summaryrefslogtreecommitdiffstats
path: root/gfx/angle/checkout/src/compiler/translator/tree_ops/apple/RewriteRowMajorMatrices.cpp
blob: 49dc11efe2c4a098f95f81ee0467d41fcced295a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
//
// Copyright 2019 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RewriteRowMajorMatrices: Rewrite row-major matrices as column-major.
//

#include "compiler/translator/tree_ops/apple/RewriteRowMajorMatrices.h"

#include "compiler/translator/Compiler.h"
#include "compiler/translator/ImmutableStringBuilder.h"
#include "compiler/translator/StaticType.h"
#include "compiler/translator/SymbolTable.h"
#include "compiler/translator/tree_util/IntermNode_util.h"
#include "compiler/translator/tree_util/IntermTraverse.h"
#include "compiler/translator/tree_util/ReplaceVariable.h"

namespace sh
{
namespace
{
// Only structs with matrices are tracked.  If layout(row_major) is applied to a struct that doesn't
// have matrices, it's silently dropped.  This is also used to avoid creating duplicates for inner
// structs that don't have matrices.
struct StructConversionData
{
    // The converted struct with every matrix transposed.
    TStructure *convertedStruct = nullptr;

    // The copy-from and copy-to functions copying from a struct to its converted version and back.
    TFunction *copyFromOriginal = nullptr;
    TFunction *copyToOriginal   = nullptr;
};

bool DoesFieldContainRowMajorMatrix(const TField *field, bool isBlockRowMajor)
{
    TLayoutMatrixPacking matrixPacking = field->type()->getLayoutQualifier().matrixPacking;

    // The field is row major if either explicitly specified as such, or if it inherits it from the
    // block layout qualifier.
    if (matrixPacking == EmpColumnMajor || (matrixPacking == EmpUnspecified && !isBlockRowMajor))
    {
        return false;
    }

    // The field is qualified with row_major, but if it's not a matrix or a struct containing
    // matrices, that's a useless qualifier.
    const TType *type = field->type();
    return type->isMatrix() || type->isStructureContainingMatrices();
}

TField *DuplicateField(const TField *field)
{
    return new TField(new TType(*field->type()), field->name(), field->line(), field->symbolType());
}

void SetColumnMajor(TType *type)
{
    TLayoutQualifier layoutQualifier = type->getLayoutQualifier();
    layoutQualifier.matrixPacking    = EmpColumnMajor;
    type->setLayoutQualifier(layoutQualifier);
}

TType *TransposeMatrixType(const TType *type)
{
    TType *newType = new TType(*type);

    SetColumnMajor(newType);

    newType->setPrimarySize(type->getRows());
    newType->setSecondarySize(type->getCols());

    return newType;
}

void CopyArraySizes(const TType *from, TType *to)
{
    if (from->isArray())
    {
        to->makeArrays(from->getArraySizes());
    }
}

// Determine if the node is an index node (array index or struct field selection).  For the purposes
// of this transformation, swizzle nodes are considered index nodes too.
bool IsIndexNode(TIntermNode *node, TIntermNode *child)
{
    if (node->getAsSwizzleNode())
    {
        return true;
    }

    TIntermBinary *binaryNode = node->getAsBinaryNode();
    if (binaryNode == nullptr || child != binaryNode->getLeft())
    {
        return false;
    }

    TOperator op = binaryNode->getOp();

    return op == EOpIndexDirect || op == EOpIndexDirectInterfaceBlock ||
           op == EOpIndexDirectStruct || op == EOpIndexIndirect;
}

TIntermSymbol *CopyToTempVariable(TSymbolTable *symbolTable,
                                  TIntermTyped *node,
                                  TIntermSequence *prependStatements)
{
    TVariable *temp              = CreateTempVariable(symbolTable, &node->getType());
    TIntermDeclaration *tempDecl = CreateTempInitDeclarationNode(temp, node);
    prependStatements->push_back(tempDecl);

    return new TIntermSymbol(temp);
}

TIntermAggregate *CreateStructCopyCall(const TFunction *copyFunc, TIntermTyped *expression)
{
    TIntermSequence args = {expression};
    return TIntermAggregate::CreateFunctionCall(*copyFunc, &args);
}

TIntermTyped *CreateTransposeCall(TSymbolTable *symbolTable, TIntermTyped *expression)
{
    TIntermSequence args = {expression};
    return CreateBuiltInFunctionCallNode("transpose", &args, *symbolTable, 300);
}

TOperator GetIndex(TSymbolTable *symbolTable,
                   TIntermNode *node,
                   TIntermSequence *indices,
                   TIntermSequence *prependStatements)
{
    // Swizzle nodes are converted EOpIndexDirect for simplicity, with one index per swizzle
    // channel.
    TIntermSwizzle *asSwizzle = node->getAsSwizzleNode();
    if (asSwizzle)
    {
        for (int channel : asSwizzle->getSwizzleOffsets())
        {
            indices->push_back(CreateIndexNode(channel));
        }
        return EOpIndexDirect;
    }

    TIntermBinary *binaryNode = node->getAsBinaryNode();
    ASSERT(binaryNode);

    TOperator op = binaryNode->getOp();
    ASSERT(op == EOpIndexDirect || op == EOpIndexDirectInterfaceBlock ||
           op == EOpIndexDirectStruct || op == EOpIndexIndirect);

    TIntermTyped *rhs = binaryNode->getRight()->deepCopy();
    if (rhs->getAsConstantUnion() == nullptr)
    {
        rhs = CopyToTempVariable(symbolTable, rhs, prependStatements);
    }

    indices->push_back(rhs);
    return op;
}

TIntermTyped *ReplicateIndexNode(TSymbolTable *symbolTable,
                                 TIntermNode *node,
                                 TIntermTyped *lhs,
                                 TIntermSequence *indices)
{
    TIntermSwizzle *asSwizzle = node->getAsSwizzleNode();
    if (asSwizzle)
    {
        return new TIntermSwizzle(lhs, asSwizzle->getSwizzleOffsets());
    }

    TIntermBinary *binaryNode = node->getAsBinaryNode();
    ASSERT(binaryNode);

    ASSERT(indices->size() == 1);
    TIntermTyped *rhs = indices->front()->getAsTyped();

    return new TIntermBinary(binaryNode->getOp(), lhs, rhs);
}

TOperator GetIndexOp(TIntermNode *node)
{
    return node->getAsConstantUnion() ? EOpIndexDirect : EOpIndexIndirect;
}

bool IsConvertedField(TIntermTyped *indexNode,
                      const angle::HashMap<const TField *, bool> &convertedFields)
{
    TIntermBinary *asBinary = indexNode->getAsBinaryNode();
    if (asBinary == nullptr)
    {
        return false;
    }

    if (asBinary->getOp() != EOpIndexDirectInterfaceBlock)
    {
        return false;
    }

    const TInterfaceBlock *interfaceBlock = asBinary->getLeft()->getType().getInterfaceBlock();
    ASSERT(interfaceBlock);

