1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_MATRIX_H_
#define MOZILLA_GFX_MATRIX_H_
#include "Types.h"
#include "Triangle.h"
#include "Rect.h"
#include "Point.h"
#include "Quaternion.h"
#include <iosfwd>
#include <math.h>
#include "mozilla/Attributes.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/gfx/ScaleFactors2D.h"
#include "mozilla/Span.h"
namespace mozilla {
namespace gfx {
static inline bool FuzzyEqual(Float aV1, Float aV2) {
// XXX - Check if fabs does the smart thing and just negates the sign bit.
return fabs(aV2 - aV1) < 1e-6;
}
template <typename F>
Span<Point4DTyped<UnknownUnits, F>> IntersectPolygon(
Span<Point4DTyped<UnknownUnits, F>> aPoints,
const Point4DTyped<UnknownUnits, F>& aPlaneNormal,
Span<Point4DTyped<UnknownUnits, F>> aDestBuffer);
template <class T>
using BaseMatrixScales = BaseScaleFactors2D<UnknownUnits, UnknownUnits, T>;
using MatrixScales = BaseMatrixScales<float>;
using MatrixScalesDouble = BaseMatrixScales<double>;
template <class T>
class BaseMatrix {
// Alias that maps to either Point or PointDouble depending on whether T is a
// float or a double.
typedef PointTyped<UnknownUnits, T> MatrixPoint;
// Same for size and rect
typedef SizeTyped<UnknownUnits, T> MatrixSize;
typedef RectTyped<UnknownUnits, T> MatrixRect;
public:
BaseMatrix() : _11(1.0f), _12(0), _21(0), _22(1.0f), _31(0), _32(0) {}
BaseMatrix(T a11, T a12, T a21, T a22, T a31, T a32)
: _11(a11), _12(a12), _21(a21), _22(a22), _31(a31), _32(a32) {}
union {
struct {
T _11, _12;
T _21, _22;
T _31, _32;
};
T components[6];
};
template <class T2>
explicit BaseMatrix(const BaseMatrix<T2>& aOther)
: _11(aOther._11),
_12(aOther._12),
_21(aOther._21),
_22(aOther._22),
_31(aOther._31),
_32(aOther._32) {}
MOZ_ALWAYS_INLINE BaseMatrix Copy() const { return BaseMatrix<T>(*this); }
friend std::ostream& operator<<(std::ostream& aStream,
const BaseMatrix& aMatrix) {
if (aMatrix.IsIdentity()) {
return aStream << "[ I ]";
}
return aStream << "[ " << aMatrix._11 << " " << aMatrix._12 << "; "
<< aMatrix._21 << " " << aMatrix._22 << "; " << aMatrix._31
<< " " << aMatrix._32 << "; ]";
}
MatrixPoint TransformPoint(const MatrixPoint& aPoint) const {
MatrixPoint retPoint;
retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31;
retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32;
return retPoint;
}
MatrixSize TransformSize(const MatrixSize& aSize) const {
MatrixSize retSize;
retSize.width = aSize.width * _11 + aSize.height * _21;
retSize.height = aSize.width * _12 + aSize.height * _22;
return retSize;
}
/**
* In most cases you probably want to use TransformBounds. This function
* just transforms the top-left and size separately and constructs a rect
* from those results.
*/
MatrixRect TransformRect(const MatrixRect& aRect) const {
return MatrixRect(TransformPoint(aRect.TopLeft()),
TransformSize(aRect.Size()));
}
GFX2D_API MatrixRect TransformBounds(const MatrixRect& aRect) const {
int i;
MatrixPoint quad[4];
T min_x, max_x;
T min_y, max_y;
quad[0] = TransformPoint(aRect.TopLeft());
quad[1] = TransformPoint(aRect.TopRight());
quad[2] = TransformPoint(aRect.BottomLeft());
quad[3] = TransformPoint(aRect.BottomRight());
min_x = max_x = quad[0].x;
min_y = max_y = quad[0].y;
for (i = 1; i < 4; i++) {
if (quad[i].x < min_x) min_x = quad[i].x;
if (quad[i].x > max_x) max_x = quad[i].x;
if (quad[i].y < min_y) min_y = quad[i].y;
if (quad[i].y > max_y) max_y = quad[i].y;
}
return MatrixRect(min_x, min_y, max_x - min_x, max_y - min_y);
}
static BaseMatrix<T> Translation(T aX, T aY) {
return BaseMatrix<T>(1.0f, 0.0f, 0.0f, 1.0f, aX, aY);
}
static BaseMatrix<T> Translation(MatrixPoint aPoint) {
return Translation(aPoint.x, aPoint.y);
}
/**
* Apply a translation to this matrix.
*
* The "Pre" in this method's name means that the translation is applied
* -before- this matrix's existing transformation. That is, any vector that
* is multiplied by the resulting matrix will first be translated, then be
* transformed by the original transform.
*
* Calling this method will result in this matrix having the same value as
* the result of:
*
* BaseMatrix<T>::Translation(x, y) * this
*
* (Note that in performance critical code multiplying by the result of a
* Translation()/Scaling() call is not recommended since that results in a
* full matrix multiply involving 12 floating-point multiplications. Calling
* this method would be preferred since it only involves four floating-point
* multiplications.)
*/
BaseMatrix<T>& PreTranslate(T aX, T aY) {
_31 += _11 * aX + _21 * aY;
_32 += _12 * aX + _22 * aY;
return *this;
}
BaseMatrix<T>& PreTranslate(const MatrixPoint& aPoint) {
return PreTranslate(aPoint.x, aPoint.y);
}
/**
* Similar to PreTranslate, but the translation is applied -after- this
* matrix's existing transformation instead of before it.
*
* This method is generally less used than PreTranslate since typically code
* want to adjust an existing user space to device space matrix to create a
* transform to device space from a -new- user space (translated from the
* previous user space). In that case consumers will need to use the Pre*
* variants of the matrix methods rather than using the Post* methods, since
* the Post* methods add a transform to the device space end of the
* transformation.
*/
BaseMatrix<T>& PostTranslate(T aX, T aY) {
_31 += aX;
_32 += aY;
return *this;
}
BaseMatrix<T>& PostTranslate(const MatrixPoint& aPoint) {
return PostTranslate(aPoint.x, aPoint.y);
}
static BaseMatrix<T> Scaling(T aScaleX, T aScaleY) {
return BaseMatrix<T>(aScaleX, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f);
}
static BaseMatrix<T> Scaling(const BaseMatrixScales<T>& scale) {
return Scaling(scale.xScale, scale.yScale);
}
/**
* Similar to PreTranslate, but applies a scale instead of a translation.
*/
BaseMatrix<T>& PreScale(T aX, T aY) {
_11 *= aX;
_12 *= aX;
_21 *= aY;
_22 *= aY;
return *this;
}
BaseMatrix<T>& PreScale(const BaseMatrixScales<T>& scale) {
return PreScale(scale.xScale, scale.yScale);
}
/**
* Similar to PostTranslate, but applies a scale instead of a translation.
*/
BaseMatrix<T>& PostScale(T aScaleX, T aScaleY) {
_11 *= aScaleX;
_12 *= aScaleY;
_21 *= aScaleX;
_22 *= aScaleY;
_31 *= aScaleX;
_32 *= aScaleY;
return *this;
}
GFX2D_API static BaseMatrix<T> Rotation(T aAngle);
/**
* Similar to PreTranslate, but applies a rotation instead of a translation.
*/
BaseMatrix<T>& PreRotate(T aAngle) {
return *this = BaseMatrix<T>::Rotation(aAngle) * *this;
}
bool Invert() {
// Compute co-factors.
T A = _22;
T B = -_21;
T C = _21 * _32 - _22 * _31;
T D = -_12;
T E = _11;
T F = _31 * _12 - _11 * _32;
T det = Determinant();
if (!det) {
return false;
}
T inv_det = 1 / det;
_11 = inv_det * A;
_12 = inv_det * D;
_21 = inv_det * B;
_22 = inv_det * E;
_31 = inv_det * C;
_32 = inv_det * F;
return true;
}
BaseMatrix<T> Inverse() const {
BaseMatrix<T> clone = *this;
DebugOnly<bool> inverted = clone.Invert();
MOZ_ASSERT(inverted,
"Attempted to get the inverse of a non-invertible matrix");
return clone;
}
T Determinant() const { return _11 * _22 - _12 * _21; }
BaseMatrix<T> operator*(const BaseMatrix<T>& aMatrix) const {
BaseMatrix<T> resultMatrix;
resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21;
resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22;
resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21;
resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22;
resultMatrix._31 =
this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31;
resultMatrix._32 =
this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32;
return resultMatrix;
}
BaseMatrix<T>& operator*=(const BaseMatrix<T>& aMatrix) {
*this = *this * aMatrix;
return *this;
}
/**
* Multiplies *this with aMatrix and returns the result.
*/
Matrix4x4 operator*(const Matrix4x4& aMatrix) const;
/**
* Multiplies in the opposite order to operator=*.
*/
BaseMatrix<T>& PreMultiply(const BaseMatrix<T>& aMatrix) {
*this = aMatrix * *this;
return *this;
}
/**
* Please explicitly use either FuzzyEquals or ExactlyEquals.
*/
bool operator==(const BaseMatrix<T>& other) const = delete;
bool operator!=(const BaseMatrix<T>& other) const = delete;
/* Returns true if the other matrix is fuzzy-equal to this matrix.
* Note that this isn't a cheap comparison!
