summaryrefslogtreecommitdiffstats
path: root/gfx/angle/checkout/src/compiler/translator/tree_util/FindPreciseNodes.cpp
blob: 2943117314ea2397d2935e7e712a023f7e8409d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
//
// Copyright 2021 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// FindPreciseNodes.cpp: Propagates |precise| to AST nodes.
//
// The high level algorithm is as follows.  For every node that "assigns" to a precise object,
// subobject (a precise struct whose field is being assigned) or superobject (a struct with a
// precise field), two things happen:
//
// - The operation is marked precise if it's an arithmetic operation
// - The right hand side of the assignment is made precise.  If only a subobject is precise, only
//   the corresponding subobject of the right hand side is made precise.
//

#include "compiler/translator/tree_util/FindPreciseNodes.h"

#include "common/hash_utils.h"
#include "compiler/translator/Compiler.h"
#include "compiler/translator/IntermNode.h"
#include "compiler/translator/Symbol.h"
#include "compiler/translator/tree_util/IntermTraverse.h"

namespace sh
{

namespace
{

// An access chain applied to a variable.  The |precise|-ness of a node does not change when
// indexing arrays, selecting matrix columns or swizzle vectors.  This access chain thus only
// includes block field selections.  The access chain is used to identify the part of an object
// that is or should be |precise|.  If both a.b.c and a.b are precise, only a.b is every considered.
class AccessChain
{
  public:
    AccessChain() = default;

    bool operator==(const AccessChain &other) const { return mChain == other.mChain; }

    const TVariable *build(TIntermTyped *lvalue);

    const TVector<size_t> &getChain() const { return mChain; }

    void reduceChain(size_t newSize)
    {
        ASSERT(newSize <= mChain.size());
        mChain.resize(newSize);
    }
    void clear() { reduceChain(0); }
    void push_back(size_t index) { mChain.push_back(index); }
    void pop_front(size_t n);
    void append(const AccessChain &other)
    {
        mChain.insert(mChain.end(), other.mChain.begin(), other.mChain.end());
    }
    bool removePrefix(const AccessChain &other);

  private:
    TVector<size_t> mChain;
};

bool IsIndexOp(TOperator op)
{
    switch (op)
    {
        case EOpIndexDirect:
        case EOpIndexDirectStruct:
        case EOpIndexDirectInterfaceBlock:
        case EOpIndexIndirect:
            return true;
        default:
            return false;
    }
}

const TVariable *AccessChain::build(TIntermTyped *lvalue)
{
    if (lvalue->getAsSwizzleNode())
    {
        return build(lvalue->getAsSwizzleNode()->getOperand());
    }
    if (lvalue->getAsSymbolNode())
    {
        const TVariable *var = &lvalue->getAsSymbolNode()->variable();

        // For fields of nameless interface blocks, add the field index too.
        if (var->getType().getInterfaceBlock() != nullptr)
        {
            mChain.push_back(var->getType().getInterfaceBlockFieldIndex());
        }

        return var;
    }
    TIntermBinary *binary = lvalue->getAsBinaryNode();
    ASSERT(binary);

    TOperator op = binary->getOp();
    ASSERT(IsIndexOp(op));

    const TVariable *var = build(binary->getLeft());

    if (op == EOpIndexDirectStruct || op == EOpIndexDirectInterfaceBlock)
    {
        int fieldIndex = binary->getRight()->getAsConstantUnion()->getIConst(0);
        mChain.push_back(fieldIndex);
    }

    return var;
}

void AccessChain::pop_front(size_t n)
{
    std::rotate(mChain.begin(), mChain.begin() + n, mChain.end());
    reduceChain(mChain.size() - n);
}

bool AccessChain::removePrefix(const AccessChain &other)
{
    // First, make sure the common part of the two access chains match.
    size_t commonSize = std::min(mChain.size(), other.mChain.size());

    for (size_t index = 0; index < commonSize; ++index)
    {
        if (mChain[index] != other.mChain[index])
        {
            return false;
        }
    }