    TIntermConstantUnion *fieldIndexNode = asBinary->getRight()->getAsConstantUnion();
    ASSERT(fieldIndexNode);
    ASSERT(fieldIndexNode->getConstantValue() != nullptr);

    int fieldIndex      = fieldIndexNode->getConstantValue()->getIConst();
    const TField *field = interfaceBlock->fields()[fieldIndex];

    return convertedFields.count(field) > 0 && convertedFields.at(field);
}

// A helper class to transform expressions of array type.  Iterates over every element of the
// array.
class TransformArrayHelper
{
  public:
    TransformArrayHelper(TIntermTyped *baseExpression)
        : mBaseExpression(baseExpression),
          mBaseExpressionType(baseExpression->getType()),
          mArrayIndices(mBaseExpressionType.getArraySizes().size(), 0)
    {}

    TIntermTyped *getNextElement(TIntermTyped *valueExpression, TIntermTyped **valueElementOut)
    {
        const TSpan<const unsigned int> &arraySizes = mBaseExpressionType.getArraySizes();

        // If the last index overflows, element enumeration is done.
        if (mArrayIndices.back() >= arraySizes.back())
        {
            return nullptr;
        }

        TIntermTyped *element = getCurrentElement(mBaseExpression);
        if (valueExpression)
        {
            *valueElementOut = getCurrentElement(valueExpression);
        }

        incrementIndices(arraySizes);
        return element;
    }

    void accumulateForRead(TSymbolTable *symbolTable,
                           TIntermTyped *transformedElement,
                           TIntermSequence *prependStatements)
    {
        TIntermTyped *temp = CopyToTempVariable(symbolTable, transformedElement, prependStatements);
        mReadTransformConstructorArgs.push_back(temp);
    }

    TIntermTyped *constructReadTransformExpression()
    {
        const TSpan<const unsigned int> &baseTypeArraySizes = mBaseExpressionType.getArraySizes();
        TVector<unsigned int> arraySizes(baseTypeArraySizes.begin(), baseTypeArraySizes.end());
        TIntermTyped *firstElement = mReadTransformConstructorArgs.front()->getAsTyped();
        const TType &baseType      = firstElement->getType();

        // If N dimensions, acc[0] == size[0] and acc[i] == size[i] * acc[i-1].
        // The last value is unused, and is not present.
        TVector<unsigned int> accumulatedArraySizes(arraySizes.size() - 1);

        if (accumulatedArraySizes.size() > 0)
        {
            accumulatedArraySizes[0] = arraySizes[0];
        }
        for (size_t index = 1; index + 1 < arraySizes.size(); ++index)
        {
            accumulatedArraySizes[index] = accumulatedArraySizes[index - 1] * arraySizes[index];
        }

        return constructReadTransformExpressionHelper(arraySizes, accumulatedArraySizes, baseType,
                                                      0);
    }

  private:
    TIntermTyped *getCurrentElement(TIntermTyped *expression)
    {
        TIntermTyped *element = expression->deepCopy();
        for (auto it = mArrayIndices.rbegin(); it != mArrayIndices.rend(); ++it)
        {
            unsigned int index = *it;
            element            = new TIntermBinary(EOpIndexDirect, element, CreateIndexNode(index));
        }
        return element;
    }

    void incrementIndices(const TSpan<const unsigned int> &arraySizes)
    {
        // Assume mArrayIndices is an N digit number, where digit i is in the range
        // [0, arraySizes[i]).  This function increments this number.  Last digit is the most
        // significant digit.
        for (size_t digitIndex = 0; digitIndex < arraySizes.size(); ++digitIndex)
        {
            ++mArrayIndices[digitIndex];
            if (mArrayIndices[digitIndex] < arraySizes[digitIndex])
            {
                break;
            }
            if (digitIndex + 1 != arraySizes.size())
            {
                // This digit has now overflown and is reset to 0, carry will be added to the next
                // digit.  The most significant digit will keep the overflow though, to make it
                // clear we have exhausted the range.
                mArrayIndices[digitIndex] = 0;
            }
        }
    }

    TIntermTyped *constructReadTransformExpressionHelper(
        const TVector<unsigned int> &arraySizes,
        const TVector<unsigned int> &accumulatedArraySizes,
        const TType &baseType,
        size_t elementsOffset)
    {
        ASSERT(!arraySizes.empty());

        TType *transformedType = new TType(baseType);
        transformedType->makeArrays(arraySizes);

        // If one dimensional, create the constructor with the given elements.
        if (arraySizes.size() == 1)
        {
            ASSERT(accumulatedArraySizes.size() == 0);

            auto sliceStart = mReadTransformConstructorArgs.begin() + elementsOffset;
            TIntermSequence slice(sliceStart, sliceStart + arraySizes[0]);

            return TIntermAggregate::CreateConstructor(*transformedType, &slice);
        }

        // If not, create constructors for every column recursively.
        TVector<unsigned int> subArraySizes(arraySizes.begin(), arraySizes.end() - 1);
        TVector<unsigned int> subArrayAccumulatedSizes(accumulatedArraySizes.begin(),
                                                       accumulatedArraySizes.end() - 1);

        TIntermSequence constructorArgs;
        unsigned int colStride = accumulatedArraySizes.back();
        for (size_t col = 0; col < arraySizes.back(); ++col)
        {
            size_t colElementsOffset = elementsOffset + col * colStride;

            constructorArgs.push_back(constructReadTransformExpressionHelper(
                subArraySizes, subArrayAccumulatedSizes, baseType, colElementsOffset));
        }

        return TIntermAggregate::CreateConstructor(*transformedType, &constructorArgs);
    }

    TIntermTyped *mBaseExpression;
    const TType &mBaseExpressionType;
    TVector<unsigned int> mArrayIndices;

    TIntermSequence mReadTransformConstructorArgs;
};

// Traverser that:
//
// 1. Converts |layout(row_major) matCxR M| to |layout(column_major) matRxC Mt|.
// 2. Converts |layout(row_major) S s| to |layout(column_major) St st|, where S is a struct that
//    contains matrices, and St is a new struct with the transformation in 1 applied to matrix
//    members (recursively).
// 3. When read from, the following transformations are applied:
//
//            M       -> transpose(Mt)
//            M[c]    -> gvecN(Mt[0][c], Mt[1][c], ..., Mt[N-1][c])
//            M[c][r] -> Mt[r][c]
//            M[c].yz -> gvec2(Mt[1][c], Mt[2][c])
//            MArr    -> MType[D1]..[DN](transpose(MtArr[0]...[0]), ...)
//            s       -> copy_St_to_S(st)
//            sArr    -> SType[D1]...[DN](copy_St_to_S(stArr[0]..[0]), ...)
//            (matrix reads through struct are transformed similarly to M)
//
// 4. When written to, the following transformations are applied:
//
//      M = exp       -> Mt = transpose(exp)
//      M[c] = exp    -> temp = exp
//                       Mt[0][c] = temp[0]
//                       Mt[1][c] = temp[1]
//                       ...
//                       Mt[N-1][c] = temp[N-1]
//      M[c][r] = exp -> Mt[r][c] = exp
//      M[c].yz = exp -> temp = exp
//                       Mt[1][c] = temp[0]
//                       Mt[2][c] = temp[1]
//      MArr = exp    -> temp = exp
//                       Mt = MtType[D1]..[DN](temp([0]...[0]), ...)
//      s = exp       -> st = copy_S_to_St(exp)
//      sArr = exp    -> temp = exp
//                       St = StType[D1]...[DN](copy_S_to_St(temp[0]..[0]), ...)
//      (matrix writes through struct are transformed similarly to M)
//
// 5. If any of the above is passed to an `inout` parameter, both transformations are applied:
//
//            f(M[c]) -> temp = gvecN(Mt[0][c], Mt[1][c], ..., Mt[N-1][c])
//                       f(temp)
//                       Mt[0][c] = temp[0]
//                       Mt[1][c] = temp[1]
//                       ...
//                       Mt[N-1][c] = temp[N-1]
//
//               f(s) -> temp = copy_St_to_S(st)
//                       f(temp)
//                       st = copy_S_to_St(temp)
//
//    If passed to an `out` parameter, the `temp` parameter is simply not initialized.
//
// 6. If the expression leading to the matrix or struct has array subscripts, temp values are
//    created for them to avoid duplicating side effects.
//
class RewriteRowMajorMatricesTraverser : public TIntermTraverser
{
  public:
    RewriteRowMajorMatricesTraverser(TCompiler *compiler, TSymbolTable *symbolTable)
        : TIntermTraverser(true, true, true, symbolTable),
          mCompiler(compiler),
          mStructMapOut(&mOuterPass.structMap),
          mInterfaceBlockMap(&mOuterPass.interfaceBlockMap),
          mInterfaceBlockFieldConvertedIn(mOuterPass.interfaceBlockFieldConverted),
          mCopyFunctionDefinitionsOut(&mOuterPass.copyFunctionDefinitions),
          mOuterTraverser(nullptr),
          mInnerPassRoot(nullptr),
          mIsProcessingInnerPassSubtree(false)
    {}