*/
bool FuzzyEquals(const BaseMatrix<T>& o) const {
return FuzzyEqual(_11, o._11) && FuzzyEqual(_12, o._12) &&
FuzzyEqual(_21, o._21) && FuzzyEqual(_22, o._22) &&
FuzzyEqual(_31, o._31) && FuzzyEqual(_32, o._32);
}
bool ExactlyEquals(const BaseMatrix<T>& o) const {
return _11 == o._11 && _12 == o._12 && _21 == o._21 && _22 == o._22 &&
_31 == o._31 && _32 == o._32;
}
/* Verifies that the matrix contains no Infs or NaNs. */
bool IsFinite() const {
return std::isfinite(_11) && std::isfinite(_12) && std::isfinite(_21) &&
std::isfinite(_22) && std::isfinite(_31) && std::isfinite(_32);
}
/* Returns true if the matrix is a rectilinear transformation (i.e.
* grid-aligned rectangles are transformed to grid-aligned rectangles)
*/
bool IsRectilinear() const {
if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) {
return true;
} else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) {
return true;
}
return false;
}
/**
* Returns true if the matrix is anything other than a straight
* translation by integers.
*/
bool HasNonIntegerTranslation() const {
return HasNonTranslation() || !FuzzyEqual(_31, floor(_31 + 0.5f)) ||
!FuzzyEqual(_32, floor(_32 + 0.5f));
}
/**
* Returns true if the matrix only has an integer translation.
*/
bool HasOnlyIntegerTranslation() const { return !HasNonIntegerTranslation(); }
/**
* Returns true if the matrix has any transform other
* than a straight translation.
*/
bool HasNonTranslation() const {
return !FuzzyEqual(_11, 1.0) || !FuzzyEqual(_22, 1.0) ||
!FuzzyEqual(_12, 0.0) || !FuzzyEqual(_21, 0.0);
}
/**
* Returns true if the matrix has any transform other
* than a translation or a -1 y scale (y axis flip)
*/
bool HasNonTranslationOrFlip() const {
return !FuzzyEqual(_11, 1.0) ||
(!FuzzyEqual(_22, 1.0) && !FuzzyEqual(_22, -1.0)) ||
!FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
}
/* Returns true if the matrix is an identity matrix.
*/
bool IsIdentity() const {
return _11 == 1.0f && _12 == 0.0f && _21 == 0.0f && _22 == 1.0f &&
_31 == 0.0f && _32 == 0.0f;
}
/* Returns true if the matrix is singular.
*/
bool IsSingular() const {
T det = Determinant();
return !std::isfinite(det) || det == 0;
}
GFX2D_API BaseMatrix<T>& NudgeToIntegers() {
NudgeToInteger(&_11);
NudgeToInteger(&_12);
NudgeToInteger(&_21);
NudgeToInteger(&_22);
NudgeToInteger(&_31);
NudgeToInteger(&_32);
return *this;
}
bool IsTranslation() const {
return FuzzyEqual(_11, 1.0f) && FuzzyEqual(_12, 0.0f) &&
FuzzyEqual(_21, 0.0f) && FuzzyEqual(_22, 1.0f);
}
static bool FuzzyIsInteger(T aValue) {
return FuzzyEqual(aValue, floorf(aValue + 0.5f));
}
bool IsIntegerTranslation() const {
return IsTranslation() && FuzzyIsInteger(_31) && FuzzyIsInteger(_32);
}
bool IsAllIntegers() const {
return FuzzyIsInteger(_11) && FuzzyIsInteger(_12) && FuzzyIsInteger(_21) &&
FuzzyIsInteger(_22) && FuzzyIsInteger(_31) && FuzzyIsInteger(_32);
}
MatrixPoint GetTranslation() const { return MatrixPoint(_31, _32); }
/**
* Returns true if matrix is multiple of 90 degrees rotation with flipping,
* scaling and translation.
*/
bool PreservesAxisAlignedRectangles() const {
return ((FuzzyEqual(_11, 0.0) && FuzzyEqual(_22, 0.0)) ||
(FuzzyEqual(_12, 0.0) && FuzzyEqual(_21, 0.0)));
}
/**
* Returns true if the matrix has any transform other
* than a translation or scale; this is, if there is
* rotation.
*/
bool HasNonAxisAlignedTransform() const {
return !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
}
/**
* Returns true if the matrix has negative scaling (i.e. flip).
*/
bool HasNegativeScaling() const { return (_11 < 0.0) || (_22 < 0.0); }
/**
* Computes the scale factors of this matrix; that is,
* the amounts each basis vector is scaled by.
*/
BaseMatrixScales<T> ScaleFactors() const {
T det = Determinant();
if (det == 0.0) {
return BaseMatrixScales<T>(0.0, 0.0);
}
MatrixSize sz = MatrixSize(1.0, 0.0);
sz = TransformSize(sz);
T major = sqrt(sz.width * sz.width + sz.height * sz.height);
T minor = 0.0;
// ignore mirroring
if (det < 0.0) {
det = -det;
}
if (major) {
minor = det / major;
}
return BaseMatrixScales<T>(major, minor);
}
/**
* Returns true if the matrix preserves distances, i.e. a rigid transformation
* that doesn't change size or shape). Such a matrix has uniform unit scaling
* and an orthogonal basis.
*/
bool PreservesDistance() const {
return FuzzyEqual(_11 * _11 + _12 * _12, 1.0) &&
FuzzyEqual(_21 * _21 + _22 * _22, 1.0) &&
FuzzyEqual(_11 * _21 + _12 * _22, 0.0);
}
};
typedef BaseMatrix<Float> Matrix;
typedef BaseMatrix<Double> MatrixDouble;
// Helper functions used by Matrix4x4Typed defined in Matrix.cpp
double SafeTangent(double aTheta);
double FlushToZero(double aVal);
template <class Units, class F>
Point4DTyped<Units, F> ComputePerspectivePlaneIntercept(
const Point4DTyped<Units, F>& aFirst,
const Point4DTyped<Units, F>& aSecond) {
// This function will always return a point with a w value of 0.
// The X, Y, and Z components will point towards an infinite vanishing
// point.
// We want to interpolate aFirst and aSecond to find the point intersecting
// with the w=0 plane.
// Since we know what we want the w component to be, we can rearrange the
// interpolation equation and solve for t.
float t = -aFirst.w / (aSecond.w - aFirst.w);
// Use t to find the remainder of the components
return aFirst + (aSecond - aFirst) * t;
}
template <class SourceUnits, class TargetUnits, class T>
class Matrix4x4Typed {
public:
typedef PointTyped<SourceUnits, T> SourcePoint;
typedef PointTyped<TargetUnits, T> TargetPoint;
typedef Point3DTyped<SourceUnits, T> SourcePoint3D;
typedef Point3DTyped<TargetUnits, T> TargetPoint3D;
typedef Point4DTyped<SourceUnits, T> SourcePoint4D;
typedef Point4DTyped<TargetUnits, T> TargetPoint4D;
typedef RectTyped<SourceUnits, T> SourceRect;
typedef RectTyped<TargetUnits, T> TargetRect;
Matrix4x4Typed()
: _11(1.0f),
_12(0.0f),
_13(0.0f),
_14(0.0f),
_21(0.0f),
_22(1.0f),
_23(0.0f),
_24(0.0f),
_31(0.0f),
_32(0.0f),
_33(1.0f),
_34(0.0f),
_41(0.0f),
_42(0.0f),
_43(0.0f),
_44(1.0f) {}
Matrix4x4Typed(T a11, T a12, T a13, T a14, T a21, T a22, T a23, T a24, T a31,
T a32, T a33, T a34, T a41, T a42, T a43, T a44)
: _11(a11),
_12(a12),
_13(a13),
_14(a14),
_21(a21),
_22(a22),
_23(a23),
_24(a24),
_31(a31),
_32(a32),
_33(a33),
_34(a34),
_41(a41),
_42(a42),
_43(a43),
_44(a44) {}
explicit Matrix4x4Typed(const T aArray[16]) {
memcpy(components, aArray, sizeof(components));
}
Matrix4x4Typed(const Matrix4x4Typed& aOther) {
memcpy(components, aOther.components, sizeof(components));
}
template <class T2>
explicit Matrix4x4Typed(
const Matrix4x4Typed<SourceUnits, TargetUnits, T2>& aOther)
: _11(aOther._11),
_12(aOther._12),
_13(aOther._13),
_14(aOther._14),
_21(aOther._21),
_22(aOther._22),
_23(aOther._23),
_24(aOther._24),
_31(aOther._31),
_32(aOther._32),
_33(aOther._33),
_34(aOther._34),
_41(aOther._41),
_42(aOther._42),
_43(aOther._43),
_44(aOther._44) {}
union {
struct {
T _11, _12, _13, _14;
T _21, _22, _23, _24;
T _31, _32, _33, _34;
T _41, _42, _43, _44;
};
T components[16];
};
friend std::ostream& operator<<(std::ostream& aStream,
const Matrix4x4Typed& aMatrix) {
if (aMatrix.Is2D()) {
BaseMatrix<T> matrix = aMatrix.As2D();
return aStream << matrix;
}
const T* f = &aMatrix._11;
aStream << "[ " << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
f += 4;
aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
f += 4;
aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
f += 4;
aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3]
<< "; ]";
return aStream;
}
Point4DTyped<UnknownUnits, T>& operator[](int aIndex) {
MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
return *reinterpret_cast<Point4DTyped<UnknownUnits, T>*>((&_11) +
4 * aIndex);
}
const Point4DTyped<UnknownUnits, T>& operator[](int aIndex) const {
MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
return *reinterpret_cast<const Point4DTyped<UnknownUnits, T>*>((&_11) +
4 * aIndex);
}
// External code should avoid calling this, and instead use
// ViewAs() from UnitTransforms.h, which requires providing
// a justification.
template <typename NewMatrix4x4Typed>
[[nodiscard]] NewMatrix4x4Typed Cast() const {
return NewMatrix4x4Typed(_11, _12, _13, _14, _21, _22, _23, _24, _31, _32,
_33, _34, _41, _42, _43, _44);
}
/**
* Returns true if the matrix is isomorphic to a 2D affine transformation.
