1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Swizzle.h"
#include <arm_neon.h>
namespace mozilla {
namespace gfx {
// Load 1-3 pixels into a 4 pixel vector.
static MOZ_ALWAYS_INLINE uint16x8_t LoadRemainder_NEON(const uint8_t* aSrc,
size_t aLength) {
const uint32_t* src32 = reinterpret_cast<const uint32_t*>(aSrc);
uint32x4_t dst32;
if (aLength >= 2) {
// Load first 2 pixels
dst32 = vcombine_u32(vld1_u32(src32), vdup_n_u32(0));
// Load third pixel
if (aLength >= 3) {
dst32 = vld1q_lane_u32(src32 + 2, dst32, 2);
}
} else {
// Load single pixel
dst32 = vld1q_lane_u32(src32, vdupq_n_u32(0), 0);
}
return vreinterpretq_u16_u32(dst32);
}
// Store 1-3 pixels from a vector into memory without overwriting.
static MOZ_ALWAYS_INLINE void StoreRemainder_NEON(uint8_t* aDst, size_t aLength,
const uint16x8_t& aSrc) {
uint32_t* dst32 = reinterpret_cast<uint32_t*>(aDst);
uint32x4_t src32 = vreinterpretq_u32_u16(aSrc);
if (aLength >= 2) {
// Store first 2 pixels
vst1_u32(dst32, vget_low_u32(src32));
// Store third pixel
if (aLength >= 3) {
vst1q_lane_u32(dst32 + 2, src32, 2);
}
} else {
// Store single pixel
vst1q_lane_u32(dst32, src32, 0);
}
}
// Premultiply vector of 4 pixels using splayed math.
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE uint16x8_t
PremultiplyVector_NEON(const uint16x8_t& aSrc) {
// Isolate R and B with mask.
const uint16x8_t mask = vdupq_n_u16(0x00FF);
uint16x8_t rb = vandq_u16(aSrc, mask);
// Swap R and B if necessary.
if (aSwapRB) {
rb = vrev32q_u16(rb);
}
// Isolate G and A by shifting down to bottom of word.
uint16x8_t ga = vshrq_n_u16(aSrc, 8);
// Duplicate alphas to get vector of A1 A1 A2 A2 A3 A3 A4 A4
uint16x8_t alphas = vtrnq_u16(ga, ga).val[1];
// rb = rb*a + 255; rb += rb >> 8;
rb = vmlaq_u16(mask, rb, alphas);
rb = vsraq_n_u16(rb, rb, 8);
// If format is not opaque, force A to 255 so that A*alpha/255 = alpha
if (!aOpaqueAlpha) {
ga = vorrq_u16(ga, vreinterpretq_u16_u32(vdupq_n_u32(0x00FF0000)));
}
// ga = ga*a + 255; ga += ga >> 8;
ga = vmlaq_u16(mask, ga, alphas);
ga = vsraq_n_u16(ga, ga, 8);
// If format is opaque, force output A to be 255.
if (aOpaqueAlpha) {
ga = vorrq_u16(ga, vreinterpretq_u16_u32(vdupq_n_u32(0xFF000000)));
}
// Combine back to final pixel with (rb >> 8) | (ga & 0xFF00FF00)
return vsriq_n_u16(ga, rb, 8);
}
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE void PremultiplyChunk_NEON(const uint8_t*& aSrc,
uint8_t*& aDst,
int32_t aAlignedRow,
int32_t aRemainder) {
// Process all 4-pixel chunks as one vector.
for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
uint16x8_t px = vld1q_u16(reinterpret_cast<const uint16_t*>(aSrc));
px = PremultiplyVector_NEON<aSwapRB, aOpaqueAlpha>(px);
vst1q_u16(reinterpret_cast<uint16_t*>(aDst), px);
aSrc += 4 * 4;
aDst += 4 * 4;
}
// Handle any 1-3 remaining pixels.
