summaryrefslogtreecommitdiffstats
path: root/gfx/angle/checkout/src/libANGLE/renderer/copyvertex.inc.h
blob: 3f1844e91c6e3ba902c8c795fbfaf54b912aa2a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
//
// Copyright 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

// copyvertex.inc.h: Implementation of vertex buffer copying and conversion functions

namespace rx
{

// Returns an aligned buffer to read the input from
template <typename T, size_t inputComponentCount>
inline const T *GetAlignedOffsetInput(const T *offsetInput, T *alignedElement)
{
    if (reinterpret_cast<uintptr_t>(offsetInput) % sizeof(T) != 0)
    {
        // Applications may pass in arbitrarily aligned buffers as input.
        // Certain architectures have restrictions regarding unaligned reads. Specifically, we crash
        // on armeabi-v7a devices with a SIGBUS error when performing such operations. arm64 and
        // x86-64 devices do not appear to have such issues.
        //
        // The workaround is to detect if the input buffer is unaligned and if so, perform a
        // byte-wise copy of the unaligned portion and a memcpy of the rest of the buffer.
        uint8_t *alignedBuffer               = reinterpret_cast<uint8_t *>(&alignedElement[0]);
        uintptr_t unalignedInputStartAddress = reinterpret_cast<uintptr_t>(offsetInput);
        constexpr size_t kAlignmentMinusOne  = sizeof(T) - 1;
        uintptr_t alignedInputStartAddress =
            (reinterpret_cast<uintptr_t>(offsetInput) + kAlignmentMinusOne) & ~(kAlignmentMinusOne);
        ASSERT(alignedInputStartAddress >= unalignedInputStartAddress);

        const size_t totalBytesToCopy     = sizeof(T) * inputComponentCount;
        const size_t unalignedBytesToCopy = alignedInputStartAddress - unalignedInputStartAddress;
        ASSERT(totalBytesToCopy >= unalignedBytesToCopy);

        // byte-wise copy of unaligned portion
        for (size_t i = 0; i < unalignedBytesToCopy; i++)
        {
            alignedBuffer[i] = reinterpret_cast<const uint8_t *>(&offsetInput[0])[i];
        }

        // memcpy remaining buffer
        memcpy(&alignedBuffer[unalignedBytesToCopy],
               &reinterpret_cast<const uint8_t *>(&offsetInput[0])[unalignedBytesToCopy],
               totalBytesToCopy - unalignedBytesToCopy);

        return alignedElement;
    }
    else
    {
        return offsetInput;
    }
}

template <typename T,
          size_t inputComponentCount,
          size_t outputComponentCount,
          uint32_t alphaDefaultValueBits>
inline void CopyNativeVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
    const size_t attribSize = sizeof(T) * inputComponentCount;

    if (attribSize == stride && inputComponentCount == outputComponentCount)
    {
        memcpy(output, input, count * attribSize);
        return;
    }

    if (inputComponentCount == outputComponentCount)
    {
        for (size_t i = 0; i < count; i++)
        {
            const T *offsetInput = reinterpret_cast<const T *>(input + (i * stride));
            T offsetInputAligned[inputComponentCount];
            offsetInput =
                GetAlignedOffsetInput<T, inputComponentCount>(offsetInput, &offsetInputAligned[0]);

            T *offsetOutput = reinterpret_cast<T *>(output) + i * outputComponentCount;

            memcpy(offsetOutput, offsetInput, attribSize);
        }
        return;
    }

    const T defaultAlphaValue                = gl::bitCast<T>(alphaDefaultValueBits);
    const size_t lastNonAlphaOutputComponent = std::min<size_t>(outputComponentCount, 3);

    for (size_t i = 0; i < count; i++)
    {
        const T *offsetInput = reinterpret_cast<const T *>(input + (i * stride));
        T offsetInputAligned[inputComponentCount];
        ASSERT(sizeof(offsetInputAligned) == attribSize);
        offsetInput =
            GetAlignedOffsetInput<T, inputComponentCount>(offsetInput, &offsetInputAligned[0]);