*/
bool Is2D() const {
if (_13 != 0.0f || _14 != 0.0f || _23 != 0.0f || _24 != 0.0f ||
_31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f ||
_43 != 0.0f || _44 != 1.0f) {
return false;
}
return true;
}
bool Is2D(BaseMatrix<T>* aMatrix) const {
if (!Is2D()) {
return false;
}
if (aMatrix) {
aMatrix->_11 = _11;
aMatrix->_12 = _12;
aMatrix->_21 = _21;
aMatrix->_22 = _22;
aMatrix->_31 = _41;
aMatrix->_32 = _42;
}
return true;
}
BaseMatrix<T> As2D() const {
MOZ_ASSERT(Is2D(), "Matrix is not a 2D affine transform");
return BaseMatrix<T>(_11, _12, _21, _22, _41, _42);
}
bool CanDraw2D(BaseMatrix<T>* aMatrix = nullptr) const {
if (_14 != 0.0f || _24 != 0.0f || _44 != 1.0f) {
return false;
}
if (aMatrix) {
aMatrix->_11 = _11;
aMatrix->_12 = _12;
aMatrix->_21 = _21;
aMatrix->_22 = _22;
aMatrix->_31 = _41;
aMatrix->_32 = _42;
}
return true;
}
Matrix4x4Typed& ProjectTo2D() {
_31 = 0.0f;
_32 = 0.0f;
_13 = 0.0f;
_23 = 0.0f;
_33 = 1.0f;
_43 = 0.0f;
_34 = 0.0f;
// Some matrices, such as those derived from perspective transforms,
// can modify _44 from 1, while leaving the rest of the fourth column
// (_14, _24) at 0. In this case, after resetting the third row and
// third column above, the value of _44 functions only to scale the
// coordinate transform divide by W. The matrix can be converted to
// a true 2D matrix by normalizing out the scaling effect of _44 on
// the remaining components ahead of time.
if (_14 == 0.0f && _24 == 0.0f && _44 != 1.0f && _44 != 0.0f) {
T scale = 1.0f / _44;
_11 *= scale;
_12 *= scale;
_21 *= scale;
_22 *= scale;
_41 *= scale;
_42 *= scale;
_44 = 1.0f;
}
return *this;
}
template <class F>
Point4DTyped<TargetUnits, F> ProjectPoint(
const PointTyped<SourceUnits, F>& aPoint) const {
// Find a value for z that will transform to 0.
// The transformed value of z is computed as:
// z' = aPoint.x * _13 + aPoint.y * _23 + z * _33 + _43;
// Solving for z when z' = 0 gives us:
F z = -(aPoint.x * _13 + aPoint.y * _23 + _43) / _33;
// Compute the transformed point
return this->TransformPoint(
Point4DTyped<SourceUnits, F>(aPoint.x, aPoint.y, z, 1));
}
template <class F>
RectTyped<TargetUnits, F> ProjectRectBounds(
const RectTyped<SourceUnits, F>& aRect,
const RectTyped<TargetUnits, F>& aClip) const {
// This function must never return std::numeric_limits<Float>::max() or any
// other arbitrary large value in place of inifinity. This often occurs
// when aRect is an inversed projection matrix or when aRect is transformed
// to be partly behind and in front of the camera (w=0 plane in homogenous
// coordinates) - See Bug 1035611
// Some call-sites will call RoundGfxRectToAppRect which clips both the
// extents and dimensions of the rect to be bounded by nscoord_MAX.
// If we return a Rect that, when converted to nscoords, has a width or
// height greater than nscoord_MAX, RoundGfxRectToAppRect will clip the
// overflow off both the min and max end of the rect after clipping the
// extents of the rect, resulting in a translation of the rect towards the
// infinite end.
// The bounds returned by ProjectRectBounds are expected to be clipped only
// on the edges beyond the bounds of the coordinate system; otherwise, the
// clipped bounding box would be smaller than the correct one and result
// bugs such as incorrect culling (eg. Bug 1073056)
// To address this without requiring all code to work in homogenous
// coordinates or interpret infinite values correctly, a specialized
// clipping function is integrated into ProjectRectBounds.
// Callers should pass an aClip value that represents the extents to clip
// the result to, in the same coordinate system as aRect.
Point4DTyped<TargetUnits, F> points[4];
points[0] = ProjectPoint(aRect.TopLeft());
points[1] = ProjectPoint(aRect.TopRight());
points[2] = ProjectPoint(aRect.BottomRight());
points[3] = ProjectPoint(aRect.BottomLeft());
F min_x = std::numeric_limits<F>::max();
F min_y = std::numeric_limits<F>::max();
F max_x = -std::numeric_limits<F>::max();
F max_y = -std::numeric_limits<F>::max();
for (int i = 0; i < 4; i++) {
// Only use points that exist above the w=0 plane
if (points[i].HasPositiveWCoord()) {
PointTyped<TargetUnits, F> point2d =
aClip.ClampPoint(points[i].As2DPoint());
min_x = std::min<F>(point2d.x, min_x);
max_x = std::max<F>(point2d.x, max_x);
min_y = std::min<F>(point2d.y, min_y);
max_y = std::max<F>(point2d.y, max_y);
}
int next = (i == 3) ? 0 : i + 1;
if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) {
// If the line between two points crosses the w=0 plane, then
// interpolate to find the point of intersection with the w=0 plane and
// use that instead.
Point4DTyped<TargetUnits, F> intercept =
ComputePerspectivePlaneIntercept(points[i], points[next]);
// Since intercept.w will always be 0 here, we interpret x,y,z as a
// direction towards an infinite vanishing point.
if (intercept.x < 0.0f) {
min_x = aClip.X();
} else if (intercept.x > 0.0f) {
max_x = aClip.XMost();
}
if (intercept.y < 0.0f) {
min_y = aClip.Y();
} else if (intercept.y > 0.0f) {
max_y = aClip.YMost();
}
}
}
if (max_x < min_x || max_y < min_y) {
return RectTyped<TargetUnits, F>(0, 0, 0, 0);
}
return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
max_y - min_y);
}
/**
* TransformAndClipBounds transforms aRect as a bounding box, while clipping
* the transformed bounds to the extents of aClip.
*/
template <class F>
RectTyped<TargetUnits, F> TransformAndClipBounds(
const RectTyped<SourceUnits, F>& aRect,
const RectTyped<TargetUnits, F>& aClip) const {
PointTyped<UnknownUnits, F> verts[kTransformAndClipRectMaxVerts];
size_t vertCount = TransformAndClipRect(aRect, aClip, verts);
F min_x = std::numeric_limits<F>::max();
F min_y = std::numeric_limits<F>::max();
F max_x = -std::numeric_limits<F>::max();
F max_y = -std::numeric_limits<F>::max();
for (size_t i = 0; i < vertCount; i++) {
min_x = std::min(min_x, verts[i].x.value);
max_x = std::max(max_x, verts[i].x.value);
min_y = std::min(min_y, verts[i].y.value);
max_y = std::max(max_y, verts[i].y.value);
}
if (max_x < min_x || max_y < min_y) {
return RectTyped<TargetUnits, F>(0, 0, 0, 0);
}
return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
max_y - min_y);
}
template <class F>
RectTyped<TargetUnits, F> TransformAndClipBounds(
const TriangleTyped<SourceUnits, F>& aTriangle,
const RectTyped<TargetUnits, F>& aClip) const {
return TransformAndClipBounds(aTriangle.BoundingBox(), aClip);
}
/**
* TransformAndClipRect projects a rectangle and clips against view frustum
* clipping planes in homogenous space so that its projected vertices are
* constrained within the 2d rectangle passed in aClip.
* The resulting vertices are populated in aVerts. aVerts must be
* pre-allocated to hold at least kTransformAndClipRectMaxVerts Points.
* The vertex count is returned by TransformAndClipRect. It is possible to
* emit fewer than 3 vertices, indicating that aRect will not be visible
* within aClip.
*/
template <class F>
size_t TransformAndClipRect(const RectTyped<SourceUnits, F>& aRect,
const RectTyped<TargetUnits, F>& aClip,
PointTyped<TargetUnits, F>* aVerts) const {
typedef Point4DTyped<UnknownUnits, F> P4D;
// The initial polygon is made up by the corners of aRect in homogenous
// space, mapped into the destination space of this transform.
P4D rectCorners[] = {
TransformPoint(P4D(aRect.X(), aRect.Y(), 0, 1)),
TransformPoint(P4D(aRect.XMost(), aRect.Y(), 0, 1)),
TransformPoint(P4D(aRect.XMost(), aRect.YMost(), 0, 1)),
TransformPoint(P4D(aRect.X(), aRect.YMost(), 0, 1)),
};
// Cut off pieces of the polygon that are outside of aClip (the "view
// frustrum"), by consecutively intersecting the polygon with the half space
// induced by the clipping plane for each side of aClip.
// View frustum clipping planes are described as normals originating from
// the 0,0,0,0 origin.
// Each pass can increase or decrease the number of points that make up the
// current clipped polygon. We double buffer the set of points, alternating
// between polygonBufA and polygonBufB. Duplicated points in the polygons
// are kept around until all clipping is done. The loop at the end filters
// out any consecutive duplicates.