    bool visitDeclaration(Visit visit, TIntermDeclaration *node) override
    {
        // No need to process declarations in inner passes.
        if (mInnerPassRoot != nullptr)
        {
            return true;
        }

        if (visit != PreVisit)
        {
            return true;
        }

        const TIntermSequence &sequence = *(node->getSequence());

        TIntermTyped *variable = sequence.front()->getAsTyped();
        const TType &type      = variable->getType();

        // If it's a struct declaration that has matrices, remember it.  If a row-major instance
        // of it is created, it will have to be converted.
        if (type.isStructSpecifier() && type.isStructureContainingMatrices())
        {
            const TStructure *structure = type.getStruct();
            ASSERT(structure);

            ASSERT(mOuterPass.structMap.count(structure) == 0);

            StructConversionData structData;
            mOuterPass.structMap[structure] = structData;

            return false;
        }

        // If it's an interface block, it may have to be converted if it contains any row-major
        // fields.
        if (type.isInterfaceBlock() && type.getInterfaceBlock()->containsMatrices())
        {
            const TInterfaceBlock *block = type.getInterfaceBlock();
            ASSERT(block);
            bool isBlockRowMajor = type.getLayoutQualifier().matrixPacking == EmpRowMajor;

            const TFieldList &fields = block->fields();
            bool anyRowMajor         = isBlockRowMajor;

            for (const TField *field : fields)
            {
                if (DoesFieldContainRowMajorMatrix(field, isBlockRowMajor))
                {
                    anyRowMajor = true;
                    break;
                }
            }

            if (anyRowMajor)
            {
                convertInterfaceBlock(node);
            }

            return false;
        }

        return true;
    }

    void visitSymbol(TIntermSymbol *symbol) override
    {
        // If in inner pass, only process if the symbol is under that root.
        if (mInnerPassRoot != nullptr && !mIsProcessingInnerPassSubtree)
        {
            return;
        }

        const TVariable *variable = &symbol->variable();
        bool needsRewrite         = mInterfaceBlockMap->count(variable) != 0;

        // If it's a field of a nameless interface block, it may still need conversion.
        if (!needsRewrite)
        {
            // Nameless interface block field symbols have the interface block pointer set, but are
            // not interface blocks.
            if (symbol->getType().getInterfaceBlock() && !variable->getType().isInterfaceBlock())
            {
                needsRewrite = convertNamelessInterfaceBlockField(symbol);
            }
        }

        if (needsRewrite)
        {
            transformExpression(symbol);
        }
    }

    bool visitBinary(Visit visit, TIntermBinary *node) override
    {
        if (node == mInnerPassRoot)
        {
            // We only want to process the right-hand side of an assignment in inner passes.  When
            // visit is InVisit, the left-hand side is already processed, and the right-hand side is
            // next.  Set a flag to mark this duration.
            mIsProcessingInnerPassSubtree = visit == InVisit;
        }

        return true;
    }

    TIntermSequence *getStructCopyFunctions() { return &mOuterPass.copyFunctionDefinitions; }

  private:
    typedef angle::HashMap<const TStructure *, StructConversionData> StructMap;
    typedef angle::HashMap<const TVariable *, TVariable *> InterfaceBlockMap;
    typedef angle::HashMap<const TField *, bool> InterfaceBlockFieldConverted;

    RewriteRowMajorMatricesTraverser(
        TSymbolTable *symbolTable,
        RewriteRowMajorMatricesTraverser *outerTraverser,
        InterfaceBlockMap *interfaceBlockMap,
        const InterfaceBlockFieldConverted &interfaceBlockFieldConverted,
        StructMap *structMap,
        TIntermSequence *copyFunctionDefinitions,
        TIntermBinary *innerPassRoot)
        : TIntermTraverser(true, true, true, symbolTable),
          mStructMapOut(structMap),
          mInterfaceBlockMap(interfaceBlockMap),
          mInterfaceBlockFieldConvertedIn(interfaceBlockFieldConverted),
          mCopyFunctionDefinitionsOut(copyFunctionDefinitions),
          mOuterTraverser(outerTraverser),
          mInnerPassRoot(innerPassRoot),
          mIsProcessingInnerPassSubtree(false)
    {}

    void convertInterfaceBlock(TIntermDeclaration *node)
    {
        ASSERT(mInnerPassRoot == nullptr);

        const TIntermSequence &sequence = *(node->getSequence());

        TIntermTyped *variableNode   = sequence.front()->getAsTyped();
        const TType &type            = variableNode->getType();
        const TInterfaceBlock *block = type.getInterfaceBlock();
        ASSERT(block);

        bool isBlockRowMajor = type.getLayoutQualifier().matrixPacking == EmpRowMajor;

        // Recreate the struct with its row-major fields converted to column-major equivalents.
        TIntermSequence newDeclarations;

        TFieldList *newFields = new TFieldList;
        for (const TField *field : block->fields())
        {
            TField *newField = nullptr;

            if (DoesFieldContainRowMajorMatrix(field, isBlockRowMajor))
            {
                newField = convertField(field, &newDeclarations);

                // Remember that this field was converted.
                mOuterPass.interfaceBlockFieldConverted[field] = true;
            }
            else
            {
                newField = DuplicateField(field);
            }

            newFields->push_back(newField);
        }

        // Create a new interface block with these fields.
        TLayoutQualifier blockLayoutQualifier = type.getLayoutQualifier();
        blockLayoutQualifier.matrixPacking    = EmpColumnMajor;

        TInterfaceBlock *newInterfaceBlock =
            new TInterfaceBlock(mSymbolTable, block->name(), newFields, blockLayoutQualifier,
                                block->symbolType(), block->extensions());

        // Create a new declaration with the new type.  Declarations are separated at this point,
        // so there should be only one variable here.
        ASSERT(sequence.size() == 1);

        TType *newInterfaceBlockType =
            new TType(newInterfaceBlock, type.getQualifier(), blockLayoutQualifier);

