataByteLength;
var chunkSize = 4 + (8 + subChunk1Size) + (8 + subChunk2Size);
writeString("RIFF", waveFileData, 0);
writeInt32(chunkSize, waveFileData, 4);
writeString("WAVE", waveFileData, 8);
writeString("fmt ", waveFileData, 12);
writeInt32(subChunk1Size, waveFileData, 16); // SubChunk1Size (4)
writeInt16(1, waveFileData, 20); // AudioFormat (2)
writeInt16(numberOfChannels, waveFileData, 22); // NumChannels (2)
writeInt32(sampleRate, waveFileData, 24); // SampleRate (4)
writeInt32(byteRate, waveFileData, 28); // ByteRate (4)
writeInt16(blockAlign, waveFileData, 32); // BlockAlign (2)
writeInt32(bitsPerSample, waveFileData, 34); // BitsPerSample (4)
writeString("data", waveFileData, 36);
writeInt32(subChunk2Size, waveFileData, 40); // SubChunk2Size (4)
// Write actual audio data starting at offset 44.
writeAudioBuffer(audioBuffer, waveFileData, 44);
return waveFileData;
}
</script>
<script class="testbody" type="text/javascript">
SimpleTest.waitForExplicitFinish();
// fuzzTolerance and fuzzToleranceMobile are used to determine fuzziness
// thresholds. They're needed to make sure that we can deal with neglibible
// differences in the binary buffer caused as a result of resampling the
// audio. fuzzToleranceMobile is typically larger on mobile platforms since
// we do fixed-point resampling as opposed to floating-point resampling on
// those platforms.
// If fuzzMagnitude, is present, is the maximum magnitude difference, per
// sample, to consider two samples are identical. It is multiplied by the
// maximum value a sample, in our case INT16_MAX. This allows checking files
// that should be identical except one has e.g. a higher quantization noise.
var files = [
// An ogg file, 44.1khz, mono
{
url: "ting-44.1k-1ch.ogg",
valid: true,
expectedUrl: "ting-44.1k-1ch.wav",
numberOfChannels: 1,
frames: 30592,
sampleRate: 44100,
duration: 0.693,
fuzzTolerance: 5,
fuzzToleranceMobile: 1284
},
// An ogg file, 44.1khz, stereo
{
url: "ting-44.1k-2ch.ogg",
valid: true,
expectedUrl: "ting-44.1k-2ch.wav",
numberOfChannels: 2,
frames: 30592,
sampleRate: 44100,
duration: 0.693,
fuzzTolerance: 6,
fuzzToleranceMobile: 2544
},
// An ogg file, 48khz, mono
{
url: "ting-48k-1ch.ogg",
valid: true,
expectedUrl: "ting-48k-1ch.wav",
numberOfChannels: 1,
frames: 33297,
sampleRate: 48000,
duration: 0.693,
fuzzTolerance: 5,
fuzzToleranceMobile: 1388
},
// An ogg file, 48khz, stereo
{
url: "ting-48k-2ch.ogg",
valid: true,
expectedUrl: "ting-48k-2ch.wav",
numberOfChannels: 2,
frames: 33297,
sampleRate: 48000,
duration: 0.693,
fuzzTolerance: 14,
fuzzToleranceMobile: 2752
},
// Make sure decoding a wave file results in the same buffer (for both the
// resampling and non-resampling cases)
{
url: "ting-44.1k-1ch.wav",
valid: true,
expectedUrl: "ting-44.1k-1ch.wav",
numberOfChannels: 1,
frames: 30592,
sampleRate: 44100,
duration: 0.693,
fuzzTolerance: 0,
fuzzToleranceMobile: 0
},
{
url: "ting-48k-1ch.wav",
valid: true,
expectedUrl: "ting-48k-1ch.wav",
numberOfChannels: 1,
frames: 33297,
sampleRate: 48000,
duration: 0.693,
fuzzTolerance: 0,
fuzzToleranceMobile: 0
},
// // A wave file
// //{ url: "24bit-44khz.wav", valid: true, expectedUrl: "24bit-44khz-expected.wav" },
// A non-audio file
{ url: "invalid.txt", valid: false, sampleRate: 44100 },
// A webm file with no audio
{ url: "noaudio.webm", valid: false, sampleRate: 48000 },
{
url: "nil-packet.ogg",
expectedUrl: null,
valid: true,
numberOfChannels: 2,