P4D polygonBufA[kTransformAndClipRectMaxVerts];
P4D polygonBufB[kTransformAndClipRectMaxVerts];
Span<P4D> polygon(rectCorners);
polygon = IntersectPolygon<F>(polygon, P4D(1.0, 0.0, 0.0, -aClip.X()),
polygonBufA);
polygon = IntersectPolygon<F>(polygon, P4D(-1.0, 0.0, 0.0, aClip.XMost()),
polygonBufB);
polygon = IntersectPolygon<F>(polygon, P4D(0.0, 1.0, 0.0, -aClip.Y()),
polygonBufA);
polygon = IntersectPolygon<F>(polygon, P4D(0.0, -1.0, 0.0, aClip.YMost()),
polygonBufB);
size_t vertCount = 0;
for (const auto& srcPoint : polygon) {
PointTyped<TargetUnits, F> p;
if (srcPoint.w == 0.0) {
// If a point lies on the intersection of the clipping planes at
// (0,0,0,0), we must avoid a division by zero w component.
p = PointTyped<TargetUnits, F>(0.0, 0.0);
} else {
p = srcPoint.As2DPoint();
}
// Emit only unique points
if (vertCount == 0 || p != aVerts[vertCount - 1]) {
aVerts[vertCount++] = p;
}
}
return vertCount;
}
static const int kTransformAndClipRectMaxVerts = 32;
static Matrix4x4Typed From2D(const BaseMatrix<T>& aMatrix) {
Matrix4x4Typed matrix;
matrix._11 = aMatrix._11;
matrix._12 = aMatrix._12;
matrix._21 = aMatrix._21;
matrix._22 = aMatrix._22;
matrix._41 = aMatrix._31;
matrix._42 = aMatrix._32;
return matrix;
}
bool Is2DIntegerTranslation() const {
return Is2D() && As2D().IsIntegerTranslation();
}
TargetPoint4D TransposeTransform4D(const SourcePoint4D& aPoint) const {
Float x = aPoint.x * _11 + aPoint.y * _12 + aPoint.z * _13 + aPoint.w * _14;
Float y = aPoint.x * _21 + aPoint.y * _22 + aPoint.z * _23 + aPoint.w * _24;
Float z = aPoint.x * _31 + aPoint.y * _32 + aPoint.z * _33 + aPoint.w * _34;
Float w = aPoint.x * _41 + aPoint.y * _42 + aPoint.z * _43 + aPoint.w * _44;
return TargetPoint4D(x, y, z, w);
}
template <class F>
Point4DTyped<TargetUnits, F> TransformPoint(
const Point4DTyped<SourceUnits, F>& aPoint) const {
Point4DTyped<TargetUnits, F> retPoint;
retPoint.x =
aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + aPoint.w * _41;
retPoint.y =
aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + aPoint.w * _42;
retPoint.z =
aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + aPoint.w * _43;
retPoint.w =
aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + aPoint.w * _44;
return retPoint;
}
template <class F>
Point3DTyped<TargetUnits, F> TransformPoint(
const Point3DTyped<SourceUnits, F>& aPoint) const {
Point3DTyped<TargetUnits, F> result;
result.x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + _41;
result.y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + _42;
result.z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + _43;
result /= (aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + _44);
return result;
}
template <class F>
PointTyped<TargetUnits, F> TransformPoint(
const PointTyped<SourceUnits, F>& aPoint) const {
Point4DTyped<SourceUnits, F> temp(aPoint.x, aPoint.y, 0, 1);
return TransformPoint(temp).As2DPoint();
}
template <class F>
GFX2D_API RectTyped<TargetUnits, F> TransformBounds(
const RectTyped<SourceUnits, F>& aRect) const {
PointTyped<TargetUnits, F> quad[4];
F min_x, max_x;
F min_y, max_y;
quad[0] = TransformPoint(aRect.TopLeft());
quad[1] = TransformPoint(aRect.TopRight());
quad[2] = TransformPoint(aRect.BottomLeft());
quad[3] = TransformPoint(aRect.BottomRight());
min_x = max_x = quad[0].x;
min_y = max_y = quad[0].y;
for (int i = 1; i < 4; i++) {
if (quad[i].x < min_x) {
min_x = quad[i].x;
}
if (quad[i].x > max_x) {
max_x = quad[i].x;
}
if (quad[i].y < min_y) {
min_y = quad[i].y;
}
if (quad[i].y > max_y) {
max_y = quad[i].y;
}
}
return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
max_y - min_y);
}
static Matrix4x4Typed Translation(T aX, T aY, T aZ) {
return Matrix4x4Typed(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, aX, aY, aZ, 1.0f);
}
static Matrix4x4Typed Translation(const TargetPoint3D& aP) {
return Translation(aP.x, aP.y, aP.z);
}
static Matrix4x4Typed Translation(const TargetPoint& aP) {
return Translation(aP.x, aP.y, 0);
}
/**
* Apply a translation to this matrix.
*
* The "Pre" in this method's name means that the translation is applied
* -before- this matrix's existing transformation. That is, any vector that
* is multiplied by the resulting matrix will first be translated, then be
* transformed by the original transform.
*
* Calling this method will result in this matrix having the same value as
* the result of:
*
* Matrix4x4::Translation(x, y) * this
*
* (Note that in performance critical code multiplying by the result of a
* Translation()/Scaling() call is not recommended since that results in a
* full matrix multiply involving 64 floating-point multiplications. Calling
* this method would be preferred since it only involves 12 floating-point
* multiplications.)
*/
Matrix4x4Typed& PreTranslate(T aX, T aY, T aZ) {
_41 += aX * _11 + aY * _21 + aZ * _31;
_42 += aX * _12 + aY * _22 + aZ * _32;
_43 += aX * _13 + aY * _23 + aZ * _33;
_44 += aX * _14 + aY * _24 + aZ * _34;
return *this;
}
Matrix4x4Typed& PreTranslate(const Point3DTyped<UnknownUnits, T>& aPoint) {
return PreTranslate(aPoint.x, aPoint.y, aPoint.z);
}
/**
* Similar to PreTranslate, but the translation is applied -after- this
* matrix's existing transformation instead of before it.
*
* This method is generally less used than PreTranslate since typically code
* wants to adjust an existing user space to device space matrix to create a
* transform to device space from a -new- user space (translated from the
* previous user space). In that case consumers will need to use the Pre*
* variants of the matrix methods rather than using the Post* methods, since
* the Post* methods add a transform to the device space end of the
* transformation.
*/
Matrix4x4Typed& PostTranslate(T aX, T aY, T aZ) {
_11 += _14 * aX;
_21 += _24 * aX;
_31 += _34 * aX;
_41 += _44 * aX;
_12 += _14 * aY;
_22 += _24 * aY;
_32 += _34 * aY;
_42 += _44 * aY;
_13 += _14 * aZ;
_23 += _24 * aZ;
_33 += _34 * aZ;
_43 += _44 * aZ;
return *this;
}
Matrix4x4Typed& PostTranslate(const TargetPoint3D& aPoint) {
return PostTranslate(aPoint.x, aPoint.y, aPoint.z);
}
Matrix4x4Typed& PostTranslate(const TargetPoint& aPoint) {
return PostTranslate(aPoint.x, aPoint.y, 0);
}
static Matrix4x4Typed Scaling(T aScaleX, T aScaleY, T aScaleZ) {
return Matrix4x4Typed(aScaleX, 0.0f, 0.0f, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f,
0.0f, 0.0f, aScaleZ, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
}
/**
* Similar to PreTranslate, but applies a scale instead of a translation.
*/
Matrix4x4Typed& PreScale(T aX, T aY, T aZ) {
_11 *= aX;
_12 *= aX;
_13 *= aX;
_14 *= aX;
_21 *= aY;
_22 *= aY;
_23 *= aY;
_24 *= aY;
_31 *= aZ;
_32 *= aZ;
_33 *= aZ;
_34 *= aZ;
return *this;
}
template <typename NewSourceUnits>
[[nodiscard]] Matrix4x4Typed<NewSourceUnits, TargetUnits> PreScale(
const ScaleFactor<NewSourceUnits, SourceUnits>& aScale) const {
auto clone = Cast<Matrix4x4Typed<NewSourceUnits, TargetUnits>>();
clone.PreScale(aScale.scale, aScale.scale, 1);
return clone;
}
template <typename NewSourceUnits>
[[nodiscard]] Matrix4x4Typed<NewSourceUnits, TargetUnits> PreScale(
const BaseScaleFactors2D<NewSourceUnits, SourceUnits, T>& aScale) const {
auto clone = Cast<Matrix4x4Typed<NewSourceUnits, TargetUnits>>();
clone.PreScale(aScale.xScale, aScale.yScale, 1);
return clone;
}
/**
* Similar to PostTranslate, but applies a scale instead of a translation.