        TIntermDeclaration *newDeclaration = new TIntermDeclaration;
        const TVariable *variable          = &variableNode->getAsSymbolNode()->variable();

        const TType *newType = newInterfaceBlockType;
        if (type.isArray())
        {
            TType *newArrayType = new TType(*newType);
            CopyArraySizes(&type, newArrayType);
            newType = newArrayType;
        }

        // If the interface block variable itself is temp, use an empty name.
        bool variableIsTemp = variable->symbolType() == SymbolType::Empty;
        const ImmutableString &variableName =
            variableIsTemp ? kEmptyImmutableString : variable->name();

        TVariable *newVariable = new TVariable(mSymbolTable, variableName, newType,
                                               variable->symbolType(), variable->extensions());

        newDeclaration->appendDeclarator(new TIntermSymbol(newVariable));

        mOuterPass.interfaceBlockMap[variable] = newVariable;

        newDeclarations.push_back(newDeclaration);

        // Replace the interface block definition with the new one, prepending any new struct
        // definitions.
        mMultiReplacements.emplace_back(getParentNode()->getAsBlock(), node,
                                        std::move(newDeclarations));
    }

    bool convertNamelessInterfaceBlockField(TIntermSymbol *symbol)
    {
        const TVariable *variable             = &symbol->variable();
        const TInterfaceBlock *interfaceBlock = symbol->getType().getInterfaceBlock();

        // Find the variable corresponding to this interface block.  If the interface block
        // is not rewritten, or this refers to a field that is not rewritten, there's
        // nothing to do.
        for (auto iter : *mInterfaceBlockMap)
        {
            // Skip other rewritten nameless interface block fields.
            if (!iter.first->getType().isInterfaceBlock())
            {
                continue;
            }

            // Skip if this is not a field of this rewritten interface block.
            if (iter.first->getType().getInterfaceBlock() != interfaceBlock)
            {
                continue;
            }

            const ImmutableString symbolName = symbol->getName();

            // Find which field it is
            const TVector<TField *> fields = interfaceBlock->fields();
            const size_t fieldIndex        = variable->getType().getInterfaceBlockFieldIndex();
            ASSERT(fieldIndex < fields.size());

            const TField *field = fields[fieldIndex];
            ASSERT(field->name() == symbolName);

            // If this field doesn't need a rewrite, there's nothing to do.
            if (mInterfaceBlockFieldConvertedIn.count(field) == 0 ||
                !mInterfaceBlockFieldConvertedIn.at(field))
            {
                break;
            }

            // Create a new variable that references the replaced interface block.
            TType *newType = new TType(variable->getType());
            newType->setInterfaceBlockField(iter.second->getType().getInterfaceBlock(), fieldIndex);

            TVariable *newVariable = new TVariable(mSymbolTable, variable->name(), newType,
                                                   variable->symbolType(), variable->extensions());

            (*mInterfaceBlockMap)[variable] = newVariable;

            return true;
        }

        return false;
    }

    void convertStruct(const TStructure *structure, TIntermSequence *newDeclarations)
    {
        ASSERT(mInnerPassRoot == nullptr);

        ASSERT(mOuterPass.structMap.count(structure) != 0);
        StructConversionData *structData = &mOuterPass.structMap[structure];

        if (structData->convertedStruct)
        {
            return;
        }

        TFieldList *newFields = new TFieldList;
        for (const TField *field : structure->fields())
        {
            newFields->push_back(convertField(field, newDeclarations));
        }

        // Create unique names for the converted structs.  We can't leave them nameless and have
        // a name autogenerated similar to temp variables, as nameless structs exist.  A fake
        // variable is created for the sole purpose of generating a temp name.
        TVariable *newStructTypeName =
            new TVariable(mSymbolTable, kEmptyImmutableString,
                          StaticType::GetBasic<EbtUInt, EbpUndefined>(), SymbolType::Empty);

        TStructure *newStruct = new TStructure(mSymbolTable, newStructTypeName->name(), newFields,
                                               SymbolType::AngleInternal);
        TType *newType        = new TType(newStruct, true);
        TVariable *newStructVar =
            new TVariable(mSymbolTable, kEmptyImmutableString, newType, SymbolType::Empty);

        TIntermDeclaration *structDecl = new TIntermDeclaration;
        structDecl->appendDeclarator(new TIntermSymbol(newStructVar));

        newDeclarations->push_back(structDecl);

        structData->convertedStruct = newStruct;
    }

    TField *convertField(const TField *field, TIntermSequence *newDeclarations)
    {
        ASSERT(mInnerPassRoot == nullptr);

        TField *newField = nullptr;

        const TType *fieldType = field->type();
        TType *newType         = nullptr;

        if (fieldType->isStructureContainingMatrices())
        {
            // If the field is a struct instance, convert the struct and replace the field
            // with an instance of the new struct.
            const TStructure *fieldTypeStruct = fieldType->getStruct();
            convertStruct(fieldTypeStruct, newDeclarations);

            StructConversionData &structData = mOuterPass.structMap[fieldTypeStruct];
            newType                          = new TType(structData.convertedStruct, false);
            SetColumnMajor(newType);
            CopyArraySizes(fieldType, newType);
        }
        else if (fieldType->isMatrix())
        {
            // If the field is a matrix, transpose the matrix and replace the field with
            // that, removing the matrix packing qualifier.
            newType = TransposeMatrixType(fieldType);
        }

        if (newType)
        {
            newField = new TField(newType, field->name(), field->line(), field->symbolType());
        }
        else
        {
            newField = DuplicateField(field);
        }

        return newField;
    }

    void determineAccess(TIntermNode *expression,
                         TIntermNode *accessor,
                         bool *isReadOut,
                         bool *isWriteOut)
    {
        // If passing to a function, look at whether the parameter is in, out or inout.
        TIntermAggregate *functionCall = accessor->getAsAggregate();

        if (functionCall)
        {
            TIntermSequence *arguments = functionCall->getSequence();
            for (size_t argIndex = 0; argIndex < arguments->size(); ++argIndex)
            {
                if ((*arguments)[argIndex] == expression)
                {
                    TQualifier qualifier = EvqParamIn;

                    // If the aggregate is not a function call, it's a constructor, and so every
                    // argument is an input.
                    const TFunction *function = functionCall->getFunction();
                    if (function)
                    {
                        const TVariable *param = function->getParam(argIndex);
                        qualifier              = param->getType().getQualifier();
                    }

                    *isReadOut  = qualifier != EvqParamOut;
                    *isWriteOut = qualifier == EvqParamOut || qualifier == EvqParamInOut;
                    break;
                }
            }
            return;
        }

        TIntermBinary *assignment = accessor->getAsBinaryNode();
        if (assignment && IsAssignment(assignment->getOp()))
        {
            // If expression is on the right of assignment, it's being read from.
            *isReadOut = assignment->getRight() == expression;
            // If it's on the left of assignment, it's being written to.
            *isWriteOut = assignment->getLeft() == expression;
            return;
        }