if (aRemainder) {
uint16x8_t px = LoadRemainder_NEON(aSrc, aRemainder);
px = PremultiplyVector_NEON<aSwapRB, aOpaqueAlpha>(px);
StoreRemainder_NEON(aDst, aRemainder, px);
}
}
template <bool aSwapRB, bool aOpaqueAlpha>
void PremultiplyRow_NEON(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
int32_t alignedRow = 4 * (aLength & ~3);
int32_t remainder = aLength & 3;
PremultiplyChunk_NEON<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow,
remainder);
}
template <bool aSwapRB, bool aOpaqueAlpha>
void Premultiply_NEON(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
int32_t alignedRow = 4 * (aSize.width & ~3);
int32_t remainder = aSize.width & 3;
// Fold remainder into stride gap.
aSrcGap += 4 * remainder;
aDstGap += 4 * remainder;
for (int32_t height = aSize.height; height > 0; height--) {
PremultiplyChunk_NEON<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow,
remainder);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Force instantiation of premultiply variants here.
template void PremultiplyRow_NEON<false, false>(const uint8_t*, uint8_t*,
int32_t);
template void PremultiplyRow_NEON<false, true>(const uint8_t*, uint8_t*,
int32_t);
template void PremultiplyRow_NEON<true, false>(const uint8_t*, uint8_t*,
int32_t);
template void PremultiplyRow_NEON<true, true>(const uint8_t*, uint8_t*,
int32_t);
template void Premultiply_NEON<false, false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Premultiply_NEON<false, true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Premultiply_NEON<true, false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Premultiply_NEON<true, true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
// This generates a table of fixed-point reciprocals representing 1/alpha
// similar to the fallback implementation. However, the reciprocal must
// ultimately be multiplied as an unsigned 9 bit upper part and a signed
// 15 bit lower part to cheaply multiply. Thus, the lower 15 bits of the
// reciprocal is stored 15 bits of the reciprocal are masked off and
// stored in the low word. The upper 9 bits are masked and shifted to fit
// into the high word. These then get independently multiplied with the
// color component and recombined to provide the full recriprocal multiply.
#define UNPREMULQ_NEON(x) \
((((0xFF00FFU / (x)) & 0xFF8000U) << 1) | ((0xFF00FFU / (x)) & 0x7FFFU))
#define UNPREMULQ_NEON_2(x) UNPREMULQ_NEON(x), UNPREMULQ_NEON((x) + 1)
#define UNPREMULQ_NEON_4(x) UNPREMULQ_NEON_2(x), UNPREMULQ_NEON_2((x) + 2)
#define UNPREMULQ_NEON_8(x) UNPREMULQ_NEON_4(x), UNPREMULQ_NEON_4((x) + 4)
#define UNPREMULQ_NEON_16(x) UNPREMULQ_NEON_8(x), UNPREMULQ_NEON_8((x) + 8)
#define UNPREMULQ_NEON_32(x) UNPREMULQ_NEON_16(x), UNPREMULQ_NEON_16((x) + 16)
static const uint32_t sUnpremultiplyTable_NEON[256] = {0,
UNPREMULQ_NEON(1),
UNPREMULQ_NEON_2(2),
UNPREMULQ_NEON_4(4),
UNPREMULQ_NEON_8(8),
UNPREMULQ_NEON_16(16),
UNPREMULQ_NEON_32(32),
UNPREMULQ_NEON_32(64),
UNPREMULQ_NEON_32(96),
UNPREMULQ_NEON_32(128),
UNPREMULQ_NEON_32(160),
UNPREMULQ_NEON_32(192),
UNPREMULQ_NEON_32(224)};
// Unpremultiply a vector of 4 pixels using splayed math and a reciprocal table
// that avoids doing any actual division.
template <bool aSwapRB>
static MOZ_ALWAYS_INLINE uint16x8_t
UnpremultiplyVector_NEON(const uint16x8_t& aSrc) {
// Isolate R and B with mask.