*/
Matrix4x4Typed& PostScale(T aScaleX, T aScaleY, T aScaleZ) {
_11 *= aScaleX;
_21 *= aScaleX;
_31 *= aScaleX;
_41 *= aScaleX;
_12 *= aScaleY;
_22 *= aScaleY;
_32 *= aScaleY;
_42 *= aScaleY;
_13 *= aScaleZ;
_23 *= aScaleZ;
_33 *= aScaleZ;
_43 *= aScaleZ;
return *this;
}
template <typename NewTargetUnits>
[[nodiscard]] Matrix4x4Typed<SourceUnits, NewTargetUnits> PostScale(
const ScaleFactor<TargetUnits, NewTargetUnits>& aScale) const {
auto clone = Cast<Matrix4x4Typed<SourceUnits, NewTargetUnits>>();
clone.PostScale(aScale.scale, aScale.scale, 1);
return clone;
}
template <typename NewTargetUnits>
[[nodiscard]] Matrix4x4Typed<SourceUnits, NewTargetUnits> PostScale(
const BaseScaleFactors2D<TargetUnits, NewTargetUnits, T>& aScale) const {
auto clone = Cast<Matrix4x4Typed<SourceUnits, NewTargetUnits>>();
clone.PostScale(aScale.xScale, aScale.yScale, 1);
return clone;
}
void SkewXY(T aSkew) { (*this)[1] += (*this)[0] * aSkew; }
void SkewXZ(T aSkew) { (*this)[2] += (*this)[0] * aSkew; }
void SkewYZ(T aSkew) { (*this)[2] += (*this)[1] * aSkew; }
Matrix4x4Typed& ChangeBasis(const Point3DTyped<UnknownUnits, T>& aOrigin) {
return ChangeBasis(aOrigin.x, aOrigin.y, aOrigin.z);
}
Matrix4x4Typed& ChangeBasis(T aX, T aY, T aZ) {
// Translate to the origin before applying this matrix
PreTranslate(-aX, -aY, -aZ);
// Translate back into position after applying this matrix
PostTranslate(aX, aY, aZ);
return *this;
}
Matrix4x4Typed& Transpose() {
std::swap(_12, _21);
std::swap(_13, _31);
std::swap(_14, _41);
std::swap(_23, _32);
std::swap(_24, _42);
std::swap(_34, _43);
return *this;
}
bool operator==(const Matrix4x4Typed& o) const {
// XXX would be nice to memcmp here, but that breaks IEEE 754 semantics
return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 &&
_21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 &&
_31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 &&
_41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44;
}
bool operator!=(const Matrix4x4Typed& o) const { return !((*this) == o); }
Matrix4x4Typed& operator=(const Matrix4x4Typed& aOther) = default;
template <typename NewTargetUnits>
Matrix4x4Typed<SourceUnits, NewTargetUnits, T> operator*(
const Matrix4x4Typed<TargetUnits, NewTargetUnits, T>& aMatrix) const {
Matrix4x4Typed<SourceUnits, NewTargetUnits, T> matrix;
matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _13 * aMatrix._31 +
_14 * aMatrix._41;
matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _23 * aMatrix._31 +
_24 * aMatrix._41;
matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _33 * aMatrix._31 +
_34 * aMatrix._41;
matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _43 * aMatrix._31 +
_44 * aMatrix._41;
matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _13 * aMatrix._32 +
_14 * aMatrix._42;
matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _23 * aMatrix._32 +
_24 * aMatrix._42;
matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _33 * aMatrix._32 +
_34 * aMatrix._42;
matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _43 * aMatrix._32 +
_44 * aMatrix._42;
matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23 + _13 * aMatrix._33 +
_14 * aMatrix._43;
matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23 + _23 * aMatrix._33 +
_24 * aMatrix._43;
matrix._33 = _31 * aMatrix._13 + _32 * aMatrix._23 + _33 * aMatrix._33 +
_34 * aMatrix._43;
matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + _43 * aMatrix._33 +
_44 * aMatrix._43;
matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24 + _13 * aMatrix._34 +
_14 * aMatrix._44;
matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24 + _23 * aMatrix._34 +
_24 * aMatrix._44;
matrix._34 = _31 * aMatrix._14 + _32 * aMatrix._24 + _33 * aMatrix._34 +
_34 * aMatrix._44;
matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + _43 * aMatrix._34 +
_44 * aMatrix._44;
return matrix;
}
Matrix4x4Typed& operator*=(
const Matrix4x4Typed<TargetUnits, TargetUnits, T>& aMatrix) {
*this = *this * aMatrix;
return *this;
}
/* Returns true if the matrix is an identity matrix.
*/
bool IsIdentity() const {
return _11 == 1.0f && _12 == 0.0f && _13 == 0.0f && _14 == 0.0f &&
_21 == 0.0f && _22 == 1.0f && _23 == 0.0f && _24 == 0.0f &&
_31 == 0.0f && _32 == 0.0f && _33 == 1.0f && _34 == 0.0f &&
_41 == 0.0f && _42 == 0.0f && _43 == 0.0f && _44 == 1.0f;
}
bool IsSingular() const { return Determinant() == 0.0; }
T Determinant() const {
return _14 * _23 * _32 * _41 - _13 * _24 * _32 * _41 -
_14 * _22 * _33 * _41 + _12 * _24 * _33 * _41 +
_13 * _22 * _34 * _41 - _12 * _23 * _34 * _41 -
_14 * _23 * _31 * _42 + _13 * _24 * _31 * _42 +
_14 * _21 * _33 * _42 - _11 * _24 * _33 * _42 -
_13 * _21 * _34 * _42 + _11 * _23 * _34 * _42 +
_14 * _22 * _31 * _43 - _12 * _24 * _31 * _43 -
_14 * _21 * _32 * _43 + _11 * _24 * _32 * _43 +
_12 * _21 * _34 * _43 - _11 * _22 * _34 * _43 -
_13 * _22 * _31 * _44 + _12 * _23 * _31 * _44 +
_13 * _21 * _32 * _44 - _11 * _23 * _32 * _44 -
_12 * _21 * _33 * _44 + _11 * _22 * _33 * _44;
}
// Invert() is not unit-correct. Prefer Inverse() where possible.
bool Invert() {
T det = Determinant();
if (!det) {
return false;
}
Matrix4x4Typed<SourceUnits, TargetUnits, T> result;
result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 -
_22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44;
result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 +
_12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44;
result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 -
_12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44;
result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 +
_12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34;
result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 +
_21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44;
result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 -
_11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44;
result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 +
_11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44;
result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 -
_11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34;
result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 -
_21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44;
result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 +
_11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44;
result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 -
_11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 +
_11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34;
result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 +
_21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43;
result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 -
_11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43;
result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 +
_11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43;
result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 -
_11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33;
result._11 /= det;
result._12 /= det;
result._13 /= det;
result._14 /= det;
result._21 /= det;
result._22 /= det;
result._23 /= det;
result._24 /= det;
result._31 /= det;
result._32 /= det;
result._33 /= det;
result._34 /= det;
result._41 /= det;
result._42 /= det;
result._43 /= det;
result._44 /= det;
*this = result;
return true;
}
Matrix4x4Typed<TargetUnits, SourceUnits, T> Inverse() const {
typedef Matrix4x4Typed<TargetUnits, SourceUnits, T> InvertedMatrix;
InvertedMatrix clone = Cast<InvertedMatrix>();
DebugOnly<bool> inverted = clone.Invert();
MOZ_ASSERT(inverted,
"Attempted to get the inverse of a non-invertible matrix");
return clone;
}
Maybe<Matrix4x4Typed<TargetUnits, SourceUnits, T>> MaybeInverse() const {
typedef Matrix4x4Typed<TargetUnits, SourceUnits, T> InvertedMatrix;
InvertedMatrix clone = Cast<InvertedMatrix>();
if (clone.Invert()) {
return Some(clone);
}
return Nothing();
}
void Normalize() {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
(*this)[i][j] /= (*this)[3][3];
}
}
}
bool FuzzyEqual(const Matrix4x4Typed& o) const {
return gfx::FuzzyEqual(_11, o._11) && gfx::FuzzyEqual(_12, o._12) &&
gfx::FuzzyEqual(_13, o._13) && gfx::FuzzyEqual(_14, o._14) &&
gfx::FuzzyEqual(_21, o._21) && gfx::FuzzyEqual(_22, o._22) &&
gfx::FuzzyEqual(_23, o._23) && gfx::FuzzyEqual(_24, o._24) &&
gfx::FuzzyEqual(_31, o._31) && gfx::FuzzyEqual(_32, o._32) &&
gfx::FuzzyEqual(_33, o._33) && gfx::FuzzyEqual(_34, o._34) &&
gfx::FuzzyEqual(_41, o._41) && gfx::FuzzyEqual(_42, o._42) &&
gfx::FuzzyEqual(_43, o._43) && gfx::FuzzyEqual(_44, o._44);
}
bool FuzzyEqualsMultiplicative(const Matrix4x4Typed& o) const {
return ::mozilla::FuzzyEqualsMultiplicative(_11, o._11) &&
::mozilla::FuzzyEqualsMultiplicative(_12, o._12) &&
::mozilla::FuzzyEqualsMultiplicative(_13, o._13) &&
::mozilla::FuzzyEqualsMultiplicative(_14, o._14) &&
::mozilla::FuzzyEqualsMultiplicative(_21, o._21) &&
::mozilla::FuzzyEqualsMultiplicative(_22, o._22) &&
::mozilla::FuzzyEqualsMultiplicative(_23, o._23) &&
::mozilla::FuzzyEqualsMultiplicative(_24, o._24) &&
::mozilla::FuzzyEqualsMultiplicative(_31, o._31) &&
::mozilla::FuzzyEqualsMultiplicative(_32, o._32) &&
::mozilla::FuzzyEqualsMultiplicative(_33, o._33) &&
::mozilla::FuzzyEqualsMultiplicative(_34, o._34) &&
::mozilla::FuzzyEqualsMultiplicative(_41, o._41) &&
::mozilla::FuzzyEqualsMultiplicative(_42, o._42) &&
::mozilla::FuzzyEqualsMultiplicative(_43, o._43) &&
::mozilla::FuzzyEqualsMultiplicative(_44, o._44);
}
bool IsBackfaceVisible() const {
// Inverse()._33 < 0;
T det = Determinant();
T __33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 -
_11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
return (__33 * det) < 0;
}
Matrix4x4Typed& NudgeToIntegersFixedEpsilon() {
NudgeToInteger(&_11);
NudgeToInteger(&_12);
NudgeToInteger(&_13);
NudgeToInteger(&_14);
NudgeToInteger(&_21);
NudgeToInteger(&_22);
NudgeToInteger(&_23);
NudgeToInteger(&_24);
NudgeToInteger(&_31);
NudgeToInteger(&_32);
NudgeToInteger(&_33);
NudgeToInteger(&_34);
static const float error = 1e-5f;
NudgeToInteger(&_41, error);
NudgeToInteger(&_42, error);
NudgeToInteger(&_43, error);
NudgeToInteger(&_44, error);
return *this;
}
Point4D TransposedVector(int aIndex) const {
MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
return Point4DTyped<UnknownUnits, T>(*((&_11) + aIndex), *((&_21) + aIndex),
*((&_31) + aIndex),
*((&_41) + aIndex));
}
void SetTransposedVector(int aIndex, Point4DTyped<UnknownUnits, T>& aVector) {
MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
*((&_11) + aIndex) = aVector.x;
*((&_21) + aIndex) = aVector.y;
*((&_31) + aIndex) = aVector.z;
*((&_41) + aIndex) = aVector.w;
}
bool Decompose(Point3DTyped<UnknownUnits, T>& translation,
BaseQuaternion<T>& rotation,
Point3DTyped<UnknownUnits, T>& scale) const {
// Ensure matrix can be normalized
if (gfx::FuzzyEqual(_44, 0.0f)) {
return false;
}
Matrix4x4Typed mat = *this;
mat.Normalize();
if (HasPerspectiveComponent()) {
// We do not support projection matrices
return false;
}
// Extract translation
translation.x = mat._41;
translation.y = mat._42;
translation.z = mat._43;
// Remove translation
mat._41 = 0.0f;
mat._42 = 0.0f;
mat._43 = 0.0f;
// Extract scale
scale.x = sqrtf(_11 * _11 + _21 * _21 + _31 * _31);
scale.y = sqrtf(_12 * _12 + _22 * _22 + _32 * _32);
scale.z = sqrtf(_13 * _13 + _23 * _23 + _33 * _33);
// Remove scale
if (gfx::FuzzyEqual(scale.x, 0.0f) || gfx::FuzzyEqual(scale.y, 0.0f) ||
gfx::FuzzyEqual(scale.z, 0.0f)) {
// We do not support matrices with a zero scale component
return false;
}
// Extract rotation
rotation.SetFromRotationMatrix(this->ToUnknownMatrix());
return true;
}
// Sets this matrix to a rotation matrix given by aQuat.