        // Any other usage is a read.
        *isReadOut  = true;
        *isWriteOut = false;
    }

    void transformExpression(TIntermSymbol *symbol)
    {
        // Walk up the parent chain while the nodes are EOpIndex* (whether array indexing or struct
        // field selection) or swizzle and construct the replacement expression.  This traversal can
        // lead to one of the following possibilities:
        //
        // - a.b[N].etc.s (struct, or struct array): copy function should be declared and used,
        // - a.b[N].etc.M (matrix or matrix array): transpose() should be used,
        // - a.b[N].etc.M[c] (a column): each element in column needs to be handled separately,
        // - a.b[N].etc.M[c].yz (multiple elements): similar to whole column, but a subset of
        //   elements,
        // - a.b[N].etc.M[c][r] (an element): single element to handle.
        // - a.b[N].etc.x (not struct or matrix): not modified
        //
        // primaryIndex will contain c, if any.  secondaryIndices will contain {0, ..., R-1}
        // (if no [r] or swizzle), {r} (if [r]), or {1, 2} (corresponding to .yz) if any.
        //
        // In all cases, the base symbol is replaced.  |baseExpression| will contain everything up
        // to (and not including) the last index/swizzle operations, i.e. a.b[N].etc.s/M/x.  Any
        // non constant array subscript is assigned to a temp variable to avoid duplicating side
        // effects.
        //
        // ---
        //
        // NOTE that due to the use of insertStatementsInParentBlock, cases like this will be
        // mistranslated, and this bug is likely present in most transformations that use this
        // feature:
        //
        //     if (x == 1 && a.b[x = 2].etc.M = value)
        //
        // which will translate to:
        //
        //     temp = (x = 2)
        //     if (x == 1 && a.b[temp].etc.M = transpose(value))
        //
        // See http://anglebug.com/3829.
        //
        TIntermTyped *baseExpression =
            new TIntermSymbol(mInterfaceBlockMap->at(&symbol->variable()));
        const TStructure *structure = nullptr;

        TIntermNode *primaryIndex = nullptr;
        TIntermSequence secondaryIndices;

        // In some cases, it is necessary to prepend or append statements.  Those are captured in
        // |prependStatements| and |appendStatements|.
        TIntermSequence prependStatements;
        TIntermSequence appendStatements;

        // If the expression is neither a struct or matrix, no modification is necessary.
        // If it's a struct that doesn't have matrices, again there's no transformation necessary.
        // If it's an interface block matrix field that didn't need to be transposed, no
        // transpformation is necessary.
        //
        // In all these cases, |baseExpression| contains all of the original expression.
        //
        // If the starting symbol itself is a field of a nameless interface block, it needs
        // conversion if we reach here.
        bool requiresTransformation = !symbol->getType().isInterfaceBlock();

        uint32_t accessorIndex         = 0;
        TIntermTyped *previousAncestor = symbol;
        while (IsIndexNode(getAncestorNode(accessorIndex), previousAncestor))
        {
            TIntermTyped *ancestor = getAncestorNode(accessorIndex)->getAsTyped();
            ASSERT(ancestor);

            const TType &previousAncestorType = previousAncestor->getType();

            TIntermSequence indices;
            TOperator op = GetIndex(mSymbolTable, ancestor, &indices, &prependStatements);

            bool opIsIndex     = op == EOpIndexDirect || op == EOpIndexIndirect;
            bool isArrayIndex  = opIsIndex && previousAncestorType.isArray();
            bool isMatrixIndex = opIsIndex && previousAncestorType.isMatrix();

            // If it's a direct index in a matrix, it's the primary index.
            bool isMatrixPrimarySubscript = isMatrixIndex && !isArrayIndex;
            ASSERT(!isMatrixPrimarySubscript ||
                   (primaryIndex == nullptr && secondaryIndices.empty()));
            // If primary index is seen and the ancestor is still an index, it must be a direct
            // index as the secondary one.  Note that if primaryIndex is set, there can only ever be
            // one more parent of interest, and that's subscripting the second dimension.
            bool isMatrixSecondarySubscript = primaryIndex != nullptr;
            ASSERT(!isMatrixSecondarySubscript || (opIsIndex && !isArrayIndex));

            if (requiresTransformation && isMatrixPrimarySubscript)
            {
                ASSERT(indices.size() == 1);
                primaryIndex = indices.front();

                // Default the secondary indices to include every row.  If there's a secondary
                // subscript provided, it will override this.
                const uint8_t rows = previousAncestorType.getRows();
                for (uint8_t r = 0; r < rows; ++r)
                {
                    secondaryIndices.push_back(CreateIndexNode(r));
                }
            }
            else if (isMatrixSecondarySubscript)
            {
                ASSERT(requiresTransformation);

                secondaryIndices = indices;

                // Indices after this point are not interesting.  There can't actually be any other
                // index nodes other than desktop GLSL's swizzles on scalars, like M[1][2].yyy.
                ++accessorIndex;
                break;
            }
            else
            {
                // Replicate the expression otherwise.
                baseExpression =
                    ReplicateIndexNode(mSymbolTable, ancestor, baseExpression, &indices);

                const TType &ancestorType = ancestor->getType();
                structure                 = ancestorType.getStruct();

                requiresTransformation =
                    requiresTransformation ||
                    IsConvertedField(ancestor, mInterfaceBlockFieldConvertedIn);

                // If we reach a point where the expression is neither a matrix-containing struct
                // nor a matrix, there's no transformation required.  This can happen if we decend
                // through a struct marked with row-major but arrive at a member that doesn't
                // include a matrix.
                if (!ancestorType.isMatrix() && !ancestorType.isStructureContainingMatrices())
                {
                    requiresTransformation = false;
                }
            }

            previousAncestor = ancestor;
            ++accessorIndex;
        }

        TIntermNode *originalExpression =
            accessorIndex == 0 ? symbol : getAncestorNode(accessorIndex - 1);
        TIntermNode *accessor = getAncestorNode(accessorIndex);

        // if accessor is EOpArrayLength, we don't need to perform any transformations either.
        // Note that this only applies to unsized arrays, as the RemoveArrayLengthMethod()
        // transformation would have removed this operation otherwise.
        TIntermUnary *accessorAsUnary = accessor->getAsUnaryNode();
        if (requiresTransformation && accessorAsUnary && accessorAsUnary->getOp() == EOpArrayLength)
        {
            ASSERT(accessorAsUnary->getOperand() == originalExpression);
            ASSERT(accessorAsUnary->getOperand()->getType().isUnsizedArray());

            requiresTransformation = false;

            // We need to replace the whole expression including the EOpArrayLength, to avoid
            // confusing the replacement code as the original and new expressions don't have the
            // same type (one is the transpose of the other).  This doesn't affect the .length()
            // operation, so this replacement is ok, though it's not worth special-casing this in
            // the node replacement algorithm.
            //
            // Note: the |if (!requiresTransformation)| immediately below will be entered after
            // this.
            originalExpression = accessor;
            accessor           = getAncestorNode(accessorIndex + 1);
            baseExpression     = new TIntermUnary(EOpArrayLength, baseExpression, nullptr);
        }

        if (!requiresTransformation)
        {
            ASSERT(primaryIndex == nullptr);
            queueReplacementWithParent(accessor, originalExpression, baseExpression,
                                       OriginalNode::IS_DROPPED);

            RewriteRowMajorMatricesTraverser *traverser = mOuterTraverser ? mOuterTraverser : this;
            traverser->insertStatementsInParentBlock(prependStatements, appendStatements);
            return;
        }

        ASSERT(structure == nullptr || primaryIndex == nullptr);
        ASSERT(structure != nullptr || baseExpression->getType().isMatrix());