        T *offsetOutput = reinterpret_cast<T *>(output) + i * outputComponentCount;

        memcpy(offsetOutput, offsetInput, attribSize);

        if (inputComponentCount < lastNonAlphaOutputComponent)
        {
            // Set the remaining G/B channels to 0.
            size_t numComponents = (lastNonAlphaOutputComponent - inputComponentCount);
            memset(&offsetOutput[inputComponentCount], 0, numComponents * sizeof(T));
        }

        if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
        {
            // Set the remaining alpha channel to the defaultAlphaValue.
            offsetOutput[3] = defaultAlphaValue;
        }
    }
}

template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy8SintTo16SintVertexData(const uint8_t *input,
                                        size_t stride,
                                        size_t count,
                                        uint8_t *output)
{
    const size_t lastNonAlphaOutputComponent = std::min<size_t>(outputComponentCount, 3);

    for (size_t i = 0; i < count; i++)
    {
        const GLbyte *offsetInput = reinterpret_cast<const GLbyte *>(input + i * stride);
        GLshort *offsetOutput     = reinterpret_cast<GLshort *>(output) + i * outputComponentCount;

        for (size_t j = 0; j < inputComponentCount; j++)
        {
            offsetOutput[j] = static_cast<GLshort>(offsetInput[j]);
        }

        for (size_t j = inputComponentCount; j < lastNonAlphaOutputComponent; j++)
        {
            // Set remaining G/B channels to 0.
            offsetOutput[j] = 0;
        }

        if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
        {
            // On integer formats, we must set the Alpha channel to 1 if it's unused.
            offsetOutput[3] = 1;
        }
    }
}

template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy8SnormTo16SnormVertexData(const uint8_t *input,
                                          size_t stride,
                                          size_t count,
                                          uint8_t *output)
{
    for (size_t i = 0; i < count; i++)
    {
        const GLbyte *offsetInput = reinterpret_cast<const GLbyte *>(input + i * stride);
        GLshort *offsetOutput     = reinterpret_cast<GLshort *>(output) + i * outputComponentCount;

        for (size_t j = 0; j < inputComponentCount; j++)
        {
            // The original GLbyte value ranges from -128 to +127 (INT8_MAX).
            // When converted to GLshort, the value must be scaled to between -32768 and +32767
            // (INT16_MAX).
            if (offsetInput[j] > 0)
            {
                offsetOutput[j] =
                    offsetInput[j] << 8 | offsetInput[j] << 1 | ((offsetInput[j] & 0x40) >> 6);
            }
            else
            {
                offsetOutput[j] = offsetInput[j] << 8;
            }
        }

        for (size_t j = inputComponentCount; j < std::min<size_t>(outputComponentCount, 3); j++)
        {
            // Set remaining G/B channels to 0.
            offsetOutput[j] = 0;
        }

        if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
        {
            // On normalized formats, we must set the Alpha channel to the max value if it's unused.
            offsetOutput[3] = INT16_MAX;
        }
    }
}

template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy32FixedTo32FVertexData(const uint8_t *input,
                                       size_t stride,
                                       size_t count,
                                       uint8_t *output)
{
    static const float divisor = 1.0f / (1 << 16);

    for (size_t i = 0; i < count; i++)
    {
        const uint8_t *offsetInput = input + i * stride;
        float *offsetOutput        = reinterpret_cast<float *>(output) + i * outputComponentCount;

        // GLfixed access must be 4-byte aligned on arm32, input and stride sometimes are not
        if (reinterpret_cast<uintptr_t>(offsetInput) % sizeof(GLfixed) == 0)
        {
            for (size_t j = 0; j < inputComponentCount; j++)
            {
                offsetOutput[j] =
                    static_cast<float>(reinterpret_cast<const GLfixed *>(offsetInput)[j]) * divisor;
            }
        }
        else
        {
            for (size_t j = 0; j < inputComponentCount; j++)
            {
                GLfixed alignedInput;
                memcpy(&alignedInput, offsetInput + j * sizeof(GLfixed), sizeof(GLfixed));
                offsetOutput[j] = static_cast<float>(alignedInput) * divisor;
            }
        }

        // 4-component output formats would need special padding in the alpha channel.
        static_assert(!(inputComponentCount < 4 && outputComponentCount == 4),
                      "An inputComponentCount less than 4 and an outputComponentCount equal to 4 "
                      "is not supported.");

        for (size_t j = inputComponentCount; j < outputComponentCount; j++)
        {
            offsetOutput[j] = 0.0f;
        }
    }
}

template <typename T,
          size_t inputComponentCount,
          size_t outputComponentCount,
          bool normalized,
          bool toHalf>
inline void CopyToFloatVertexData(const uint8_t *input,
                                  size_t stride,
                                  size_t count,
                                  uint8_t *output)
{
    typedef std::numeric_limits<T> NL;
    typedef typename std::conditional<toHalf, GLhalf, float>::type outputType;

    for (size_t i = 0; i < count; i++)
    {
        const T *offsetInput = reinterpret_cast<const T *>(input + (stride * i));
        outputType *offsetOutput =
            reinterpret_cast<outputType *>(output) + i * outputComponentCount;