// This quaternion *MUST* be normalized!
// Implemented in Quaternion.cpp
void SetRotationFromQuaternion(const BaseQuaternion<T>& q) {
const T x2 = q.x + q.x, y2 = q.y + q.y, z2 = q.z + q.z;
const T xx = q.x * x2, xy = q.x * y2, xz = q.x * z2;
const T yy = q.y * y2, yz = q.y * z2, zz = q.z * z2;
const T wx = q.w * x2, wy = q.w * y2, wz = q.w * z2;
_11 = 1.0f - (yy + zz);
_21 = xy - wz;
_31 = xz + wy;
_41 = 0.0f;
_12 = xy + wz;
_22 = 1.0f - (xx + zz);
_32 = yz - wx;
_42 = 0.0f;
_13 = xz - wy;
_23 = yz + wx;
_33 = 1.0f - (xx + yy);
_43 = 0.0f;
_14 = _42 = _43 = 0.0f;
_44 = 1.0f;
}
// Set all the members of the matrix to NaN
void SetNAN() {
_11 = UnspecifiedNaN<T>();
_21 = UnspecifiedNaN<T>();
_31 = UnspecifiedNaN<T>();
_41 = UnspecifiedNaN<T>();
_12 = UnspecifiedNaN<T>();
_22 = UnspecifiedNaN<T>();
_32 = UnspecifiedNaN<T>();
_42 = UnspecifiedNaN<T>();
_13 = UnspecifiedNaN<T>();
_23 = UnspecifiedNaN<T>();
_33 = UnspecifiedNaN<T>();
_43 = UnspecifiedNaN<T>();
_14 = UnspecifiedNaN<T>();
_24 = UnspecifiedNaN<T>();
_34 = UnspecifiedNaN<T>();
_44 = UnspecifiedNaN<T>();
}
// Verifies that the matrix contains no Infs or NaNs
bool IsFinite() const {
return std::isfinite(_11) && std::isfinite(_12) && std::isfinite(_13) &&
std::isfinite(_14) && std::isfinite(_21) && std::isfinite(_22) &&
std::isfinite(_23) && std::isfinite(_24) && std::isfinite(_31) &&
std::isfinite(_32) && std::isfinite(_33) && std::isfinite(_34) &&
std::isfinite(_41) && std::isfinite(_42) && std::isfinite(_43) &&
std::isfinite(_44);
}
void SkewXY(double aXSkew, double aYSkew) {
// XXX Is double precision really necessary here
T tanX = SafeTangent(aXSkew);
T tanY = SafeTangent(aYSkew);
T temp;
temp = _11;
_11 += tanY * _21;
_21 += tanX * temp;
temp = _12;
_12 += tanY * _22;
_22 += tanX * temp;
temp = _13;
_13 += tanY * _23;
_23 += tanX * temp;
temp = _14;
_14 += tanY * _24;
_24 += tanX * temp;
}
void RotateX(double aTheta) {
// XXX Is double precision really necessary here
double cosTheta = FlushToZero(cos(aTheta));
double sinTheta = FlushToZero(sin(aTheta));
T temp;
temp = _21;
_21 = cosTheta * _21 + sinTheta * _31;
_31 = -sinTheta * temp + cosTheta * _31;
temp = _22;
_22 = cosTheta * _22 + sinTheta * _32;
_32 = -sinTheta * temp + cosTheta * _32;
temp = _23;
_23 = cosTheta * _23 + sinTheta * _33;
_33 = -sinTheta * temp + cosTheta * _33;
temp = _24;
_24 = cosTheta * _24 + sinTheta * _34;
_34 = -sinTheta * temp + cosTheta * _34;
}
void RotateY(double aTheta) {
// XXX Is double precision really necessary here
double cosTheta = FlushToZero(cos(aTheta));
double sinTheta = FlushToZero(sin(aTheta));
T temp;
temp = _11;
_11 = cosTheta * _11 + -sinTheta * _31;
_31 = sinTheta * temp + cosTheta * _31;
temp = _12;
_12 = cosTheta * _12 + -sinTheta * _32;
_32 = sinTheta * temp + cosTheta * _32;
temp = _13;
_13 = cosTheta * _13 + -sinTheta * _33;
_33 = sinTheta * temp + cosTheta * _33;
temp = _14;
_14 = cosTheta * _14 + -sinTheta * _34;
_34 = sinTheta * temp + cosTheta * _34;
}
void RotateZ(double aTheta) {
// XXX Is double precision really necessary here
double cosTheta = FlushToZero(cos(aTheta));
double sinTheta = FlushToZero(sin(aTheta));
T temp;
temp = _11;
_11 = cosTheta * _11 + sinTheta * _21;
_21 = -sinTheta * temp + cosTheta * _21;
temp = _12;
_12 = cosTheta * _12 + sinTheta * _22;
_22 = -sinTheta * temp + cosTheta * _22;
temp = _13;
_13 = cosTheta * _13 + sinTheta * _23;
_23 = -sinTheta * temp + cosTheta * _23;
temp = _14;
_14 = cosTheta * _14 + sinTheta * _24;
_24 = -sinTheta * temp + cosTheta * _24;
}
// Sets this matrix to a rotation matrix about a
// vector [x,y,z] by angle theta. The vector is normalized
// to a unit vector.
// https://drafts.csswg.org/css-transforms-2/#Rotate3dDefined
void SetRotateAxisAngle(double aX, double aY, double aZ, double aTheta) {
Point3DTyped<UnknownUnits, T> vector(aX, aY, aZ);
if (!vector.Length()) {
return;
}
vector.RobustNormalize();
double x = vector.x;
double y = vector.y;
double z = vector.z;
double cosTheta = FlushToZero(cos(aTheta));
double sinTheta = FlushToZero(sin(aTheta));
// sin(aTheta / 2) * cos(aTheta / 2)
double sc = sinTheta / 2;
// pow(sin(aTheta / 2), 2)
double sq = (1 - cosTheta) / 2;
_11 = 1 - 2 * (y * y + z * z) * sq;
_12 = 2 * (x * y * sq + z * sc);
_13 = 2 * (x * z * sq - y * sc);
_14 = 0.0f;
_21 = 2 * (x * y * sq - z * sc);
_22 = 1 - 2 * (x * x + z * z) * sq;
_23 = 2 * (y * z * sq + x * sc);
_24 = 0.0f;
_31 = 2 * (x * z * sq + y * sc);
_32 = 2 * (y * z * sq - x * sc);
_33 = 1 - 2 * (x * x + y * y) * sq;
_34 = 0.0f;
_41 = 0.0f;
_42 = 0.0f;
_43 = 0.0f;
_44 = 1.0f;
}
void Perspective(T aDepth) {
MOZ_ASSERT(aDepth > 0.0f, "Perspective must be positive!");
_31 += -1.0 / aDepth * _41;
_32 += -1.0 / aDepth * _42;
_33 += -1.0 / aDepth * _43;
_34 += -1.0 / aDepth * _44;
}
Point3D GetNormalVector() const {
// Define a plane in transformed space as the transformations
// of 3 points on the z=0 screen plane.
Point3DTyped<UnknownUnits, T> a =
TransformPoint(Point3DTyped<UnknownUnits, T>(0, 0, 0));
Point3DTyped<UnknownUnits, T> b =
TransformPoint(Point3DTyped<UnknownUnits, T>(0, 1, 0));
Point3DTyped<UnknownUnits, T> c =
TransformPoint(Point3DTyped<UnknownUnits, T>(1, 0, 0));
// Convert to two vectors on the surface of the plane.
Point3DTyped<UnknownUnits, T> ab = b - a;
Point3DTyped<UnknownUnits, T> ac = c - a;
return ac.CrossProduct(ab);
}
/**
* Returns true if the matrix has any transform other
* than a straight translation.
*/
bool HasNonTranslation() const {
return !gfx::FuzzyEqual(_11, 1.0) || !gfx::FuzzyEqual(_22, 1.0) ||
!gfx::FuzzyEqual(_12, 0.0) || !gfx::FuzzyEqual(_21, 0.0) ||
!gfx::FuzzyEqual(_13, 0.0) || !gfx::FuzzyEqual(_23, 0.0) ||
!gfx::FuzzyEqual(_31, 0.0) || !gfx::FuzzyEqual(_32, 0.0) ||
!gfx::FuzzyEqual(_33, 1.0);
}
/**
* Returns true if the matrix is anything other than a straight
* translation by integers.