        // At the end, we can determine if the expression is being read from or written to (or both,
        // if sent as an inout parameter to a function).  For the sake of the transformation, the
        // left-hand side of operations like += can be treated as "written to", without necessarily
        // "read from".
        bool isRead  = false;
        bool isWrite = false;

        determineAccess(originalExpression, accessor, &isRead, &isWrite);

        ASSERT(isRead || isWrite);

        TIntermTyped *readExpression = nullptr;
        if (isRead)
        {
            readExpression = transformReadExpression(
                baseExpression, primaryIndex, &secondaryIndices, structure, &prependStatements);

            // If both read from and written to (i.e. passed to inout parameter), store the
            // expression in a temp variable and pass that to the function.
            if (isWrite)
            {
                readExpression =
                    CopyToTempVariable(mSymbolTable, readExpression, &prependStatements);
            }

            // Replace the original expression with the transformed one.  Read transformations
            // always generate a single expression that can be used in place of the original (as
            // oppposed to write transformations that can generate multiple statements).
            queueReplacementWithParent(accessor, originalExpression, readExpression,
                                       OriginalNode::IS_DROPPED);
        }

        TIntermSequence postTransformPrependStatements;
        TIntermSequence *writeStatements = &appendStatements;
        TOperator assignmentOperator     = EOpAssign;

        if (isWrite)
        {
            TIntermTyped *valueExpression = readExpression;

            if (!valueExpression)
            {
                // If there's already a read expression, this was an inout parameter and
                // |valueExpression| will contain the temp variable that was passed to the function
                // instead.
                //
                // If not, then the modification is either through being passed as an out parameter
                // to a function, or an assignment.  In the former case, create a temp variable to
                // be passed to the function.  In the latter case, create a temp variable that holds
                // the right hand side expression.
                //
                // In either case, use that temp value as the value to assign to |baseExpression|.

                TVariable *temp =
                    CreateTempVariable(mSymbolTable, &originalExpression->getAsTyped()->getType());
                TIntermDeclaration *tempDecl = nullptr;

                valueExpression = new TIntermSymbol(temp);

                TIntermBinary *assignment = accessor->getAsBinaryNode();
                if (assignment)
                {
                    assignmentOperator = assignment->getOp();
                    ASSERT(IsAssignment(assignmentOperator));

                    // We are converting the assignment to the left-hand side of an expression in
                    // the form M=exp.  A subexpression of exp itself could require a
                    // transformation.  This complicates things as there would be two replacements:
                    //
                    // - Replace M=exp with temp (because the return value of the assignment could
                    //   be used)
                    // - Replace exp with exp2, where parent is M=exp
                    //
                    // The second replacement however is ineffective as the whole of M=exp is
                    // already transformed.  What's worse, M=exp is transformed without taking exp's
                    // transformations into account.  To address this issue, this same traverser is
                    // called on the right-hand side expression, with a special flag such that it
                    // only processes that expression.
                    //
                    RewriteRowMajorMatricesTraverser *outerTraverser =
                        mOuterTraverser ? mOuterTraverser : this;
                    RewriteRowMajorMatricesTraverser rhsTraverser(
                        mSymbolTable, outerTraverser, mInterfaceBlockMap,
                        mInterfaceBlockFieldConvertedIn, mStructMapOut, mCopyFunctionDefinitionsOut,
                        assignment);
                    getRootNode()->traverse(&rhsTraverser);
                    bool valid = rhsTraverser.updateTree(mCompiler, getRootNode());
                    ASSERT(valid);

                    tempDecl = CreateTempInitDeclarationNode(temp, assignment->getRight());

                    // Replace the whole assignment expression with the right-hand side as a read
                    // expression, in case the result of the assignment is used.  For example, this
                    // transforms:
                    //
                    //     if ((M += exp) == X)
                    //     {
                    //         // use M
                    //     }
                    //
                    // to:
                    //
                    //     temp = exp;
                    //     M += transform(temp);
                    //     if (transform(M) == X)
                    //     {
                    //         // use M
                    //     }
                    //
                    // Note that in this case the assignment to M must be prepended in the parent
                    // block.  In contrast, when sent to a function, the assignment to M should be
                    // done after the current function call is done.
                    //
                    // If the read from M itself (to replace assigmnet) needs to generate extra
                    // statements, they should be appended after the statements that write to M.
                    // These statements are stored in postTransformPrependStatements and appended to
                    // prependStatements in the end.
                    //
                    writeStatements = &prependStatements;

                    TIntermTyped *assignmentResultExpression = transformReadExpression(
                        baseExpression->deepCopy(), primaryIndex, &secondaryIndices, structure,
                        &postTransformPrependStatements);

                    // Replace the whole assignment, instead of just the right hand side.
                    TIntermNode *accessorParent = getAncestorNode(accessorIndex + 1);
                    queueReplacementWithParent(accessorParent, accessor, assignmentResultExpression,
                                               OriginalNode::IS_DROPPED);
                }
                else
                {
                    tempDecl = CreateTempDeclarationNode(temp);

                    // Replace the write expression (a function call argument) with the temp
                    // variable.
                    queueReplacementWithParent(accessor, originalExpression, valueExpression,
                                               OriginalNode::IS_DROPPED);
                }
                prependStatements.push_back(tempDecl);
            }

            if (isRead)
            {
                baseExpression = baseExpression->deepCopy();
            }
            transformWriteExpression(baseExpression, primaryIndex, &secondaryIndices, structure,
                                     valueExpression, assignmentOperator, writeStatements);
        }

        prependStatements.insert(prependStatements.end(), postTransformPrependStatements.begin(),
                                 postTransformPrependStatements.end());

        RewriteRowMajorMatricesTraverser *traverser = mOuterTraverser ? mOuterTraverser : this;
        traverser->insertStatementsInParentBlock(prependStatements, appendStatements);
    }

    TIntermTyped *transformReadExpression(TIntermTyped *baseExpression,
                                          TIntermNode *primaryIndex,
                                          TIntermSequence *secondaryIndices,
                                          const TStructure *structure,
                                          TIntermSequence *prependStatements)
    {
        const TType &baseExpressionType = baseExpression->getType();

        if (structure)
        {
            ASSERT(primaryIndex == nullptr && secondaryIndices->empty());
            ASSERT(mStructMapOut->count(structure) != 0);
            ASSERT((*mStructMapOut)[structure].convertedStruct != nullptr);

            // Declare copy-from-converted-to-original-struct function (if not already).
            declareStructCopyToOriginal(structure);

            const TFunction *copyToOriginal = (*mStructMapOut)[structure].copyToOriginal;

            if (baseExpressionType.isArray())
            {
                // If base expression is an array, transform every element.
                TransformArrayHelper transformHelper(baseExpression);

                TIntermTyped *element = nullptr;
                while ((element = transformHelper.getNextElement(nullptr, nullptr)) != nullptr)
                {
                    TIntermTyped *transformedElement =
                        CreateStructCopyCall(copyToOriginal, element);
                    transformHelper.accumulateForRead(mSymbolTable, transformedElement,
                                                      prependStatements);
                }
                return transformHelper.constructReadTransformExpression();
            }
            else
            {
                // If not reading an array, the result is simply a call to this function with the
                // base expression.
                return CreateStructCopyCall(copyToOriginal, baseExpression);
            }
        }

        // If not indexed, the result is transpose(exp)
        if (primaryIndex == nullptr)
        {
            ASSERT(secondaryIndices->empty());

            if (baseExpressionType.isArray())
            {
                // If array, transpose every element.
                TransformArrayHelper transformHelper(baseExpression);

