summaryrefslogtreecommitdiffstats
path: root/gfx/2d/BlurSSE2.cpp
blob: 69a30367baca92fa07f4b9503ef5b2e724acac07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "Blur.h"

#include "SSEHelpers.h"

#include <string.h>

namespace mozilla::gfx {

MOZ_ALWAYS_INLINE
__m128i Divide(__m128i aValues, __m128i aDivisor) {
  const __m128i mask = _mm_setr_epi32(0x0, 0xffffffff, 0x0, 0xffffffff);
  static const union {
    int64_t i64[2];
    __m128i m;
  } roundingAddition = {{int64_t(1) << 31, int64_t(1) << 31}};

  __m128i multiplied31 = _mm_mul_epu32(aValues, aDivisor);
  __m128i multiplied42 = _mm_mul_epu32(_mm_srli_epi64(aValues, 32), aDivisor);

  // Add 1 << 31 before shifting or masking the lower 32 bits away, so that the
  // result is rounded.
  __m128i p_3_1 =
      _mm_srli_epi64(_mm_add_epi64(multiplied31, roundingAddition.m), 32);
  __m128i p4_2_ =
      _mm_and_si128(_mm_add_epi64(multiplied42, roundingAddition.m), mask);
  __m128i p4321 = _mm_or_si128(p_3_1, p4_2_);
  return p4321;
}

MOZ_ALWAYS_INLINE
__m128i BlurFourPixels(const __m128i& aTopLeft, const __m128i& aTopRight,
                       const __m128i& aBottomRight, const __m128i& aBottomLeft,
                       const __m128i& aDivisor) {
  __m128i values = _mm_add_epi32(
      _mm_sub_epi32(_mm_sub_epi32(aBottomRight, aTopRight), aBottomLeft),
      aTopLeft);
  return Divide(values, aDivisor);
}

MOZ_ALWAYS_INLINE
void LoadIntegralRowFromRow(uint32_t* aDest, const uint8_t* aSource,
                            int32_t aSourceWidth, int32_t aLeftInflation,
                            int32_t aRightInflation) {
  int32_t currentRowSum = 0;

  for (int x = 0; x < aLeftInflation; x++) {
    currentRowSum += aSource[0];
    aDest[x] = currentRowSum;
  }
  for (int x = aLeftInflation; x < (aSourceWidth + aLeftInflation); x++) {
    currentRowSum += aSource[(x - aLeftInflation)];
    aDest[x] = currentRowSum;
  }
  for (int x = (aSourceWidth + aLeftInflation);
       x < (aSourceWidth + aLeftInflation + aRightInflation); x++) {
    currentRowSum += aSource[aSourceWidth - 1];
    aDest[x] = currentRowSum;
  }
}

// This function calculates an integral of four pixels stored in the 4
// 32-bit integers on aPixels. i.e. for { 30, 50, 80, 100 } this returns
// { 30, 80, 160, 260 }. This seems to be the fastest way to do this after
// much testing.
MOZ_ALWAYS_INLINE
__m128i AccumulatePixelSums(__m128i aPixels) {
  __m128i sumPixels = aPixels;
  __m128i currentPixels = _mm_slli_si128(aPixels, 4);
  sumPixels = _mm_add_epi32(sumPixels, currentPixels);
  currentPixels = _mm_unpacklo_epi64(_mm_setzero_si128(), sumPixels);

  return _mm_add_epi32(sumPixels, currentPixels);
}

MOZ_ALWAYS_INLINE void GenerateIntegralImage_SSE2(
    int32_t aLeftInflation, int32_t aRightInflation, int32_t aTopInflation,
    int32_t aBottomInflation, uint32_t* aIntegralImage,
    size_t aIntegralImageStride, uint8_t* aSource, int32_t aSourceStride,
    const IntSize& aSize) {
  MOZ_ASSERT(!(aLeftInflation & 3));

  uint32_t stride32bit = aIntegralImageStride / 4;

  IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation,
                            aSize.height + aTopInflation + aBottomInflation);