    // Remove the common part from the access chain.  If other is a deeper access chain, this access
    // chain will become empty.
    pop_front(commonSize);

    return true;
}

AccessChain GetAssignmentAccessChain(TIntermOperator *node)
{
    // The assignment is either a unary or a binary node, and the lvalue is always the first child.
    AccessChain lvalueAccessChain;
    lvalueAccessChain.build(node->getChildNode(0)->getAsTyped());
    return lvalueAccessChain;
}

template <typename Traverser>
void TraverseIndexNodesOnly(TIntermNode *node, Traverser *traverser)
{
    if (node->getAsSwizzleNode())
    {
        node = node->getAsSwizzleNode()->getOperand();
    }

    if (node->getAsSymbolNode())
    {
        return;
    }

    TIntermBinary *binary = node->getAsBinaryNode();
    ASSERT(binary);

    TOperator op = binary->getOp();
    ASSERT(IsIndexOp(op));

    if (op == EOpIndexIndirect)
    {
        binary->getRight()->traverse(traverser);
    }

    TraverseIndexNodesOnly(binary->getLeft(), traverser);
}

// An object, which could be a sub-object of a variable.
struct ObjectAndAccessChain
{
    const TVariable *variable;
    AccessChain accessChain;
};

bool operator==(const ObjectAndAccessChain &a, const ObjectAndAccessChain &b)
{
    return a.variable == b.variable && a.accessChain == b.accessChain;
}

struct ObjectAndAccessChainHash
{
    size_t operator()(const ObjectAndAccessChain &object) const
    {
        size_t result = angle::ComputeGenericHash(&object.variable, sizeof(object.variable));
        if (!object.accessChain.getChain().empty())
        {
            result =
                result ^ angle::ComputeGenericHash(object.accessChain.getChain().data(),
                                                   object.accessChain.getChain().size() *
                                                       sizeof(object.accessChain.getChain()[0]));
        }
        return result;
    }
};

// A map from variables to AST nodes that modify them (i.e. nodes where IsAssignment(op)).
using VariableToAssignmentNodeMap = angle::HashMap<const TVariable *, TVector<TIntermOperator *>>;
// A set of |return| nodes from functions with a |precise| return value.
using PreciseReturnNodes = angle::HashSet<TIntermBranch *>;
// A set of precise objects that need processing, or have been processed.
using PreciseObjectSet = angle::HashSet<ObjectAndAccessChain, ObjectAndAccessChainHash>;

struct ASTInfo
{
    // Generic information about the tree:
    VariableToAssignmentNodeMap variableAssignmentNodeMap;
    // Information pertaining to |precise| expressions:
    PreciseReturnNodes preciseReturnNodes;
    PreciseObjectSet preciseObjectsToProcess;
    PreciseObjectSet preciseObjectsVisited;
};

int GetObjectPreciseSubChainLength(const ObjectAndAccessChain &object)
{
    const TType &type = object.variable->getType();

    if (type.isPrecise())
    {
        return 0;
    }

    const TFieldListCollection *block = type.getInterfaceBlock();
    if (block == nullptr)
    {
        block = type.getStruct();
    }
    const TVector<size_t> &accessChain = object.accessChain.getChain();

    for (size_t length = 0; length < accessChain.size(); ++length)
    {
        ASSERT(block != nullptr);

        const TField *field = block->fields()[accessChain[length]];
        if (field->type()->isPrecise())
        {
            return static_cast<int>(length + 1);
        }

        block = field->type()->getStruct();
    }

    return -1;
}

void AddPreciseObject(ASTInfo *info, const ObjectAndAccessChain &object)
{
    if (info->preciseObjectsVisited.count(object) > 0)
    {
        return;
    }

    info->preciseObjectsToProcess.insert(object);
    info->preciseObjectsVisited.insert(object);
}

void AddPreciseSubObjects(ASTInfo *info, const ObjectAndAccessChain &object);

void AddObjectIfPrecise(ASTInfo *info, const ObjectAndAccessChain &object)
{
    // See if the access chain is already precise, and if so add the minimum access chain that is
    // precise.
    int preciseSubChainLength = GetObjectPreciseSubChainLength(object);
    if (preciseSubChainLength == -1)
    {
        // If the access chain is not precise, see if there are any fields of it that are precise,
        // and add those individually.
        AddPreciseSubObjects(info, object);
        return;
    }

    ObjectAndAccessChain preciseObject = object;
    preciseObject.accessChain.reduceChain(preciseSubChainLength);