                TIntermTyped *element = nullptr;
                while ((element = transformHelper.getNextElement(nullptr, nullptr)) != nullptr)
                {
                    TIntermTyped *transformedElement = CreateTransposeCall(mSymbolTable, element);
                    transformHelper.accumulateForRead(mSymbolTable, transformedElement,
                                                      prependStatements);
                }
                return transformHelper.constructReadTransformExpression();
            }
            else
            {
                return CreateTransposeCall(mSymbolTable, baseExpression);
            }
        }

        // If indexed the result is a vector (or just one element) where the primary and secondary
        // indices are swapped.
        ASSERT(!secondaryIndices->empty());

        TOperator primaryIndexOp          = GetIndexOp(primaryIndex);
        TIntermTyped *primaryIndexAsTyped = primaryIndex->getAsTyped();

        TIntermSequence transposedColumn;
        for (TIntermNode *secondaryIndex : *secondaryIndices)
        {
            TOperator secondaryIndexOp          = GetIndexOp(secondaryIndex);
            TIntermTyped *secondaryIndexAsTyped = secondaryIndex->getAsTyped();

            TIntermBinary *colIndexed = new TIntermBinary(
                secondaryIndexOp, baseExpression->deepCopy(), secondaryIndexAsTyped->deepCopy());
            TIntermBinary *colRowIndexed =
                new TIntermBinary(primaryIndexOp, colIndexed, primaryIndexAsTyped->deepCopy());

            transposedColumn.push_back(colRowIndexed);
        }

        if (secondaryIndices->size() == 1)
        {
            // If only one element, return that directly.
            return transposedColumn.front()->getAsTyped();
        }

        // Otherwise create a constructor with the appropriate dimension.
        TType *vecType = new TType(baseExpressionType.getBasicType(), secondaryIndices->size());
        return TIntermAggregate::CreateConstructor(*vecType, &transposedColumn);
    }

    void transformWriteExpression(TIntermTyped *baseExpression,
                                  TIntermNode *primaryIndex,
                                  TIntermSequence *secondaryIndices,
                                  const TStructure *structure,
                                  TIntermTyped *valueExpression,
                                  TOperator assignmentOperator,
                                  TIntermSequence *writeStatements)
    {
        const TType &baseExpressionType = baseExpression->getType();

        if (structure)
        {
            ASSERT(primaryIndex == nullptr && secondaryIndices->empty());
            ASSERT(mStructMapOut->count(structure) != 0);
            ASSERT((*mStructMapOut)[structure].convertedStruct != nullptr);

            // Declare copy-to-converted-from-original-struct function (if not already).
            declareStructCopyFromOriginal(structure);

            // The result is call to this function with the value expression assigned to base
            // expression.
            const TFunction *copyFromOriginal = (*mStructMapOut)[structure].copyFromOriginal;

            if (baseExpressionType.isArray())
            {
                // If array, assign every element.
                TransformArrayHelper transformHelper(baseExpression);

                TIntermTyped *element      = nullptr;
                TIntermTyped *valueElement = nullptr;
                while ((element = transformHelper.getNextElement(valueExpression, &valueElement)) !=
                       nullptr)
                {
                    TIntermTyped *functionCall =
                        CreateStructCopyCall(copyFromOriginal, valueElement);
                    writeStatements->push_back(new TIntermBinary(EOpAssign, element, functionCall));
                }
            }
            else
            {
                TIntermTyped *functionCall =
                    CreateStructCopyCall(copyFromOriginal, valueExpression->deepCopy());
                writeStatements->push_back(
                    new TIntermBinary(EOpAssign, baseExpression, functionCall));
            }

            return;
        }

        // If not indexed, the result is transpose(exp)
        if (primaryIndex == nullptr)
        {
            ASSERT(secondaryIndices->empty());

            if (baseExpressionType.isArray())
            {
                // If array, assign every element.
                TransformArrayHelper transformHelper(baseExpression);

                TIntermTyped *element      = nullptr;
                TIntermTyped *valueElement = nullptr;
                while ((element = transformHelper.getNextElement(valueExpression, &valueElement)) !=
                       nullptr)
                {
                    TIntermTyped *valueTransposed = CreateTransposeCall(mSymbolTable, valueElement);
                    writeStatements->push_back(
                        new TIntermBinary(EOpAssign, element, valueTransposed));
                }
            }
            else
            {
                TIntermTyped *valueTransposed =
                    CreateTransposeCall(mSymbolTable, valueExpression->deepCopy());
                writeStatements->push_back(
                    new TIntermBinary(assignmentOperator, baseExpression, valueTransposed));
            }

            return;
        }

        // If indexed, create one assignment per secondary index.  If the right-hand side is a
        // scalar, it's used with every assignment.  If it's a vector, the assignment is
        // per-component.  The right-hand side cannot be a matrix as that would imply left-hand
        // side being a matrix too, which is covered above where |primaryIndex == nullptr|.
        ASSERT(!secondaryIndices->empty());

        bool isValueExpressionScalar = valueExpression->getType().getNominalSize() == 1;
        ASSERT(isValueExpressionScalar || valueExpression->getType().getNominalSize() ==
                                              static_cast<int>(secondaryIndices->size()));

        TOperator primaryIndexOp          = GetIndexOp(primaryIndex);
        TIntermTyped *primaryIndexAsTyped = primaryIndex->getAsTyped();

        for (TIntermNode *secondaryIndex : *secondaryIndices)
        {
            TOperator secondaryIndexOp          = GetIndexOp(secondaryIndex);
            TIntermTyped *secondaryIndexAsTyped = secondaryIndex->getAsTyped();

            TIntermBinary *colIndexed = new TIntermBinary(
                secondaryIndexOp, baseExpression->deepCopy(), secondaryIndexAsTyped->deepCopy());
            TIntermBinary *colRowIndexed =
                new TIntermBinary(primaryIndexOp, colIndexed, primaryIndexAsTyped->deepCopy());

            TIntermTyped *valueExpressionIndexed = valueExpression->deepCopy();
            if (!isValueExpressionScalar)
            {
                valueExpressionIndexed = new TIntermBinary(secondaryIndexOp, valueExpressionIndexed,
                                                           secondaryIndexAsTyped->deepCopy());
            }

            writeStatements->push_back(
                new TIntermBinary(assignmentOperator, colRowIndexed, valueExpressionIndexed));
        }
    }

    const TFunction *getCopyStructFieldFunction(const TType *fromFieldType,
                                                const TType *toFieldType,
                                                bool isCopyToOriginal)
    {
        ASSERT(fromFieldType->getStruct());
        ASSERT(toFieldType->getStruct());

        // If copying from or to the original struct, the "to" field struct could require
        // conversion to or from the "from" field struct.  |isCopyToOriginal| tells us if we
        // should expect to find toField or fromField in mStructMapOut, if true or false
        // respectively.
        const TFunction *fieldCopyFunction = nullptr;
        if (isCopyToOriginal)
        {
            const TStructure *toFieldStruct = toFieldType->getStruct();

            auto iter = mStructMapOut->find(toFieldStruct);
            if (iter != mStructMapOut->end())
            {
                declareStructCopyToOriginal(toFieldStruct);
                fieldCopyFunction = iter->second.copyToOriginal;
            }
        }
        else
        {
            const TStructure *fromFieldStruct = fromFieldType->getStruct();

            auto iter = mStructMapOut->find(fromFieldStruct);
            if (iter != mStructMapOut->end())
            {
                declareStructCopyFromOriginal(fromFieldStruct);
                fieldCopyFunction = iter->second.copyFromOriginal;
            }
        }

        return fieldCopyFunction;
    }

    void addFieldCopy(TIntermBlock *body,
                      TIntermTyped *to,
                      TIntermTyped *from,
                      bool isCopyToOriginal)
    {
        const TType &fromType = from->getType();
        const TType &toType   = to->getType();

