summaryrefslogtreecommitdiffstats
path: root/gfx/angle/checkout/src/compiler/translator/tree_ops/RewriteAtomicCounters.cpp
blob: defc59bcc075d51ddd26a46d79746e90b0201117 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//
// Copyright 2019 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RewriteAtomicCounters: Emulate atomic counter buffers with storage buffers.
//

#include "compiler/translator/tree_ops/RewriteAtomicCounters.h"

#include "compiler/translator/Compiler.h"
#include "compiler/translator/ImmutableStringBuilder.h"
#include "compiler/translator/SymbolTable.h"
#include "compiler/translator/tree_util/IntermNode_util.h"
#include "compiler/translator/tree_util/IntermTraverse.h"
#include "compiler/translator/tree_util/ReplaceVariable.h"

namespace sh
{
namespace
{
constexpr ImmutableString kAtomicCountersVarName  = ImmutableString("atomicCounters");
constexpr ImmutableString kAtomicCounterFieldName = ImmutableString("counters");

// DeclareAtomicCountersBuffer adds a storage buffer array that's used with atomic counters.
const TVariable *DeclareAtomicCountersBuffers(TIntermBlock *root, TSymbolTable *symbolTable)
{
    // Define `uint counters[];` as the only field in the interface block.
    TFieldList *fieldList = new TFieldList;
    TType *counterType    = new TType(EbtUInt, EbpHigh, EvqGlobal);
    counterType->makeArray(0);

    TField *countersField =
        new TField(counterType, kAtomicCounterFieldName, TSourceLoc(), SymbolType::AngleInternal);

    fieldList->push_back(countersField);

    TMemoryQualifier coherentMemory = TMemoryQualifier::Create();
    coherentMemory.coherent         = true;

    // There are a maximum of 8 atomic counter buffers per IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS
    // in libANGLE/Constants.h.
    constexpr uint32_t kMaxAtomicCounterBuffers = 8;

    // Define a storage block "ANGLEAtomicCounters" with instance name "atomicCounters".
    TLayoutQualifier layoutQualifier = TLayoutQualifier::Create();
    layoutQualifier.blockStorage     = EbsStd430;

    return DeclareInterfaceBlock(root, symbolTable, fieldList, EvqBuffer, layoutQualifier,
                                 coherentMemory, kMaxAtomicCounterBuffers,
                                 ImmutableString(vk::kAtomicCountersBlockName),
                                 kAtomicCountersVarName);
}

TIntermTyped *CreateUniformBufferOffset(const TIntermTyped *uniformBufferOffsets, int binding)
{
    // Each uint in the |acbBufferOffsets| uniform contains offsets for 4 bindings.  Therefore, the
    // expression to get the uniform offset for the binding is:
    //
    //     acbBufferOffsets[binding / 4] >> ((binding % 4) * 8) & 0xFF

    // acbBufferOffsets[binding / 4]
    TIntermBinary *uniformBufferOffsetUint = new TIntermBinary(
        EOpIndexDirect, uniformBufferOffsets->deepCopy(), CreateIndexNode(binding / 4));

    // acbBufferOffsets[binding / 4] >> ((binding % 4) * 8)
    TIntermBinary *uniformBufferOffsetShifted = uniformBufferOffsetUint;
    if (binding % 4 != 0)
    {
        uniformBufferOffsetShifted = new TIntermBinary(EOpBitShiftRight, uniformBufferOffsetUint,
                                                       CreateUIntNode((binding % 4) * 8));
    }

    // acbBufferOffsets[binding / 4] >> ((binding % 4) * 8) & 0xFF
    return new TIntermBinary(EOpBitwiseAnd, uniformBufferOffsetShifted, CreateUIntNode(0xFF));
}