  LoadIntegralRowFromRow(aIntegralImage, aSource, aSize.width, aLeftInflation,
                         aRightInflation);

  for (int y = 1; y < aTopInflation + 1; y++) {
    uint32_t* intRow = aIntegralImage + (y * stride32bit);
    uint32_t* intPrevRow = aIntegralImage + (y - 1) * stride32bit;
    uint32_t* intFirstRow = aIntegralImage;

    for (int x = 0; x < integralImageSize.width; x += 4) {
      __m128i firstRow = _mm_load_si128((__m128i*)(intFirstRow + x));
      __m128i previousRow = _mm_load_si128((__m128i*)(intPrevRow + x));
      _mm_store_si128((__m128i*)(intRow + x),
                      _mm_add_epi32(firstRow, previousRow));
    }
  }

  for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) {
    __m128i currentRowSum = _mm_setzero_si128();
    uint32_t* intRow = aIntegralImage + (y * stride32bit);
    uint32_t* intPrevRow = aIntegralImage + (y - 1) * stride32bit;
    uint8_t* sourceRow = aSource + aSourceStride * (y - aTopInflation);

    uint32_t pixel = sourceRow[0];
    for (int x = 0; x < aLeftInflation; x += 4) {
      __m128i sumPixels = AccumulatePixelSums(
          _mm_shuffle_epi32(_mm_set1_epi32(pixel), _MM_SHUFFLE(0, 0, 0, 0)));

      sumPixels = _mm_add_epi32(sumPixels, currentRowSum);

      currentRowSum = _mm_shuffle_epi32(sumPixels, _MM_SHUFFLE(3, 3, 3, 3));

      _mm_store_si128(
          (__m128i*)(intRow + x),
          _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
    }
    for (int x = aLeftInflation; x < (aSize.width + aLeftInflation); x += 4) {
      uint32_t pixels = *(uint32_t*)(sourceRow + (x - aLeftInflation));

      // It's important to shuffle here. When we exit this loop currentRowSum
      // has to be set to sumPixels, so that the following loop can get the
      // correct pixel for the currentRowSum. The highest order pixel in
      // currentRowSum could've originated from accumulation in the stride.
      currentRowSum = _mm_shuffle_epi32(currentRowSum, _MM_SHUFFLE(3, 3, 3, 3));

      __m128i sumPixels = AccumulatePixelSums(_mm_unpacklo_epi16(
          _mm_unpacklo_epi8(_mm_set1_epi32(pixels), _mm_setzero_si128()),
          _mm_setzero_si128()));
      sumPixels = _mm_add_epi32(sumPixels, currentRowSum);

      currentRowSum = sumPixels;

      _mm_store_si128(
          (__m128i*)(intRow + x),
          _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
    }

    pixel = sourceRow[aSize.width - 1];
    int x = (aSize.width + aLeftInflation);
    if ((aSize.width & 3)) {
      // Deal with unaligned portion. Get the correct pixel from currentRowSum,
      // see explanation above.
      uint32_t intCurrentRowSum =
          ((uint32_t*)&currentRowSum)[(aSize.width % 4) - 1];
      for (; x < integralImageSize.width; x++) {
        // We could be unaligned here!
        if (!(x & 3)) {
          // aligned!
          currentRowSum = _mm_set1_epi32(intCurrentRowSum);
          break;
        }
        intCurrentRowSum += pixel;
        intRow[x] = intPrevRow[x] + intCurrentRowSum;
      }
    } else {
      currentRowSum = _mm_shuffle_epi32(currentRowSum, _MM_SHUFFLE(3, 3, 3, 3));
    }
    for (; x < integralImageSize.width; x += 4) {
      __m128i sumPixels = AccumulatePixelSums(_mm_set1_epi32(pixel));

      sumPixels = _mm_add_epi32(sumPixels, currentRowSum);

      currentRowSum = _mm_shuffle_epi32(sumPixels, _MM_SHUFFLE(3, 3, 3, 3));

      _mm_store_si128(
          (__m128i*)(intRow + x),
          _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
    }
  }

  if (aBottomInflation) {
    // Store the last valid row of our source image in the last row of
    // our integral image. This will be overwritten with the correct values
    // in the upcoming loop.
    LoadIntegralRowFromRow(
        aIntegralImage + (integralImageSize.height - 1) * stride32bit,
        aSource + (aSize.height - 1) * aSourceStride, aSize.width,
        aLeftInflation, aRightInflation);

    for (int y = aSize.height + aTopInflation; y < integralImageSize.height;
         y++) {
      __m128i* intRow = (__m128i*)(aIntegralImage + (y * stride32bit));
      __m128i* intPrevRow = (__m128i*)(aIntegralImage + (y - 1) * stride32bit);
      __m128i* intLastRow =
          (__m128i*)(aIntegralImage +
                     (integralImageSize.height - 1) * stride32bit);

      for (int x = 0; x < integralImageSize.width; x += 4) {
        _mm_store_si128(intRow + (x / 4),
                        _mm_add_epi32(_mm_load_si128(intLastRow + (x / 4)),
                                      _mm_load_si128(intPrevRow + (x / 4))));
      }
    }
  }
}

