1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "2D.h"
#include "Blur.h"
#include "Logging.h"
#include "PathHelpers.h"
#include "SourceSurfaceRawData.h"
#include "Tools.h"
#include "BufferEdgePad.h"
#include "BufferUnrotate.h"
#ifdef USE_NEON
# include "mozilla/arm.h"
# include "LuminanceNEON.h"
#endif
namespace mozilla {
namespace gfx {
/**
* Byte offsets of channels in a native packed gfxColor or cairo image surface.
*/
#ifdef IS_BIG_ENDIAN
# define GFX_ARGB32_OFFSET_A 0
# define GFX_ARGB32_OFFSET_R 1
# define GFX_ARGB32_OFFSET_G 2
# define GFX_ARGB32_OFFSET_B 3
#else
# define GFX_ARGB32_OFFSET_A 3
# define GFX_ARGB32_OFFSET_R 2
# define GFX_ARGB32_OFFSET_G 1
# define GFX_ARGB32_OFFSET_B 0
#endif
// c = n / 255
// c <= 0.04045 ? c / 12.92 : pow((c + 0.055) / 1.055, 2.4)) * 255 + 0.5
static const uint8_t gsRGBToLinearRGBMap[256] = {
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,
3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6,
7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11,
12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 17,
18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 25,
26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 34, 35, 35,
36, 37, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 45, 46, 47,
48, 49, 50, 51, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77,
78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95,
96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 111, 112, 114, 115,
116, 118, 119, 121, 122, 124, 125, 127, 128, 130, 131, 133, 134, 136, 138,
139, 141, 142, 144, 146, 147, 149, 151, 152, 154, 156, 157, 159, 161, 163,
164, 166, 168, 170, 171, 173, 175, 177, 179, 181, 183, 184, 186, 188, 190,
192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220,
222, 224, 226, 229, 231, 233, 235, 237, 239, 242, 244, 246, 248, 250, 253,
255};
static void ComputesRGBLuminanceMask(const uint8_t* aSourceData,
int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntSize& aSize,
float aOpacity) {
#ifdef USE_NEON
if (mozilla::supports_neon()) {
ComputesRGBLuminanceMask_NEON(aSourceData, aSourceStride, aDestData,
aDestStride, aSize, aOpacity);
return;
}
#endif
int32_t redFactor = 55 * aOpacity; // 255 * 0.2125 * opacity
int32_t greenFactor = 183 * aOpacity; // 255 * 0.7154 * opacity
int32_t blueFactor = 18 * aOpacity; // 255 * 0.0721
int32_t sourceOffset = aSourceStride - 4 * aSize.width;
const uint8_t* sourcePixel = aSourceData;
int32_t destOffset = aDestStride - aSize.width;
uint8_t* destPixel = aDestData;
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
uint8_t a = sourcePixel[GFX_ARGB32_OFFSET_A];
if (a) {
*destPixel = (redFactor * sourcePixel[GFX_ARGB32_OFFSET_R] +
greenFactor * sourcePixel[GFX_ARGB32_OFFSET_G] +
blueFactor * sourcePixel[GFX_ARGB32_OFFSET_B]) >>
8;
} else {
*destPixel = 0;
}
sourcePixel += 4;
destPixel++;
}
sourcePixel += sourceOffset;
destPixel += destOffset;
}
}
static void ComputeLinearRGBLuminanceMask(
const uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntSize& aSize, float aOpacity) {
int32_t redFactor = 55 * aOpacity; // 255 * 0.2125 * opacity
int32_t greenFactor = 183 * aOpacity; // 255 * 0.7154 * opacity
int32_t blueFactor = 18 * aOpacity; // 255 * 0.0721
int32_t sourceOffset = aSourceStride - 4 * aSize.width;
const uint8_t* sourcePixel = aSourceData;
int32_t destOffset = aDestStride - aSize.width;
uint8_t* destPixel = aDestData;
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
uint8_t a = sourcePixel[GFX_ARGB32_OFFSET_A];
// unpremultiply
if (a) {
if (a == 255) {
/* sRGB -> linearRGB -> intensity */
*destPixel = static_cast<uint8_t>(
(gsRGBToLinearRGBMap[sourcePixel[GFX_ARGB32_OFFSET_R]] *
redFactor +