    AddPreciseObject(info, preciseObject);
}

void AddPreciseSubObjects(ASTInfo *info, const ObjectAndAccessChain &object)
{
    const TFieldListCollection *block = object.variable->getType().getInterfaceBlock();
    if (block == nullptr)
    {
        block = object.variable->getType().getStruct();
    }
    const TVector<size_t> &accessChain = object.accessChain.getChain();

    for (size_t length = 0; length < accessChain.size(); ++length)
    {
        block = block->fields()[accessChain[length]]->type()->getStruct();
    }

    if (block == nullptr)
    {
        return;
    }

    for (size_t fieldIndex = 0; fieldIndex < block->fields().size(); ++fieldIndex)
    {
        ObjectAndAccessChain subObject = object;
        subObject.accessChain.push_back(fieldIndex);

        // If the field is precise, add it as a precise subobject.  Otherwise recurse.
        if (block->fields()[fieldIndex]->type()->isPrecise())
        {
            AddPreciseObject(info, subObject);
        }
        else
        {
            AddPreciseSubObjects(info, subObject);
        }
    }
}

bool IsArithmeticOp(TOperator op)
{
    switch (op)
    {
        case EOpNegative:

        case EOpPostIncrement:
        case EOpPostDecrement:
        case EOpPreIncrement:
        case EOpPreDecrement:

        case EOpAdd:
        case EOpSub:
        case EOpMul:
        case EOpDiv:
        case EOpIMod:

        case EOpVectorTimesScalar:
        case EOpVectorTimesMatrix:
        case EOpMatrixTimesVector:
        case EOpMatrixTimesScalar:
        case EOpMatrixTimesMatrix:

        case EOpAddAssign:
        case EOpSubAssign:

        case EOpMulAssign:
        case EOpVectorTimesMatrixAssign:
        case EOpVectorTimesScalarAssign:
        case EOpMatrixTimesScalarAssign:
        case EOpMatrixTimesMatrixAssign:

        case EOpDivAssign:
        case EOpIModAssign:

        case EOpDot:
            return true;
        default:
            return false;
    }
}

// A traverser that gathers the following information, used to kick off processing:
//
// - For each variable, the AST nodes that modify it.
// - The set of |precise| return AST node.
// - The set of |precise| access chains assigned to.
//
class InfoGatherTraverser : public TIntermTraverser
{
  public:
    InfoGatherTraverser(ASTInfo *info) : TIntermTraverser(true, false, false), mInfo(info) {}

    bool visitUnary(Visit visit, TIntermUnary *node) override
    {
        // If the node is an assignment (i.e. ++ and --), store the relevant information.
        if (!IsAssignment(node->getOp()))
        {
            return true;
        }

        visitLvalue(node, node->getOperand());
        return false;
    }

    bool visitBinary(Visit visit, TIntermBinary *node) override
    {
        if (IsAssignment(node->getOp()))
        {
            visitLvalue(node, node->getLeft());

            node->getRight()->traverse(this);

            return false;
        }

        return true;
    }

    bool visitDeclaration(Visit visit, TIntermDeclaration *node) override
    {
        const TIntermSequence &sequence = *(node->getSequence());
        TIntermSymbol *symbol           = sequence.front()->getAsSymbolNode();
        TIntermBinary *initNode         = sequence.front()->getAsBinaryNode();
        TIntermTyped *initExpression    = nullptr;

        if (symbol == nullptr)
        {
            ASSERT(initNode->getOp() == EOpInitialize);

            symbol         = initNode->getLeft()->getAsSymbolNode();
            initExpression = initNode->getRight();
        }

        ASSERT(symbol);
        ObjectAndAccessChain object = {&symbol->variable(), {}};
        AddObjectIfPrecise(mInfo, object);

        if (initExpression)
        {
            mInfo->variableAssignmentNodeMap[object.variable].push_back(initNode);

            // Visit the init expression, which may itself have assignments.
            initExpression->traverse(this);
        }

        return false;
    }

    bool visitFunctionDefinition(Visit visit, TIntermFunctionDefinition *node) override
    {
        mCurrentFunction = node->getFunction();

        for (size_t paramIndex = 0; paramIndex < mCurrentFunction->getParamCount(); ++paramIndex)
        {
            ObjectAndAccessChain param = {mCurrentFunction->getParam(paramIndex), {}};
            AddObjectIfPrecise(mInfo, param);
        }

        return true;
    }

    bool visitBranch(Visit visit, TIntermBranch *node) override
    {
        if (node->getFlowOp() == EOpReturn && node->getChildCount() == 1 &&
            mCurrentFunction->getReturnType().isPrecise())
        {
            mInfo->preciseReturnNodes.insert(node);
        }