*/
bool HasNonIntegerTranslation() const {
return HasNonTranslation() || !gfx::FuzzyEqual(_41, floor(_41 + 0.5)) ||
!gfx::FuzzyEqual(_42, floor(_42 + 0.5)) ||
!gfx::FuzzyEqual(_43, floor(_43 + 0.5));
}
/**
* Return true if the matrix is with perspective (w).
*/
bool HasPerspectiveComponent() const {
return _14 != 0 || _24 != 0 || _34 != 0 || _44 != 1;
}
/* Returns true if the matrix is a rectilinear transformation (i.e.
* grid-aligned rectangles are transformed to grid-aligned rectangles).
* This should only be called on 2D matrices.
*/
bool IsRectilinear() const {
MOZ_ASSERT(Is2D());
if (gfx::FuzzyEqual(_12, 0) && gfx::FuzzyEqual(_21, 0)) {
return true;
} else if (gfx::FuzzyEqual(_22, 0) && gfx::FuzzyEqual(_11, 0)) {
return true;
}
return false;
}
/**
* Convert between typed and untyped matrices.
*/
using UnknownMatrix = Matrix4x4Typed<UnknownUnits, UnknownUnits, T>;
UnknownMatrix ToUnknownMatrix() const {
return UnknownMatrix{_11, _12, _13, _14, _21, _22, _23, _24,
_31, _32, _33, _34, _41, _42, _43, _44};
}
static Matrix4x4Typed FromUnknownMatrix(const UnknownMatrix& aUnknown) {
return Matrix4x4Typed{
aUnknown._11, aUnknown._12, aUnknown._13, aUnknown._14,
aUnknown._21, aUnknown._22, aUnknown._23, aUnknown._24,
aUnknown._31, aUnknown._32, aUnknown._33, aUnknown._34,
aUnknown._41, aUnknown._42, aUnknown._43, aUnknown._44};
}
/**
* For convenience, overload FromUnknownMatrix() for Maybe<Matrix>.
*/
static Maybe<Matrix4x4Typed> FromUnknownMatrix(
const Maybe<UnknownMatrix>& aUnknown) {
if (aUnknown.isSome()) {
return Some(FromUnknownMatrix(*aUnknown));
}
return Nothing();
}
};
typedef Matrix4x4Typed<UnknownUnits, UnknownUnits> Matrix4x4;
typedef Matrix4x4Typed<UnknownUnits, UnknownUnits, double> Matrix4x4Double;
class Matrix5x4 {
public:
Matrix5x4()
: _11(1.0f),
_12(0),
_13(0),
_14(0),
_21(0),
_22(1.0f),
_23(0),
_24(0),
_31(0),
_32(0),
_33(1.0f),
_34(0),
_41(0),
_42(0),
_43(0),
_44(1.0f),
_51(0),
_52(0),
_53(0),
_54(0) {}
Matrix5x4(Float a11, Float a12, Float a13, Float a14, Float a21, Float a22,
Float a23, Float a24, Float a31, Float a32, Float a33, Float a34,
Float a41, Float a42, Float a43, Float a44, Float a51, Float a52,
Float a53, Float a54)
: _11(a11),
_12(a12),
_13(a13),
_14(a14),
_21(a21),
_22(a22),
_23(a23),
_24(a24),
_31(a31),
_32(a32),
_33(a33),
_34(a34),
_41(a41),
_42(a42),
_43(a43),
_44(a44),
_51(a51),
_52(a52),
_53(a53),
_54(a54) {}
bool operator==(const Matrix5x4& o) const {
return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 &&
_21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 &&
_31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 &&
_41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44 &&
_51 == o._51 && _52 == o._52 && _53 == o._53 && _54 == o._54;
}
bool operator!=(const Matrix5x4& aMatrix) const {
return !(*this == aMatrix);
}
Matrix5x4 operator*(const Matrix5x4& aMatrix) const {
Matrix5x4 resultMatrix;
resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21 +
this->_13 * aMatrix._31 + this->_14 * aMatrix._41;
resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22 +
this->_13 * aMatrix._32 + this->_14 * aMatrix._42;
resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23 +
this->_13 * aMatrix._33 + this->_14 * aMatrix._43;
resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24 +
this->_13 * aMatrix._34 + this->_14 * aMatrix._44;
resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21 +
this->_23 * aMatrix._31 + this->_24 * aMatrix._41;
resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22 +
this->_23 * aMatrix._32 + this->_24 * aMatrix._42;
resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23 +
this->_23 * aMatrix._33 + this->_24 * aMatrix._43;
resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24 +
this->_23 * aMatrix._34 + this->_24 * aMatrix._44;
resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 +
this->_33 * aMatrix._31 + this->_34 * aMatrix._41;
resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 +
this->_33 * aMatrix._32 + this->_34 * aMatrix._42;
resultMatrix._33 = this->_31 * aMatrix._13 + this->_32 * aMatrix._23 +
this->_33 * aMatrix._33 + this->_34 * aMatrix._43;
resultMatrix._34 = this->_31 * aMatrix._14 + this->_32 * aMatrix._24 +
this->_33 * aMatrix._34 + this->_34 * aMatrix._44;
resultMatrix._41 = this->_41 * aMatrix._11 + this->_42 * aMatrix._21 +
this->_43 * aMatrix._31 + this->_44 * aMatrix._41;
resultMatrix._42 = this->_41 * aMatrix._12 + this->_42 * aMatrix._22 +
this->_43 * aMatrix._32 + this->_44 * aMatrix._42;
resultMatrix._43 = this->_41 * aMatrix._13 + this->_42 * aMatrix._23 +
this->_43 * aMatrix._33 + this->_44 * aMatrix._43;
resultMatrix._44 = this->_41 * aMatrix._14 + this->_42 * aMatrix._24 +
this->_43 * aMatrix._34 + this->_44 * aMatrix._44;
resultMatrix._51 = this->_51 * aMatrix._11 + this->_52 * aMatrix._21 +
this->_53 * aMatrix._31 + this->_54 * aMatrix._41 +
aMatrix._51;
resultMatrix._52 = this->_51 * aMatrix._12 + this->_52 * aMatrix._22 +
this->_53 * aMatrix._32 + this->_54 * aMatrix._42 +
aMatrix._52;
resultMatrix._53 = this->_51 * aMatrix._13 + this->_52 * aMatrix._23 +
this->_53 * aMatrix._33 + this->_54 * aMatrix._43 +
aMatrix._53;
resultMatrix._54 = this->_51 * aMatrix._14 + this->_52 * aMatrix._24 +
this->_53 * aMatrix._34 + this->_54 * aMatrix._44 +
aMatrix._54;
return resultMatrix;
}
Matrix5x4& operator*=(const Matrix5x4& aMatrix) {
*this = *this * aMatrix;
return *this;
}
friend std::ostream& operator<<(std::ostream& aStream,
const Matrix5x4& aMatrix) {
const Float* f = &aMatrix._11;
aStream << "[ " << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
f += 4;
aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
f += 4;
aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
f += 4;
aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
f += 4;
aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3]
<< "; ]";
return aStream;
}
union {
struct {
Float _11, _12, _13, _14;
Float _21, _22, _23, _24;
Float _31, _32, _33, _34;
Float _41, _42, _43, _44;
Float _51, _52, _53, _54;
};
Float components[20];
};
};
/* This Matrix class will carry one additional type field in order to
* track what type of 4x4 matrix we're dealing with, it can then execute
* simplified versions of certain operations when applicable.
* This does not allow access to the parent class directly, as a caller
* could then mutate the parent class without updating the type.