uint16x8_t rb = vandq_u16(aSrc, vdupq_n_u16(0x00FF));
// Swap R and B if necessary.
if (aSwapRB) {
rb = vrev32q_u16(rb);
}
// Isolate G and A by shifting down to bottom of word.
uint16x8_t ga = vshrq_n_u16(aSrc, 8);
// Extract the alphas for the 4 pixels from the now isolated words.
int a1 = vgetq_lane_u16(ga, 1);
int a2 = vgetq_lane_u16(ga, 3);
int a3 = vgetq_lane_u16(ga, 5);
int a4 = vgetq_lane_u16(ga, 7);
// First load all of the interleaved low and high portions of the reciprocals
// and combine them a single vector as lo1 hi1 lo2 hi2 lo3 hi3 lo4 hi4
uint16x8_t q1234 = vreinterpretq_u16_u32(vld1q_lane_u32(
&sUnpremultiplyTable_NEON[a4],
vld1q_lane_u32(
&sUnpremultiplyTable_NEON[a3],
vld1q_lane_u32(
&sUnpremultiplyTable_NEON[a2],
vld1q_lane_u32(&sUnpremultiplyTable_NEON[a1], vdupq_n_u32(0), 0),
1),
2),
3));
// Transpose the interleaved low/high portions so that we produce
// two separate duplicated vectors for the low and high portions respectively:
// lo1 lo1 lo2 lo2 lo3 lo3 lo4 lo4 and hi1 hi1 hi2 hi2 hi3 hi3 hi4 hi4
uint16x8x2_t q1234lohi = vtrnq_u16(q1234, q1234);
// VQDMULH is a signed multiply that doubles (*2) the result, then takes the
// high word. To work around the signedness and the doubling, the low
// portion of the reciprocal only stores the lower 15 bits, which fits in a
// signed 16 bit integer. The high 9 bit portion is effectively also doubled
// by 2 as a side-effect of being shifted for storage. Thus the output scale
// of doing a normal multiply by the high portion and the VQDMULH by the low
// portion are both doubled and can be safely added together. The resulting
// sum just needs to be halved (via VHADD) to thus cancel out the doubling.
// All this combines to produce a reciprocal multiply of the form:
// rb = ((rb * hi) + ((rb * lo * 2) >> 16)) / 2
rb = vhaddq_u16(
vmulq_u16(rb, q1234lohi.val[1]),
vreinterpretq_u16_s16(vqdmulhq_s16(
vreinterpretq_s16_u16(rb), vreinterpretq_s16_u16(q1234lohi.val[0]))));
// ga = ((ga * hi) + ((ga * lo * 2) >> 16)) / 2
ga = vhaddq_u16(
vmulq_u16(ga, q1234lohi.val[1]),
vreinterpretq_u16_s16(vqdmulhq_s16(
vreinterpretq_s16_u16(ga), vreinterpretq_s16_u16(q1234lohi.val[0]))));
// Combine to the final pixel with ((rb | (ga << 8)) & ~0xFF000000) | (aSrc &
// 0xFF000000), which inserts back in the original alpha value unchanged.
return vbslq_u16(vreinterpretq_u16_u32(vdupq_n_u32(0xFF000000)), aSrc,
vsliq_n_u16(rb, ga, 8));
}
template <bool aSwapRB>
static MOZ_ALWAYS_INLINE void UnpremultiplyChunk_NEON(const uint8_t*& aSrc,
uint8_t*& aDst,
int32_t aAlignedRow,
int32_t aRemainder) {
// Process all 4-pixel chunks as one vector.
for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
uint16x8_t px = vld1q_u16(reinterpret_cast<const uint16_t*>(aSrc));
px = UnpremultiplyVector_NEON<aSwapRB>(px);
vst1q_u16(reinterpret_cast<uint16_t*>(aDst), px);
aSrc += 4 * 4;
aDst += 4 * 4;
}
// Handle any 1-3 remaining pixels.