        TIntermTyped *rhs = from;

        if (fromType.getStruct())
        {
            const TFunction *fieldCopyFunction =
                getCopyStructFieldFunction(&fromType, &toType, isCopyToOriginal);

            if (fieldCopyFunction)
            {
                rhs = CreateStructCopyCall(fieldCopyFunction, from);
            }
        }
        else if (fromType.isMatrix())
        {
            rhs = CreateTransposeCall(mSymbolTable, from);
        }

        body->appendStatement(new TIntermBinary(EOpAssign, to, rhs));
    }

    TFunction *declareStructCopy(const TStructure *from,
                                 const TStructure *to,
                                 bool isCopyToOriginal)
    {
        TType *fromType = new TType(from, true);
        TType *toType   = new TType(to, true);

        // Create the parameter and return value variables.
        TVariable *fromVar = new TVariable(mSymbolTable, ImmutableString("from"), fromType,
                                           SymbolType::AngleInternal);
        TVariable *toVar =
            new TVariable(mSymbolTable, ImmutableString("to"), toType, SymbolType::AngleInternal);

        TIntermSymbol *fromSymbol = new TIntermSymbol(fromVar);
        TIntermSymbol *toSymbol   = new TIntermSymbol(toVar);

        // Create the function body as statements are generated.
        TIntermBlock *body = new TIntermBlock;

        // Declare the result variable.
        TIntermDeclaration *toDecl = new TIntermDeclaration();
        toDecl->appendDeclarator(toSymbol);
        body->appendStatement(toDecl);

        // Iterate over fields of the struct and copy one by one, transposing the matrices.  If a
        // struct is encountered that requires a transformation, this function is recursively
        // called.  As a result, it is important that the copy functions are placed in the code in
        // order.
        const TFieldList &fromFields = from->fields();
        const TFieldList &toFields   = to->fields();
        ASSERT(fromFields.size() == toFields.size());

        for (size_t fieldIndex = 0; fieldIndex < fromFields.size(); ++fieldIndex)
        {
            TIntermTyped *fieldIndexNode = CreateIndexNode(static_cast<int>(fieldIndex));

            TIntermTyped *fromField =
                new TIntermBinary(EOpIndexDirectStruct, fromSymbol->deepCopy(), fieldIndexNode);
            TIntermTyped *toField = new TIntermBinary(EOpIndexDirectStruct, toSymbol->deepCopy(),
                                                      fieldIndexNode->deepCopy());

            const TType *fromFieldType = fromFields[fieldIndex]->type();
            bool isStructOrMatrix      = fromFieldType->getStruct() || fromFieldType->isMatrix();

            if (fromFieldType->isArray() && isStructOrMatrix)
            {
                // If struct or matrix array, we need to copy element by element.
                TransformArrayHelper transformHelper(toField);

                TIntermTyped *toElement   = nullptr;
                TIntermTyped *fromElement = nullptr;
                while ((toElement = transformHelper.getNextElement(fromField, &fromElement)) !=
                       nullptr)
                {
                    addFieldCopy(body, toElement, fromElement, isCopyToOriginal);
                }
            }
            else
            {
                addFieldCopy(body, toField, fromField, isCopyToOriginal);
            }
        }

        // Add return statement.
        body->appendStatement(new TIntermBranch(EOpReturn, toSymbol->deepCopy()));

        // Declare the function
        TFunction *copyFunction = new TFunction(mSymbolTable, kEmptyImmutableString,
                                                SymbolType::AngleInternal, toType, true);
        copyFunction->addParameter(fromVar);

        TIntermFunctionDefinition *functionDef =
            CreateInternalFunctionDefinitionNode(*copyFunction, body);
        mCopyFunctionDefinitionsOut->push_back(functionDef);

        return copyFunction;
    }

    void declareStructCopyFromOriginal(const TStructure *structure)
    {
        StructConversionData *structData = &(*mStructMapOut)[structure];
        if (structData->copyFromOriginal)
        {
            return;
        }

        structData->copyFromOriginal =
            declareStructCopy(structure, structData->convertedStruct, false);
    }

    void declareStructCopyToOriginal(const TStructure *structure)
    {
        StructConversionData *structData = &(*mStructMapOut)[structure];
        if (structData->copyToOriginal)
        {
            return;
        }

        structData->copyToOriginal =
            declareStructCopy(structData->convertedStruct, structure, true);
    }

    TCompiler *mCompiler;

    // This traverser can call itself to transform a subexpression before moving on.  However, it
    // needs to accumulate conversion functions in inner passes.  The fields below marked with Out
    // or In are inherited from the outer pass (for inner passes), or point to storage fields in
    // mOuterPass (for the outer pass).  The latter should not be used by the inner passes as they
    // would be empty, so they are placed inside a struct to make them explicit.
    struct
    {
        StructMap structMap;
        InterfaceBlockMap interfaceBlockMap;
        InterfaceBlockFieldConverted interfaceBlockFieldConverted;
        TIntermSequence copyFunctionDefinitions;
    } mOuterPass;

    // A map from structures with matrices to their converted version.
    StructMap *mStructMapOut;
    // A map from interface block instances with row-major matrices to their converted variable.  If
    // an interface block is nameless, its fields are placed in this map instead.  When a variable
    // in this map is encountered, it signals the start of an expression that my need conversion,
    // which is either "interfaceBlock.field..." or "field..." if nameless.
    InterfaceBlockMap *mInterfaceBlockMap;
    // A map from interface block fields to whether they need to be converted.  If a field was
    // already column-major, it shouldn't be transposed.
    const InterfaceBlockFieldConverted &mInterfaceBlockFieldConvertedIn;

    TIntermSequence *mCopyFunctionDefinitionsOut;

    // If set, it's an inner pass and this will point to the outer pass traverser.  All statement
    // insertions are stored in the outer traverser and applied at once in the end.  This prevents
    // the inner passes from adding statements which invalidates the outer traverser's statement
    // position tracking.
    RewriteRowMajorMatricesTraverser *mOuterTraverser;

    // If set, it's an inner pass that should only process the right-hand side of this particular
    // node.
    TIntermBinary *mInnerPassRoot;
    bool mIsProcessingInnerPassSubtree;
};

}  // anonymous namespace

bool RewriteRowMajorMatrices(TCompiler *compiler, TIntermBlock *root, TSymbolTable *symbolTable)
{
    RewriteRowMajorMatricesTraverser traverser(compiler, symbolTable);
    root->traverse(&traverser);
    if (!traverser.updateTree(compiler, root))
    {
        return false;
    }

    size_t firstFunctionIndex = FindFirstFunctionDefinitionIndex(root);
    root->insertChildNodes(firstFunctionIndex, *traverser.getStructCopyFunctions());

    return compiler->validateAST(root);
}
}  // namespace sh