        return true;
    }

    bool visitGlobalQualifierDeclaration(Visit visit,
                                         TIntermGlobalQualifierDeclaration *node) override
    {
        if (node->isPrecise())
        {
            ObjectAndAccessChain preciseObject = {&node->getSymbol()->variable(), {}};
            AddPreciseObject(mInfo, preciseObject);
        }

        return false;
    }

  private:
    void visitLvalue(TIntermOperator *assignmentNode, TIntermTyped *lvalueNode)
    {
        AccessChain lvalueChain;
        const TVariable *lvalueBase = lvalueChain.build(lvalueNode);
        mInfo->variableAssignmentNodeMap[lvalueBase].push_back(assignmentNode);

        ObjectAndAccessChain lvalue = {lvalueBase, lvalueChain};
        AddObjectIfPrecise(mInfo, lvalue);

        TraverseIndexNodesOnly(lvalueNode, this);
    }

    ASTInfo *mInfo                    = nullptr;
    const TFunction *mCurrentFunction = nullptr;
};

// A traverser that, given an access chain, traverses an expression and marks parts of it |precise|.
// For example, in the expression |Struct1(a, Struct2(b, c), d)|:
//
// - Given access chain [1], both |b| and |c| are marked precise.
// - Given access chain [1, 0], only |b| is marked precise.
//
// When access chain is empty, arithmetic nodes are marked |precise| and any access chains found in
// their children is recursively added for processing.
//
// The access chain given to the traverser is derived from the left hand side of an assignment,
// while the traverser is run on the right hand side.
class PropagatePreciseTraverser : public TIntermTraverser
{
  public:
    PropagatePreciseTraverser(ASTInfo *info) : TIntermTraverser(true, false, false), mInfo(info) {}

    void propagatePrecise(TIntermNode *expression, const AccessChain &accessChain)
    {
        mCurrentAccessChain = accessChain;
        expression->traverse(this);
    }

    bool visitUnary(Visit visit, TIntermUnary *node) override
    {
        // Unary operations cannot be applied to structures.
        ASSERT(mCurrentAccessChain.getChain().empty());

        // Mark arithmetic nodes as |precise|.
        if (IsArithmeticOp(node->getOp()))
        {
            node->setIsPrecise();
        }

        // Mark the operand itself |precise| too.
        return true;
    }

    bool visitBinary(Visit visit, TIntermBinary *node) override
    {
        if (IsIndexOp(node->getOp()))
        {
            // Append the remaining access chain with that of the node, and mark that as |precise|.
            // For example, if we are evaluating an expression and expecting to mark the access
            // chain [1, 3] as |precise|, and the node itself has access chain [0, 2] applied to
            // variable V, then what ends up being |precise| is V with access chain [0, 2, 1, 3].
            AccessChain nodeAccessChain;
            const TVariable *baseVariable = nodeAccessChain.build(node);
            nodeAccessChain.append(mCurrentAccessChain);

            ObjectAndAccessChain preciseObject = {baseVariable, nodeAccessChain};
            AddPreciseObject(mInfo, preciseObject);

            // Visit index nodes, each of which should be considered |precise| in its entirety.
            mCurrentAccessChain.clear();
            TraverseIndexNodesOnly(node, this);

            return false;
        }

        if (node->getOp() == EOpComma)
        {
            // For expr1,expr2, consider only expr2 as that's the one whose calculation is relevant.
            node->getRight()->traverse(this);
            return false;
        }

        // Mark arithmetic nodes as |precise|.
        if (IsArithmeticOp(node->getOp()))
        {
            node->setIsPrecise();
        }

        if (IsAssignment(node->getOp()) || node->getOp() == EOpInitialize)
        {
            // If the node itself is a[...] op= expr, consider only expr as |precise|, as that's the
            // one whose calculation is significant.
            node->getRight()->traverse(this);

            // The indices used on the left hand side are also significant in their entirety.
            mCurrentAccessChain.clear();
            TraverseIndexNodesOnly(node->getLeft(), this);

            return false;
        }

        // Binary operations cannot be applied to structures.
        ASSERT(mCurrentAccessChain.getChain().empty());