TIntermBinary *CreateAtomicCounterRef(TIntermTyped *atomicCounterExpression,
                                      const TVariable *atomicCounters,
                                      const TIntermTyped *uniformBufferOffsets)
{
    // The atomic counters storage buffer declaration looks as such:
    //
    // layout(...) buffer ANGLEAtomicCounters
    // {
    //     uint counters[];
    // } atomicCounters[N];
    //
    // Where N is large enough to accommodate atomic counter buffer bindings used in the shader.
    //
    // This function takes an expression that uses an atomic counter, which can either be:
    //
    //  - ac
    //  - acArray[index]
    //
    // Note that RewriteArrayOfArrayOfOpaqueUniforms has already flattened array of array of atomic
    // counters.
    //
    // For the first case (ac), the following code is generated:
    //
    //     atomicCounters[binding].counters[offset]
    //
    // For the second case (acArray[index]), the following code is generated:
    //
    //     atomicCounters[binding].counters[offset + index]
    //
    // In either case, an offset given through uniforms is also added to |offset|.  The binding is
    // necessarily a constant thanks to MonomorphizeUnsupportedFunctions.

    // First determine if there's an index, and extract the atomic counter symbol out of the
    // expression.
    TIntermSymbol *atomicCounterSymbol = atomicCounterExpression->getAsSymbolNode();
    TIntermTyped *atomicCounterIndex   = nullptr;
    int atomicCounterConstIndex        = 0;
    TIntermBinary *asBinary            = atomicCounterExpression->getAsBinaryNode();
    if (asBinary != nullptr)
    {
        atomicCounterSymbol = asBinary->getLeft()->getAsSymbolNode();

        switch (asBinary->getOp())
        {
            case EOpIndexDirect:
                atomicCounterConstIndex = asBinary->getRight()->getAsConstantUnion()->getIConst(0);
                break;
            case EOpIndexIndirect:
                atomicCounterIndex = asBinary->getRight();
                break;
            default:
                UNREACHABLE();
        }
    }

    // Extract binding and offset information out of the atomic counter symbol.
    ASSERT(atomicCounterSymbol);
    const TVariable *atomicCounterVar = &atomicCounterSymbol->variable();
    const TType &atomicCounterType    = atomicCounterVar->getType();

    const int binding = atomicCounterType.getLayoutQualifier().binding;
    int offset        = atomicCounterType.getLayoutQualifier().offset / 4;

    // Create the expression:
    //
    //     offset + arrayIndex + uniformOffset
    //
    // If arrayIndex is a constant, it's added with offset right here.

    offset += atomicCounterConstIndex;

    TIntermTyped *index = CreateUniformBufferOffset(uniformBufferOffsets, binding);
    if (atomicCounterIndex != nullptr)
    {
        index = new TIntermBinary(EOpAdd, index, atomicCounterIndex);
    }
    if (offset != 0)
    {
        index = new TIntermBinary(EOpAdd, index, CreateIndexNode(offset));
    }

    // Finally, create the complete expression:
    //
    //     atomicCounters[binding].counters[index]

    TIntermSymbol *atomicCountersRef = new TIntermSymbol(atomicCounters);

    // atomicCounters[binding]
    TIntermBinary *countersBlock =
        new TIntermBinary(EOpIndexDirect, atomicCountersRef, CreateIndexNode(binding));

    // atomicCounters[binding].counters
    TIntermBinary *counters =
        new TIntermBinary(EOpIndexDirectInterfaceBlock, countersBlock, CreateIndexNode(0));

    return new TIntermBinary(EOpIndexIndirect, counters, index);
}

// Traverser that:
//
// 1. Removes the |uniform atomic_uint| declarations and remembers the binding and offset.
// 2. Substitutes |atomicVar[n]| with |buffer[binding].counters[offset + n]|.
class RewriteAtomicCountersTraverser : public TIntermTraverser
{
  public:
    RewriteAtomicCountersTraverser(TSymbolTable *symbolTable,
                                   const TVariable *atomicCounters,
                                   const TIntermTyped *acbBufferOffsets)
        : TIntermTraverser(true, false, false, symbolTable),
          mAtomicCounters(atomicCounters),
          mAcbBufferOffsets(acbBufferOffsets)
    {}

    bool visitDeclaration(Visit visit, TIntermDeclaration *node) override
    {
        if (!mInGlobalScope)
        {
            return true;
        }

        const TIntermSequence &sequence = *(node->getSequence());