sampleRate: 48000,
frames: 18600,
duration: 0.3874,
},
{
url: "half-a-second-1ch-44100-mulaw.wav",
// It is expected that mulaw and linear are similar enough at 16-bits
expectedUrl: "half-a-second-1ch-44100.wav",
valid: true,
numberOfChannels: 1,
sampleRate: 44100,
frames: 22050,
duration: 0.5,
fuzzMagnitude: 0.04,
},
{
url: "half-a-second-1ch-44100-alaw.wav",
// It is expected that alaw and linear are similar enough at 16-bits
expectedUrl: "half-a-second-1ch-44100.wav",
valid: true,
numberOfChannels: 1,
sampleRate: 44100,
frames: 22050,
duration: 0.5,
fuzzMagnitude: 0.04,
},
{
url: "waveformatextensible.wav",
valid: true,
numberOfChannels: 1,
sampleRate: 44100,
frames: 472,
duration: 0.01
},
{
// A wav file that has 8 channel, but has a channel mask that doesn't
// match the channel count.
url: "waveformatextensiblebadmask.wav",
valid: true,
numberOfChannels: 8,
sampleRate: 8000,
frames: 80,
duration: 0.01
}
];
// Returns true if the memory buffers are less different that |fuzz| bytes
function fuzzyMemcmp(buf1, buf2, fuzz) {
var difference = 0;
is(buf1.length, buf2.length, "same length");
for (var i = 0; i < buf1.length; ++i) {
if (Math.abs(buf1[i] - buf2[i]) > fuzz.magnitude * (2 << 15)) {
++difference;
}
}
if (difference > fuzz.count) {
ok(false, "Expected at most " + fuzz + " bytes difference, found " + difference + " bytes");
}
console.log(difference, fuzz.count);
return difference <= fuzz.count;
}
function getFuzzTolerance(test) {
var kIsMobile =
navigator.userAgent.includes("Mobile") || // b2g
navigator.userAgent.includes("Android"); // android
return {
magnitude: test.fuzzMagnitude ?? 0,
count: kIsMobile ? test.fuzzToleranceMobile ?? 0 : test.fuzzTolerance ?? 0
};
}
function bufferIsSilent(buffer) {
for (var i = 0; i < buffer.length; ++i) {
if (buffer.getChannelData(0)[i] != 0) {
return false;
}
}
return true;
}
function checkAudioBuffer(buffer, test) {
if (buffer.numberOfChannels != test.numberOfChannels) {
is(buffer.numberOfChannels, test.numberOfChannels, "Correct number of channels");
return;
}
ok(Math.abs(buffer.duration - test.duration) < 1e-3, `Correct duration expected ${test.duration} got ${buffer.duration}`);
if (Math.abs(buffer.duration - test.duration) >= 1e-3) {
ok(false, "got: " + buffer.duration + ", expected: " + test.duration);
}
is(buffer.sampleRate, test.sampleRate, "Correct sample rate");
is(buffer.length, test.frames, "Correct length");
var wave = createWaveFileData(buffer);
if (test.expectedWaveData) {
ok(fuzzyMemcmp(wave, test.expectedWaveData, getFuzzTolerance(test)), "Received expected decoded data for " + test.url);
}
}
function checkResampledBuffer(buffer, test, callback) {
if (buffer.numberOfChannels != test.numberOfChannels) {
is(buffer.numberOfChannels, test.numberOfChannels, "Correct number of channels");
return;
}
ok(Math.abs(buffer.duration - test.duration) < 1e-3, "Correct duration");
if (Math.abs(buffer.duration - test.duration) >= 1e-3) {
ok(false, "got: " + buffer.duration + ", expected: " + test.duration);
}
// Take into account the resampling when checking the size
var expectedLength = test.frames * buffer.sampleRate / test.sampleRate;
SimpleTest.ok(
Math.abs(buffer.length - expectedLength) < 1.0,
"Correct length - got " + buffer.length +
", expected about " + expectedLength
);
// Playback the buffer in the original context, to resample back to the
// original rate and compare with the decoded buffer without resampling.