        // Mark the operands themselves |precise| too.
        return true;
    }

    void visitSymbol(TIntermSymbol *symbol) override
    {
        // Mark the symbol together with the current access chain as |precise|.
        ObjectAndAccessChain preciseObject = {&symbol->variable(), mCurrentAccessChain};
        AddPreciseObject(mInfo, preciseObject);
    }

    bool visitAggregate(Visit visit, TIntermAggregate *node) override
    {
        // If this is a struct constructor and the access chain is not empty, only apply |precise|
        // to the field selected by the access chain.
        const TType &type = node->getType();
        const bool isStructConstructor =
            node->getOp() == EOpConstruct && type.getStruct() != nullptr && !type.isArray();

        if (!mCurrentAccessChain.getChain().empty() && isStructConstructor)
        {
            size_t selectedFieldIndex = mCurrentAccessChain.getChain().front();
            mCurrentAccessChain.pop_front(1);

            ASSERT(selectedFieldIndex < node->getChildCount());

            // Visit only said field.
            node->getChildNode(selectedFieldIndex)->traverse(this);
            return false;
        }

        // If this is an array constructor, each element is equally |precise| with the same access
        // chain.  Otherwise there cannot be any access chain for constructors.
        if (node->getOp() == EOpConstruct)
        {
            ASSERT(type.isArray() || mCurrentAccessChain.getChain().empty());
            return true;
        }

        // Otherwise this is a function call.  The access chain is irrelevant and every (non-out)
        // parameter of the function call should be considered |precise|.
        mCurrentAccessChain.clear();

        const TFunction *function = node->getFunction();
        ASSERT(function);

        for (size_t paramIndex = 0; paramIndex < function->getParamCount(); ++paramIndex)
        {
            if (function->getParam(paramIndex)->getType().getQualifier() != EvqParamOut)
            {
                node->getChildNode(paramIndex)->traverse(this);
            }
        }

        // Mark arithmetic nodes as |precise|.
        if (IsArithmeticOp(node->getOp()))
        {
            node->setIsPrecise();
        }

        return false;
    }

  private:
    ASTInfo *mInfo = nullptr;
    AccessChain mCurrentAccessChain;
};
}  // anonymous namespace

void FindPreciseNodes(TCompiler *compiler, TIntermBlock *root)
{
    ASTInfo info;

    InfoGatherTraverser infoGather(&info);
    root->traverse(&infoGather);

    PropagatePreciseTraverser propagator(&info);

    // First, get return expressions out of the way by propagating |precise|.
    for (TIntermBranch *returnNode : info.preciseReturnNodes)
    {
        ASSERT(returnNode->getChildCount() == 1);
        propagator.propagatePrecise(returnNode->getChildNode(0), {});
    }

    // Now take |precise| access chains one by one, and propagate their |precise|-ness to the right
    // hand side of all assignments in which they are on the left hand side, as well as the
    // arithmetic expression that assigns to them.

    while (!info.preciseObjectsToProcess.empty())
    {
        // Get one |precise| object to process.
        auto first                           = info.preciseObjectsToProcess.begin();
        const ObjectAndAccessChain toProcess = *first;
        info.preciseObjectsToProcess.erase(first);

        // Propagate |precise| to every node where it's assigned to.
        const TVector<TIntermOperator *> &assignmentNodes =
            info.variableAssignmentNodeMap[toProcess.variable];
        for (TIntermOperator *assignmentNode : assignmentNodes)
        {
            AccessChain assignmentAccessChain = GetAssignmentAccessChain(assignmentNode);

            // There are two possibilities:
            //
            // - The assignment is to a bigger access chain than that which is being processed, in
            //   which case the entire right hand side is marked |precise|,
            // - The assignment is to a smaller access chain, in which case only the subobject of
            //   the right hand side that corresponds to the remaining part of the access chain must
            //   be marked |precise|.
            //
            // For example, if processing |a.b.c| as a |precise| access chain:
            //
            // - If the assignment is to |a.b.c.d|, then the entire right hand side must be
            //   |precise|.
            // - If the assignment is to |a.b|, only the |.c| part of the right hand side expression
            //   must be |precise|.
            // - If the assignment is to |a.e|, there is nothing to do.
            //
            AccessChain remainingAccessChain = toProcess.accessChain;
            if (!remainingAccessChain.removePrefix(assignmentAccessChain))
            {
                continue;
            }

            propagator.propagatePrecise(assignmentNode, remainingAccessChain);
        }
    }

    // The AST nodes now contain information gathered by this post-processing step, and so the tree
    // must no longer be transformed.
    compiler->enableValidateNoMoreTransformations();
}

}  // namespace sh