        T offsetInputAligned[inputComponentCount];
        offsetInput =
            GetAlignedOffsetInput<T, inputComponentCount>(offsetInput, &offsetInputAligned[0]);

        for (size_t j = 0; j < inputComponentCount; j++)
        {
            float result = 0;

            if (normalized)
            {
                if (NL::is_signed)
                {
                    result = static_cast<float>(offsetInput[j]) / static_cast<float>(NL::max());
                    result = result >= -1.0f ? result : -1.0f;
                }
                else
                {
                    result = static_cast<float>(offsetInput[j]) / static_cast<float>(NL::max());
                }
            }
            else
            {
                result = static_cast<float>(offsetInput[j]);
            }

            if (toHalf)
            {
                offsetOutput[j] = gl::float32ToFloat16(result);
            }
            else
            {
                offsetOutput[j] = static_cast<outputType>(result);
            }
        }

        for (size_t j = inputComponentCount; j < outputComponentCount; j++)
        {
            offsetOutput[j] = 0;
        }

        if (inputComponentCount < 4 && outputComponentCount == 4)
        {
            if (toHalf)
            {
                offsetOutput[3] = gl::Float16One;
            }
            else
            {
                offsetOutput[3] = static_cast<outputType>(gl::Float32One);
            }
        }
    }
}

template <size_t inputComponentCount, size_t outputComponentCount>
void Copy32FTo16FVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
    const unsigned short kZero = gl::float32ToFloat16(0.0f);
    const unsigned short kOne  = gl::float32ToFloat16(1.0f);

    for (size_t i = 0; i < count; i++)
    {
        const float *offsetInput = reinterpret_cast<const float *>(input + (stride * i));
        unsigned short *offsetOutput =
            reinterpret_cast<unsigned short *>(output) + i * outputComponentCount;

        for (size_t j = 0; j < inputComponentCount; j++)
        {
            offsetOutput[j] = gl::float32ToFloat16(offsetInput[j]);
        }

        for (size_t j = inputComponentCount; j < outputComponentCount; j++)
        {
            offsetOutput[j] = (j == 3) ? kOne : kZero;
        }
    }
}

inline void CopyXYZ32FToXYZ9E5(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
    for (size_t i = 0; i < count; i++)
    {
        const float *offsetInput   = reinterpret_cast<const float *>(input + (stride * i));
        unsigned int *offsetOutput = reinterpret_cast<unsigned int *>(output) + i;

        *offsetOutput = gl::convertRGBFloatsTo999E5(offsetInput[0], offsetInput[1], offsetInput[2]);
    }
}

inline void CopyXYZ32FToX11Y11B10F(const uint8_t *input,
                                   size_t stride,
                                   size_t count,
                                   uint8_t *output)
{
    for (size_t i = 0; i < count; i++)
    {
        const float *offsetInput   = reinterpret_cast<const float *>(input + (stride * i));
        unsigned int *offsetOutput = reinterpret_cast<unsigned int *>(output) + i;

        *offsetOutput = gl::float32ToFloat11(offsetInput[0]) << 0 |
                        gl::float32ToFloat11(offsetInput[1]) << 11 |
                        gl::float32ToFloat10(offsetInput[2]) << 22;
    }
}

namespace priv
{

template <bool isSigned, bool normalized, bool toFloat, bool toHalf>
static inline void CopyPackedRGB(uint32_t data, uint8_t *output)
{
    const uint32_t rgbSignMask  = 0x200;       // 1 set at the 9 bit
    const uint32_t negativeMask = 0xFFFFFC00;  // All bits from 10 to 31 set to 1

    if (toFloat || toHalf)
    {
        GLfloat finalValue = static_cast<GLfloat>(data);
        if (isSigned)
        {
            if (data & rgbSignMask)
            {
                int negativeNumber = data | negativeMask;
                finalValue         = static_cast<GLfloat>(negativeNumber);
            }

            if (normalized)
            {
                const int32_t maxValue = 0x1FF;       // 1 set in bits 0 through 8
                const int32_t minValue = 0xFFFFFE01;  // Inverse of maxValue