let cx = test.nativeContext;
var expected = cx.createBufferSource();
expected.buffer = test.expectedBuffer;
expected.start();
var inverse = cx.createGain();
inverse.gain.value = -1;
expected.connect(inverse);
inverse.connect(cx.destination);
var resampled = cx.createBufferSource();
resampled.buffer = buffer;
resampled.start();
// This stop should do nothing, but it tests for bug 937475
resampled.stop(test.frames / cx.sampleRate);
resampled.connect(cx.destination);
cx.oncomplete = function (e) {
ok(!bufferIsSilent(e.renderedBuffer), "Expect buffer not silent");
// Resampling will lose the highest frequency components, so we should
// pass the difference through a low pass filter. However, either the
// input files don't have significant high frequency components or the
// tolerance in compareBuffers() is too high to detect them.
compareBuffers(e.renderedBuffer,
cx.createBuffer(test.numberOfChannels,
test.frames, test.sampleRate));
callback();
}
cx.startRendering();
}
function runResampling(test, response, callback) {
var sampleRate = test.sampleRate == 44100 ? 48000 : 44100;
var cx = new OfflineAudioContext(1, 1, sampleRate);
cx.decodeAudioData(response, function onSuccess(asyncResult) {
is(asyncResult.sampleRate, sampleRate, "Correct sample rate");
checkResampledBuffer(asyncResult, test, callback);
}, function onFailure() {
ok(false, "Expected successful decode with resample");
callback();
});
}
function runTest(test, response, callback) {
// We need to copy the array here, because decodeAudioData will detach the
// array's buffer.
var compressedAudio = response.slice(0);
var expectCallback = false;
var cx = new OfflineAudioContext(test.numberOfChannels || 1,
test.frames || 1, test.sampleRate);
cx.decodeAudioData(response, function onSuccess(asyncResult) {
ok(expectCallback, "Success callback should fire asynchronously");
ok(test.valid, "Did expect success for test " + test.url);
checkAudioBuffer(asyncResult, test);
test.expectedBuffer = asyncResult;
test.nativeContext = cx;
runResampling(test, compressedAudio, callback);
}, function onFailure(e) {
ok(e instanceof DOMException, "We want to see an exception here");
is(e.name, "EncodingError", "Exception name matches");
ok(expectCallback, "Failure callback should fire asynchronously");
ok(!test.valid, "Did expect failure for test " + test.url);
callback();
});
expectCallback = true;
}
function loadTest(test, callback) {
var xhr = new XMLHttpRequest();
xhr.open("GET", test.url, true);
xhr.responseType = "arraybuffer";
xhr.onload = function () {
if (!test.expectedUrl) {
runTest(test, xhr.response, callback);
return;
}
var getExpected = new XMLHttpRequest();
getExpected.open("GET", test.expectedUrl, true);
getExpected.responseType = "arraybuffer";
getExpected.onload = function () {
test.expectedWaveData = new Uint8Array(getExpected.response);
runTest(test, xhr.response, callback);
};
getExpected.send();
};
xhr.send();
}
function loadNextTest() {
if (files.length) {
loadTest(files.shift(), loadNextTest);
} else {
SimpleTest.finish();
}
}
loadNextTest();
</script>
</pre>
</body>
</html>
|