if (aRemainder) {
uint16x8_t px = LoadRemainder_NEON(aSrc, aRemainder);
px = UnpremultiplyVector_NEON<aSwapRB>(px);
StoreRemainder_NEON(aDst, aRemainder, px);
}
}
template <bool aSwapRB>
void UnpremultiplyRow_NEON(const uint8_t* aSrc, uint8_t* aDst,
int32_t aLength) {
int32_t alignedRow = 4 * (aLength & ~3);
int32_t remainder = aLength & 3;
UnpremultiplyChunk_NEON<aSwapRB>(aSrc, aDst, alignedRow, remainder);
}
template <bool aSwapRB>
void Unpremultiply_NEON(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
int32_t alignedRow = 4 * (aSize.width & ~3);
int32_t remainder = aSize.width & 3;
// Fold remainder into stride gap.
aSrcGap += 4 * remainder;
aDstGap += 4 * remainder;
for (int32_t height = aSize.height; height > 0; height--) {
UnpremultiplyChunk_NEON<aSwapRB>(aSrc, aDst, alignedRow, remainder);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Force instantiation of unpremultiply variants here.
template void UnpremultiplyRow_NEON<false>(const uint8_t*, uint8_t*, int32_t);
template void UnpremultiplyRow_NEON<true>(const uint8_t*, uint8_t*, int32_t);
template void Unpremultiply_NEON<false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Unpremultiply_NEON<true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
// Swizzle a vector of 4 pixels providing swaps and opaquifying.
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE uint16x8_t SwizzleVector_NEON(const uint16x8_t& aSrc) {
// Swap R and B, then add to G and A (forced to 255):
// (((src>>16) | (src << 16)) & 0x00FF00FF) |
// ((src | 0xFF000000) & ~0x00FF00FF)
return vbslq_u16(
vdupq_n_u16(0x00FF), vrev32q_u16(aSrc),
aOpaqueAlpha
? vorrq_u16(aSrc, vreinterpretq_u16_u32(vdupq_n_u32(0xFF000000)))
: aSrc);
}
#if 0
// These specializations currently do not profile faster than the generic versions,
// so disable them for now.
// Optimized implementations for when there is no R and B swap.
template<>
static MOZ_ALWAYS_INLINE uint16x8_t
SwizzleVector_NEON<false, true>(const uint16x8_t& aSrc)
{
// Force alpha to 255.
return vorrq_u16(aSrc, vreinterpretq_u16_u32(vdupq_n_u32(0xFF000000)));
}
template<>
static MOZ_ALWAYS_INLINE uint16x8_t
SwizzleVector_NEON<false, false>(const uint16x8_t& aSrc)
{
return aSrc;
}
#endif
template <bool aSwapRB, bool aOpaqueAlpha>
static MOZ_ALWAYS_INLINE void SwizzleChunk_NEON(const uint8_t*& aSrc,
uint8_t*& aDst,
int32_t aAlignedRow,
int32_t aRemainder) {
// Process all 4-pixel chunks as one vector.
for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
uint16x8_t px = vld1q_u16(reinterpret_cast<const uint16_t*>(aSrc));
px = SwizzleVector_NEON<aSwapRB, aOpaqueAlpha>(px);
vst1q_u16(reinterpret_cast<uint16_t*>(aDst), px);
aSrc += 4 * 4;
aDst += 4 * 4;
}
// Handle any 1-3 remaining pixels.
if (aRemainder) {
uint16x8_t px = LoadRemainder_NEON(aSrc, aRemainder);
px = SwizzleVector_NEON<aSwapRB, aOpaqueAlpha>(px);
StoreRemainder_NEON(aDst, aRemainder, px);
}
}
template <bool aSwapRB, bool aOpaqueAlpha>
void SwizzleRow_NEON(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
int32_t alignedRow = 4 * (aLength & ~3);
int32_t remainder = aLength & 3;
SwizzleChunk_NEON<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow, remainder);
}
template <bool aSwapRB, bool aOpaqueAlpha>
void Swizzle_NEON(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
int32_t aDstGap, IntSize aSize) {
int32_t alignedRow = 4 * (aSize.width & ~3);
int32_t remainder = aSize.width & 3;
// Fold remainder into stride gap.