        TIntermTyped *variable = sequence.front()->getAsTyped();
        const TType &type      = variable->getType();
        bool isAtomicCounter   = type.isAtomicCounter();

        if (isAtomicCounter)
        {
            ASSERT(type.getQualifier() == EvqUniform);
            TIntermSequence emptySequence;
            mMultiReplacements.emplace_back(getParentNode()->getAsBlock(), node,
                                            std::move(emptySequence));

            return false;
        }

        return true;
    }

    bool visitAggregate(Visit visit, TIntermAggregate *node) override
    {
        if (BuiltInGroup::IsBuiltIn(node->getOp()))
        {
            bool converted = convertBuiltinFunction(node);
            return !converted;
        }

        // AST functions don't require modification as atomic counter function parameters are
        // removed by MonomorphizeUnsupportedFunctions.
        return true;
    }

    void visitSymbol(TIntermSymbol *symbol) override
    {
        // Cannot encounter the atomic counter symbol directly.  It can only be used with functions,
        // and therefore it's handled by visitAggregate.
        ASSERT(!symbol->getType().isAtomicCounter());
    }

    bool visitBinary(Visit visit, TIntermBinary *node) override
    {
        // Cannot encounter an atomic counter expression directly.  It can only be used with
        // functions, and therefore it's handled by visitAggregate.
        ASSERT(!node->getType().isAtomicCounter());
        return true;
    }

  private:
    bool convertBuiltinFunction(TIntermAggregate *node)
    {
        const TOperator op = node->getOp();

        // If the function is |memoryBarrierAtomicCounter|, simply replace it with
        // |memoryBarrierBuffer|.
        if (op == EOpMemoryBarrierAtomicCounter)
        {
            TIntermSequence emptySequence;
            TIntermTyped *substituteCall = CreateBuiltInFunctionCallNode(
                "memoryBarrierBuffer", &emptySequence, *mSymbolTable, 310);
            queueReplacement(substituteCall, OriginalNode::IS_DROPPED);
            return true;
        }

        // If it's an |atomicCounter*| function, replace the function with an |atomic*| equivalent.
        if (!node->getFunction()->isAtomicCounterFunction())
        {
            return false;
        }

        // Note: atomicAdd(0) is used for atomic reads.
        uint32_t valueChange                = 0;
        constexpr char kAtomicAddFunction[] = "atomicAdd";
        bool isDecrement                    = false;

        if (op == EOpAtomicCounterIncrement)
        {
            valueChange = 1;
        }
        else if (op == EOpAtomicCounterDecrement)
        {
            // uint values are required to wrap around, so 0xFFFFFFFFu is used as -1.
            valueChange = std::numeric_limits<uint32_t>::max();
            static_assert(static_cast<uint32_t>(-1) == std::numeric_limits<uint32_t>::max(),
                          "uint32_t max is not -1");

            isDecrement = true;
        }
        else
        {
            ASSERT(op == EOpAtomicCounter);
        }

        TIntermTyped *param = (*node->getSequence())[0]->getAsTyped();

        TIntermSequence substituteArguments;
        substituteArguments.push_back(
            CreateAtomicCounterRef(param, mAtomicCounters, mAcbBufferOffsets));
        substituteArguments.push_back(CreateUIntNode(valueChange));

        TIntermTyped *substituteCall = CreateBuiltInFunctionCallNode(
            kAtomicAddFunction, &substituteArguments, *mSymbolTable, 310);

        // Note that atomicCounterDecrement returns the *new* value instead of the prior value,
        // unlike atomicAdd.  So we need to do a -1 on the result as well.
        if (isDecrement)
        {
            substituteCall = new TIntermBinary(EOpSub, substituteCall, CreateUIntNode(1));
        }

        queueReplacement(substituteCall, OriginalNode::IS_DROPPED);
        return true;
    }

    const TVariable *mAtomicCounters;
    const TIntermTyped *mAcbBufferOffsets;
};

}  // anonymous namespace

bool RewriteAtomicCounters(TCompiler *compiler,
                           TIntermBlock *root,
                           TSymbolTable *symbolTable,
                           const TIntermTyped *acbBufferOffsets)
{
    const TVariable *atomicCounters = DeclareAtomicCountersBuffers(root, symbolTable);

    RewriteAtomicCountersTraverser traverser(symbolTable, atomicCounters, acbBufferOffsets);
    root->traverse(&traverser);
    return traverser.updateTree(compiler, root);
}
}  // namespace sh