/**
 * Attempt to do an in-place box blur using an integral image.
 */
void AlphaBoxBlur::BoxBlur_SSE2(uint8_t* aData, int32_t aLeftLobe,
                                int32_t aRightLobe, int32_t aTopLobe,
                                int32_t aBottomLobe, uint32_t* aIntegralImage,
                                size_t aIntegralImageStride) const {
  IntSize size = GetSize();

  MOZ_ASSERT(size.height > 0);

  // Our 'left' or 'top' lobe will include the current pixel. i.e. when
  // looking at an integral image the value of a pixel at 'x,y' is calculated
  // using the value of the integral image values above/below that.
  aLeftLobe++;
  aTopLobe++;
  int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe);

  MOZ_ASSERT(boxSize > 0);

  if (boxSize == 1) {
    return;
  }

  uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);

  uint32_t stride32bit = aIntegralImageStride / 4;
  int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value();

  GenerateIntegralImage_SSE2(leftInflation, aRightLobe, aTopLobe, aBottomLobe,
                             aIntegralImage, aIntegralImageStride, aData,
                             mStride, size);

  __m128i divisor = _mm_set1_epi32(reciprocal);

  // This points to the start of the rectangle within the IntegralImage that
  // overlaps the surface being blurred.
  uint32_t* innerIntegral =
      aIntegralImage + (aTopLobe * stride32bit) + leftInflation;

  IntRect skipRect = mSkipRect;
  int32_t stride = mStride;
  uint8_t* data = aData;
  for (int32_t y = 0; y < size.height; y++) {
    // Not using ContainsY(y) because we do not skip y == skipRect.Y()
    // although that may not be done on purpose
    bool inSkipRectY = y > skipRect.Y() && y < skipRect.YMost();

    uint32_t* topLeftBase =
        innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) - aLeftLobe);
    uint32_t* topRightBase =
        innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) + aRightLobe);
    uint32_t* bottomRightBase =
        innerIntegral +
        ((y + aBottomLobe) * ptrdiff_t(stride32bit) + aRightLobe);
    uint32_t* bottomLeftBase =
        innerIntegral +
        ((y + aBottomLobe) * ptrdiff_t(stride32bit) - aLeftLobe);

    int32_t x = 0;
    // Process 16 pixels at a time for as long as possible.
    for (; x <= size.width - 16; x += 16) {
      // Not using ContainsX(x) because we do not skip x == skipRect.X()
      // although that may not be done on purpose
      if (inSkipRectY && x > skipRect.X() && x < skipRect.XMost()) {
        x = skipRect.XMost() - 16;
        // Trigger early jump on coming loop iterations, this will be reset
        // next line anyway.
        inSkipRectY = false;
        continue;
      }

      __m128i topLeft;
      __m128i topRight;
      __m128i bottomRight;
      __m128i bottomLeft;

      topLeft = loadUnaligned128((__m128i*)(topLeftBase + x));
      topRight = loadUnaligned128((__m128i*)(topRightBase + x));
      bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x));
      bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x));
      __m128i result1 =
          BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);

      topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 4));
      topRight = loadUnaligned128((__m128i*)(topRightBase + x + 4));
      bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 4));
      bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 4));
      __m128i result2 =
          BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);

      topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 8));
      topRight = loadUnaligned128((__m128i*)(topRightBase + x + 8));
      bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 8));
      bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 8));
      __m128i result3 =
          BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);

      topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 12));
      topRight = loadUnaligned128((__m128i*)(topRightBase + x + 12));
      bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 12));
      bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 12));
      __m128i result4 =
          BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);

      __m128i final = _mm_packus_epi16(_mm_packs_epi32(result1, result2),
                                       _mm_packs_epi32(result3, result4));

      _mm_storeu_si128((__m128i*)(data + stride * y + x), final);
    }

    // Process the remaining pixels 4 bytes at a time.
    for (; x < size.width; x += 4) {
      // Not using Containsx(x) because we do not skip x == skipRect.X()
      // although that may not be done on purpose
      if (inSkipRectY && x > skipRect.X() && x < skipRect.XMost()) {
        x = skipRect.XMost() - 4;
        // Trigger early jump on coming loop iterations, this will be reset
        // next line anyway.
        inSkipRectY = false;
        continue;
      }
      __m128i topLeft = loadUnaligned128((__m128i*)(topLeftBase + x));
      __m128i topRight = loadUnaligned128((__m128i*)(topRightBase + x));
      __m128i bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x));
      __m128i bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x));

      __m128i result =
          BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
      __m128i final = _mm_packus_epi16(
          _mm_packs_epi32(result, _mm_setzero_si128()), _mm_setzero_si128());

      *(uint32_t*)(data + stride * y + x) = _mm_cvtsi128_si32(final);
    }
  }
}

}  // namespace mozilla::gfx