aSrcGap += 4 * remainder;
aDstGap += 4 * remainder;
for (int32_t height = aSize.height; height > 0; height--) {
SwizzleChunk_NEON<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow, remainder);
aSrc += aSrcGap;
aDst += aDstGap;
}
}
// Force instantiation of swizzle variants here.
template void SwizzleRow_NEON<true, false>(const uint8_t*, uint8_t*, int32_t);
template void SwizzleRow_NEON<true, true>(const uint8_t*, uint8_t*, int32_t);
template void Swizzle_NEON<true, false>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template void Swizzle_NEON<true, true>(const uint8_t*, int32_t, uint8_t*,
int32_t, IntSize);
template <bool aSwapRB>
void UnpackRowRGB24(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength);
template <bool aSwapRB>
void UnpackRowRGB24_NEON(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
// Because this implementation will read an additional 4 bytes of data that
// is ignored and masked over, we cannot use the accelerated version for the
// last 1-5 pixels (3-15 bytes remaining) to guarantee we don't access memory
// outside the buffer (we read in 16 byte chunks).
if (aLength < 6) {
UnpackRowRGB24<aSwapRB>(aSrc, aDst, aLength);
return;
}
// Because we are expanding, we can only process the data back to front in
// case we are performing this in place.
int32_t alignedRow = (aLength - 2) & ~3;
int32_t remainder = aLength - alignedRow;
const uint8_t* src = aSrc + alignedRow * 3;
uint8_t* dst = aDst + alignedRow * 4;
// Handle 2-5 remaining pixels.
UnpackRowRGB24<aSwapRB>(src, dst, remainder);
uint8x8_t masklo;
uint8x8_t maskhi;
if (aSwapRB) {
static const uint8_t masklo_data[] = {2, 1, 0, 0, 5, 4, 3, 0};
static const uint8_t maskhi_data[] = {4, 3, 2, 0, 7, 6, 5, 0};
masklo = vld1_u8(masklo_data);
maskhi = vld1_u8(maskhi_data);
} else {
static const uint8_t masklo_data[] = {0, 1, 2, 0, 3, 4, 5, 0};
static const uint8_t maskhi_data[] = {2, 3, 4, 0, 5, 6, 7, 0};
masklo = vld1_u8(masklo_data);
maskhi = vld1_u8(maskhi_data);
}
uint8x16_t alpha = vreinterpretq_u8_u32(vdupq_n_u32(0xFF000000));
// Process all 4-pixel chunks as one vector.
src -= 4 * 3;
dst -= 4 * 4;
while (src >= aSrc) {
uint8x16_t px = vld1q_u8(src);
// G2R2B1G1 R1B0G0R0 -> X1R1G1B1 X0R0G0B0
uint8x8_t pxlo = vtbl1_u8(vget_low_u8(px), masklo);
// B3G3R3B2 G2R2B1G1 -> X3R3G3B3 X2R2G2B2
uint8x8_t pxhi =
vtbl1_u8(vext_u8(vget_low_u8(px), vget_high_u8(px), 4), maskhi);
px = vcombine_u8(pxlo, pxhi);
px = vorrq_u8(px, alpha);
vst1q_u8(dst, px);
src -= 4 * 3;
dst -= 4 * 4;
}
}
// Force instantiation of swizzle variants here.
template void UnpackRowRGB24_NEON<false>(const uint8_t*, uint8_t*, int32_t);
template void UnpackRowRGB24_NEON<true>(const uint8_t*, uint8_t*, int32_t);
} // namespace gfx
} // namespace mozilla
|