*/
template <typename SourceUnits, typename TargetUnits>
class Matrix4x4TypedFlagged
: protected Matrix4x4Typed<SourceUnits, TargetUnits> {
public:
using Parent = Matrix4x4Typed<SourceUnits, TargetUnits>;
using TargetPoint = PointTyped<TargetUnits>;
using Parent::_11;
using Parent::_12;
using Parent::_13;
using Parent::_14;
using Parent::_21;
using Parent::_22;
using Parent::_23;
using Parent::_24;
using Parent::_31;
using Parent::_32;
using Parent::_33;
using Parent::_34;
using Parent::_41;
using Parent::_42;
using Parent::_43;
using Parent::_44;
Matrix4x4TypedFlagged() : mType(MatrixType::Identity) {}
Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21,
Float a22, Float a23, Float a24, Float a31, Float a32,
Float a33, Float a34, Float a41, Float a42, Float a43,
Float a44)
: Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41,
a42, a43, a44) {
Analyze();
}
MOZ_IMPLICIT Matrix4x4TypedFlagged(const Parent& aOther) : Parent(aOther) {
Analyze();
}
template <typename NewMatrix4x4TypedFlagged>
[[nodiscard]] NewMatrix4x4TypedFlagged Cast() const {
return NewMatrix4x4TypedFlagged(_11, _12, _13, _14, _21, _22, _23, _24, _31,
_32, _33, _34, _41, _42, _43, _44, mType);
}
template <class F>
PointTyped<TargetUnits, F> TransformPoint(
const PointTyped<SourceUnits, F>& aPoint) const {
if (mType == MatrixType::Identity) {
return aPoint;
}
if (mType == MatrixType::Simple) {
return TransformPointSimple(aPoint);
}
return Parent::TransformPoint(aPoint);
}
template <class F>
RectTyped<TargetUnits, F> TransformAndClipBounds(
const RectTyped<SourceUnits, F>& aRect,
const RectTyped<TargetUnits, F>& aClip) const {
if (mType == MatrixType::Identity) {
const RectTyped<SourceUnits, F>& clipped = aRect.Intersect(aClip);
return RectTyped<TargetUnits, F>(clipped.X(), clipped.Y(),
clipped.Width(), clipped.Height());
}
if (mType == MatrixType::Simple) {
PointTyped<UnknownUnits, F> p1 = TransformPointSimple(aRect.TopLeft());
PointTyped<UnknownUnits, F> p2 = TransformPointSimple(aRect.TopRight());
PointTyped<UnknownUnits, F> p3 = TransformPointSimple(aRect.BottomLeft());
PointTyped<UnknownUnits, F> p4 =
TransformPointSimple(aRect.BottomRight());
F min_x = std::min(std::min(std::min(p1.x, p2.x), p3.x), p4.x);
F max_x = std::max(std::max(std::max(p1.x, p2.x), p3.x), p4.x);
F min_y = std::min(std::min(std::min(p1.y, p2.y), p3.y), p4.y);
F max_y = std::max(std::max(std::max(p1.y, p2.y), p3.y), p4.y);
TargetPoint topLeft(std::max(min_x, aClip.x), std::max(min_y, aClip.y));
F width = std::min(max_x, aClip.XMost()) - topLeft.x;
F height = std::min(max_y, aClip.YMost()) - topLeft.y;
return RectTyped<TargetUnits, F>(topLeft.x, topLeft.y, width, height);
}
return Parent::TransformAndClipBounds(aRect, aClip);
}
bool FuzzyEqual(const Parent& o) const { return Parent::FuzzyEqual(o); }
bool FuzzyEqual(const Matrix4x4TypedFlagged& o) const {
if (mType == MatrixType::Identity && o.mType == MatrixType::Identity) {
return true;
}
return Parent::FuzzyEqual(o);
}
Matrix4x4TypedFlagged& PreTranslate(Float aX, Float aY, Float aZ) {
if (mType == MatrixType::Identity) {
_41 = aX;
_42 = aY;
_43 = aZ;
if (!aZ) {
mType = MatrixType::Simple;
return *this;
}
mType = MatrixType::Full;
return *this;
}
Parent::PreTranslate(aX, aY, aZ);
if (aZ != 0) {
mType = MatrixType::Full;
}
return *this;
}
Matrix4x4TypedFlagged& PostTranslate(Float aX, Float aY, Float aZ) {
if (mType == MatrixType::Identity) {
_41 = aX;
_42 = aY;
_43 = aZ;
if (!aZ) {
mType = MatrixType::Simple;
return *this;
}
mType = MatrixType::Full;
return *this;
}
Parent::PostTranslate(aX, aY, aZ);
if (aZ != 0) {
mType = MatrixType::Full;
}
return *this;
}
Matrix4x4TypedFlagged& ChangeBasis(Float aX, Float aY, Float aZ) {
// Translate to the origin before applying this matrix
PreTranslate(-aX, -aY, -aZ);
// Translate back into position after applying this matrix
PostTranslate(aX, aY, aZ);
return *this;
}
bool IsIdentity() const { return mType == MatrixType::Identity; }
template <class F>
Point4DTyped<TargetUnits, F> ProjectPoint(
const PointTyped<SourceUnits, F>& aPoint) const {
if (mType == MatrixType::Identity) {
return Point4DTyped<TargetUnits, F>(aPoint.x, aPoint.y, 0, 1);
}
if (mType == MatrixType::Simple) {
TargetPoint point = TransformPointSimple(aPoint);
return Point4DTyped<TargetUnits, F>(point.x, point.y, 0, 1);
}
return Parent::ProjectPoint(aPoint);
}
Matrix4x4TypedFlagged& ProjectTo2D() {
if (mType == MatrixType::Full) {
Parent::ProjectTo2D();
}
return *this;
}
bool IsSingular() const {
if (mType == MatrixType::Identity) {
return false;
}
return Parent::Determinant() == 0.0;
}
bool Invert() {
if (mType == MatrixType::Identity) {
return true;
}
return Parent::Invert();
}
Matrix4x4TypedFlagged<TargetUnits, SourceUnits> Inverse() const {
typedef Matrix4x4TypedFlagged<TargetUnits, SourceUnits> InvertedMatrix;
InvertedMatrix clone = Cast<InvertedMatrix>();
if (mType == MatrixType::Identity) {
return clone;
}
DebugOnly<bool> inverted = clone.Invert();
MOZ_ASSERT(inverted,
"Attempted to get the inverse of a non-invertible matrix");
// Inverting a 2D Matrix should result in a 2D matrix, ergo mType doesn't
// change.
return clone;
}
template <typename NewTargetUnits>
bool operator==(
const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
if (mType == MatrixType::Identity &&
aMatrix.mType == MatrixType::Identity) {
return true;
}
// Depending on the usage it may make sense to compare more flags.
return Parent::operator==(aMatrix);
}
template <typename NewTargetUnits>
bool operator!=(
const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
if (mType == MatrixType::Identity &&
aMatrix.mType == MatrixType::Identity) {
return false;
}
// Depending on the usage it may make sense to compare more flags.
return Parent::operator!=(aMatrix);
}
template <typename NewTargetUnits>
Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> operator*(
const Matrix4x4Typed<TargetUnits, NewTargetUnits>& aMatrix) const {
if (mType == MatrixType::Identity) {
return aMatrix;
}
if (mType == MatrixType::Simple) {
Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
matrix._31 = aMatrix._31;
matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
matrix._32 = aMatrix._32;
matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23;
matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23;
matrix._33 = aMatrix._33;
matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + aMatrix._43;
matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24;
matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24;
matrix._34 = aMatrix._34;
matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44;
matrix.Analyze();
return matrix;
}
return Parent::operator*(aMatrix);
}
template <typename NewTargetUnits>
Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> operator*(
const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
if (mType == MatrixType::Identity) {
return aMatrix;
}
if (aMatrix.mType == MatrixType::Identity) {
return Cast<Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits>>();
}
if (mType == MatrixType::Simple && aMatrix.mType == MatrixType::Simple) {
Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
matrix.mType = MatrixType::Simple;
return matrix;
} else if (mType == MatrixType::Simple) {
Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
matrix._31 = aMatrix._31;
matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
matrix._32 = aMatrix._32;
matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23;
matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23;
matrix._33 = aMatrix._33;
matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + aMatrix._43;
matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24;
matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24;
matrix._34 = aMatrix._34;
matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44;
matrix.mType = MatrixType::Full;
return matrix;
} else if (aMatrix.mType == MatrixType::Simple) {
Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _14 * aMatrix._41;
matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _24 * aMatrix._41;
matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _34 * aMatrix._41;
matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _44 * aMatrix._41;
matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _14 * aMatrix._42;
matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _24 * aMatrix._42;
matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _34 * aMatrix._42;
matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _44 * aMatrix._42;
matrix._13 = _13;
matrix._23 = _23;
matrix._33 = _33;
matrix._43 = _43;
matrix._14 = _14;
matrix._24 = _24;
matrix._34 = _34;
matrix._44 = _44;
matrix.mType = MatrixType::Full;
return matrix;
}
return Parent::operator*(aMatrix);
}
bool Is2D() const { return mType != MatrixType::Full; }
bool CanDraw2D(Matrix* aMatrix = nullptr) const {
if (mType != MatrixType::Full) {
if (aMatrix) {
aMatrix->_11 = _11;
aMatrix->_12 = _12;
aMatrix->_21 = _21;
aMatrix->_22 = _22;
aMatrix->_31 = _41;
aMatrix->_32 = _42;
}
return true;
}
return Parent::CanDraw2D(aMatrix);
}
bool Is2D(Matrix* aMatrix) const {
if (!Is2D()) {
return false;
}
if (aMatrix) {
aMatrix->_11 = _11;
aMatrix->_12 = _12;
aMatrix->_21 = _21;
aMatrix->_22 = _22;
aMatrix->_31 = _41;
aMatrix->_32 = _42;
}
return true;
}
template <class F>
RectTyped<TargetUnits, F> ProjectRectBounds(
const RectTyped<SourceUnits, F>& aRect,
const RectTyped<TargetUnits, F>& aClip) const {
return Parent::ProjectRectBounds(aRect, aClip);
}
const Parent& GetMatrix() const { return *this; }
private:
enum class MatrixType : uint8_t {
Identity,
Simple, // 2x3 Matrix
Full // 4x4 Matrix
};
Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21,
Float a22, Float a23, Float a24, Float a31, Float a32,
Float a33, Float a34, Float a41, Float a42, Float a43,
Float a44,
typename Matrix4x4TypedFlagged::MatrixType aType)
: Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41,
a42, a43, a44) {
mType = aType;
}
static Matrix4x4TypedFlagged FromUnknownMatrix(
const Matrix4x4Flagged& aUnknown) {
return Matrix4x4TypedFlagged{
aUnknown._11, aUnknown._12, aUnknown._13, aUnknown._14, aUnknown._21,
aUnknown._22, aUnknown._23, aUnknown._24, aUnknown._31, aUnknown._32,
aUnknown._33, aUnknown._34, aUnknown._41, aUnknown._42, aUnknown._43,
aUnknown._44, aUnknown.mType};
}
Matrix4x4Flagged ToUnknownMatrix() const {
return Matrix4x4Flagged{_11, _12, _13, _14, _21, _22, _23, _24, _31,
_32, _33, _34, _41, _42, _43, _44, mType};
}
template <class F>
PointTyped<TargetUnits, F> TransformPointSimple(
const PointTyped<SourceUnits, F>& aPoint) const {
PointTyped<SourceUnits, F> temp;
temp.x = aPoint.x * _11 + aPoint.y * +_21 + _41;
temp.y = aPoint.x * _12 + aPoint.y * +_22 + _42;
return temp;
}
void Analyze() {
if (Parent::IsIdentity()) {
mType = MatrixType::Identity;
return;
}
if (Parent::Is2D()) {
mType = MatrixType::Simple;
return;
}
mType = MatrixType::Full;
}
MatrixType mType;
};
using Matrix4x4Flagged = Matrix4x4TypedFlagged<UnknownUnits, UnknownUnits>;
} // namespace gfx
} // namespace mozilla
#endif /* MOZILLA_GFX_MATRIX_H_ */
|