gsRGBToLinearRGBMap[sourcePixel[GFX_ARGB32_OFFSET_G]] *
greenFactor +
gsRGBToLinearRGBMap[sourcePixel[GFX_ARGB32_OFFSET_B]] *
blueFactor) >>
8);
} else {
uint8_t tempPixel[4];
tempPixel[GFX_ARGB32_OFFSET_B] =
(255 * sourcePixel[GFX_ARGB32_OFFSET_B]) / a;
tempPixel[GFX_ARGB32_OFFSET_G] =
(255 * sourcePixel[GFX_ARGB32_OFFSET_G]) / a;
tempPixel[GFX_ARGB32_OFFSET_R] =
(255 * sourcePixel[GFX_ARGB32_OFFSET_R]) / a;
/* sRGB -> linearRGB -> intensity */
*destPixel = static_cast<uint8_t>(
((gsRGBToLinearRGBMap[tempPixel[GFX_ARGB32_OFFSET_R]] *
redFactor +
gsRGBToLinearRGBMap[tempPixel[GFX_ARGB32_OFFSET_G]] *
greenFactor +
gsRGBToLinearRGBMap[tempPixel[GFX_ARGB32_OFFSET_B]] *
blueFactor) >>
8) *
(a / 255.0f));
}
} else {
*destPixel = 0;
}
sourcePixel += 4;
destPixel++;
}
sourcePixel += sourceOffset;
destPixel += destOffset;
}
}
void DrawTarget::PushDeviceSpaceClipRects(const IntRect* aRects,
uint32_t aCount) {
Matrix oldTransform = GetTransform();
SetTransform(Matrix());
RefPtr<PathBuilder> pathBuilder = CreatePathBuilder();
for (uint32_t i = 0; i < aCount; i++) {
AppendRectToPath(pathBuilder, Rect(aRects[i]));
}
RefPtr<Path> path = pathBuilder->Finish();
PushClip(path);
SetTransform(oldTransform);
}
void DrawTarget::FillRoundedRect(const RoundedRect& aRect,
const Pattern& aPattern,
const DrawOptions& aOptions) {
RefPtr<Path> path = MakePathForRoundedRect(*this, aRect.rect, aRect.corners);
Fill(path, aPattern, aOptions);
}
void DrawTarget::StrokeCircle(const Point& aOrigin, float radius,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
RefPtr<Path> path = MakePathForCircle(*this, aOrigin, radius);
Stroke(path, aPattern, aStrokeOptions, aOptions);
}
void DrawTarget::FillCircle(const Point& aOrigin, float radius,
const Pattern& aPattern,
const DrawOptions& aOptions) {
RefPtr<Path> path = MakePathForCircle(*this, aOrigin, radius);
Fill(path, aPattern, aOptions);
}
void DrawTarget::StrokeGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
if (RefPtr<Path> path = aFont->GetPathForGlyphs(aBuffer, this)) {
Stroke(path, aPattern, aStrokeOptions, aOptions);
}
}
already_AddRefed<SourceSurface> DrawTarget::IntoLuminanceSource(
LuminanceType aMaskType, float aOpacity) {
// The default IntoLuminanceSource implementation needs a format of B8G8R8A8.
if (mFormat != SurfaceFormat::B8G8R8A8) {
return nullptr;
}
RefPtr<SourceSurface> surface = Snapshot();
if (!surface) {
return nullptr;
}
IntSize size = surface->GetSize();
RefPtr<DataSourceSurface> maskSurface = surface->GetDataSurface();
if (!maskSurface) {
return nullptr;
}
DataSourceSurface::MappedSurface map;
if (!maskSurface->Map(DataSourceSurface::MapType::READ, &map)) {
return nullptr;
}
// Create alpha channel mask for output
RefPtr<SourceSurfaceAlignedRawData> destMaskSurface =
new SourceSurfaceAlignedRawData;
if (!destMaskSurface->Init(size, SurfaceFormat::A8, false, 0)) {
return nullptr;
}
DataSourceSurface::MappedSurface destMap;
if (!destMaskSurface->Map(DataSourceSurface::MapType::WRITE, &destMap)) {
return nullptr;
}
switch (aMaskType) {
case LuminanceType::LUMINANCE: {
ComputesRGBLuminanceMask(map.mData, map.mStride, destMap.mData,
destMap.mStride, size, aOpacity);
break;
}
case LuminanceType::LINEARRGB: {
ComputeLinearRGBLuminanceMask(map.mData, map.mStride, destMap.mData,
destMap.mStride, size, aOpacity);
break;
}
}
maskSurface->Unmap();
destMaskSurface->Unmap();
return destMaskSurface.forget();
}
void DrawTarget::Blur(const AlphaBoxBlur& aBlur) {
uint8_t* data;
IntSize size;
int32_t stride;
SurfaceFormat format;
if (!LockBits(&data, &size, &stride, &format)) {
gfxWarning() << "Cannot perform in-place blur on non-data DrawTarget";
return;
}
// Sanity check that the blur size matches the draw target.
MOZ_ASSERT(size == aBlur.GetSize());
MOZ_ASSERT(stride == aBlur.GetStride());
aBlur.Blur(data);
ReleaseBits(data);
}
void DrawTarget::PadEdges(const IntRegion& aRegion) {
PadDrawTargetOutFromRegion(this, aRegion);
}
bool DrawTarget::Unrotate(IntPoint aRotation) {
unsigned char* data;
IntSize size;
int32_t stride;
SurfaceFormat format;
if (LockBits(&data, &size, &stride, &format)) {
uint8_t bytesPerPixel = BytesPerPixel(format);
BufferUnrotate(data, size.width * bytesPerPixel, size.height, stride,
aRotation.x * bytesPerPixel, aRotation.y);
ReleaseBits(data);
return true;
}
return false;
}
int32_t ShadowOptions::BlurRadius() const {
return AlphaBoxBlur::CalculateBlurRadius(Point(mSigma, mSigma)).width;
}
void DrawTarget::DrawShadow(const Path* aPath, const Pattern& aPattern,
const ShadowOptions& aShadow,
const DrawOptions& aOptions,
const StrokeOptions* aStrokeOptions) {
// Get the approximate bounds of the source path
Rect bounds = aPath->GetFastBounds(GetTransform(), aStrokeOptions);
if (bounds.IsEmpty()) {
return;
}
// Inflate the bounds by the blur radius
bounds += aShadow.mOffset;
int32_t blurRadius = aShadow.BlurRadius();
bounds.Inflate(blurRadius);
bounds.RoundOut();
// Check if the bounds intersect the viewport
Rect viewport(GetRect());
viewport.Inflate(blurRadius);
bounds = bounds.Intersect(viewport);
IntRect intBounds;
if (bounds.IsEmpty() || !bounds.ToIntRect(&intBounds) ||
!CanCreateSimilarDrawTarget(intBounds.Size(), SurfaceFormat::A8)) {
return;
}
// Create a draw target for drawing the shadow mask with enough room for blur
RefPtr<DrawTarget> shadowTarget = CreateShadowDrawTarget(
intBounds.Size(), SurfaceFormat::A8, aShadow.mSigma);
if (shadowTarget) {
// See bug 1524554.
shadowTarget->ClearRect(Rect());
}
if (!shadowTarget || !shadowTarget->IsValid()) {
return;
}
// Draw the path into the target for the initial shadow mask
Point offset = Point(intBounds.TopLeft()) - aShadow.mOffset;
shadowTarget->SetTransform(GetTransform().PostTranslate(-offset));
DrawOptions shadowDrawOptions(
aOptions.mAlpha, CompositionOp::OP_OVER,
blurRadius > 1 ? AntialiasMode::NONE : aOptions.mAntialiasMode);
if (aStrokeOptions) {
shadowTarget->Stroke(aPath, aPattern, *aStrokeOptions, shadowDrawOptions);
} else {
shadowTarget->Fill(aPath, aPattern, shadowDrawOptions);
}
RefPtr<SourceSurface> snapshot = shadowTarget->Snapshot();
// Finally, hand a snapshot of the mask to DrawSurfaceWithShadow for the
// final shadow blur
if (snapshot) {
DrawSurfaceWithShadow(snapshot, offset, aShadow, aOptions.mCompositionOp);
}
}
} // namespace gfx
} // namespace mozilla
|