                // A 10-bit two's complement number has the possibility of being minValue - 1 but
                // OpenGL's normalization rules dictate that it should be clamped to minValue in
                // this case.
                if (finalValue < minValue)
                {
                    finalValue = minValue;
                }

                const int32_t halfRange = (maxValue - minValue) >> 1;
                finalValue              = ((finalValue - minValue) / halfRange) - 1.0f;
            }
        }
        else
        {
            if (normalized)
            {
                const uint32_t maxValue = 0x3FF;  // 1 set in bits 0 through 9
                finalValue /= static_cast<GLfloat>(maxValue);
            }
        }

        if (toHalf)
        {
            *reinterpret_cast<GLhalf *>(output) = gl::float32ToFloat16(finalValue);
        }
        else
        {
            *reinterpret_cast<GLfloat *>(output) = finalValue;
        }
    }
    else
    {
        if (isSigned)
        {
            GLshort *intOutput = reinterpret_cast<GLshort *>(output);

            if (data & rgbSignMask)
            {
                *intOutput = static_cast<GLshort>(data | negativeMask);
            }
            else
            {
                *intOutput = static_cast<GLshort>(data);
            }
        }
        else
        {
            GLushort *uintOutput = reinterpret_cast<GLushort *>(output);
            *uintOutput          = static_cast<GLushort>(data);
        }
    }
}

template <bool isSigned, bool normalized, bool toFloat, bool toHalf>
inline void CopyPackedAlpha(uint32_t data, uint8_t *output)
{
    ASSERT(data >= 0 && data <= 3);

    if (toFloat || toHalf)
    {
        GLfloat finalValue = 0;
        if (isSigned)
        {
            if (normalized)
            {
                switch (data)
                {
                    case 0x0:
                        finalValue = 0.0f;
                        break;
                    case 0x1:
                        finalValue = 1.0f;
                        break;
                    case 0x2:
                        finalValue = -1.0f;
                        break;
                    case 0x3:
                        finalValue = -1.0f;
                        break;
                    default:
                        UNREACHABLE();
                }
            }
            else
            {
                switch (data)
                {
                    case 0x0:
                        finalValue = 0.0f;
                        break;
                    case 0x1:
                        finalValue = 1.0f;
                        break;
                    case 0x2:
                        finalValue = -2.0f;
                        break;
                    case 0x3:
                        finalValue = -1.0f;
                        break;
                    default:
                        UNREACHABLE();
                }
            }
        }
        else
        {
            if (normalized)
            {
                finalValue = data / 3.0f;
            }
            else
            {
                finalValue = static_cast<float>(data);
            }
        }

        if (toHalf)
        {
            *reinterpret_cast<GLhalf *>(output) = gl::float32ToFloat16(finalValue);
        }
        else
        {
            *reinterpret_cast<GLfloat *>(output) = finalValue;
        }
    }
    else
    {
        if (isSigned)
        {
            GLshort *intOutput = reinterpret_cast<GLshort *>(output);
            switch (data)
            {
                case 0x0:
                    *intOutput = 0;
                    break;
                case 0x1:
                    *intOutput = 1;
                    break;
                case 0x2:
                    *intOutput = -2;
                    break;
                case 0x3:
                    *intOutput = -1;
                    break;
                default:
                    UNREACHABLE();
            }
        }
        else
        {
            *reinterpret_cast<GLushort *>(output) = static_cast<GLushort>(data);
        }
    }
}

}  // namespace priv

template <bool isSigned, bool normalized, bool toFloat, bool toHalf>
inline void CopyXYZ10W2ToXYZWFloatVertexData(const uint8_t *input,
                                             size_t stride,
                                             size_t count,
                                             uint8_t *output)
{
    const size_t outputComponentSize = toFloat && !toHalf ? 4 : 2;
    const size_t componentCount      = 4;

    const uint32_t rgbMask  = 0x3FF;  // 1 set in bits 0 through 9
    const size_t redShift   = 0;      // red is bits 0 through 9
    const size_t greenShift = 10;     // green is bits 10 through 19
    const size_t blueShift  = 20;     // blue is bits 20 through 29

    const uint32_t alphaMask = 0x3;  // 1 set in bits 0 and 1
    const size_t alphaShift  = 30;   // Alpha is the 30 and 31 bits

    for (size_t i = 0; i < count; i++)
    {
        GLuint packedValue    = *reinterpret_cast<const GLuint *>(input + (i * stride));
        uint8_t *offsetOutput = output + (i * outputComponentSize * componentCount);

        priv::CopyPackedRGB<isSigned, normalized, toFloat, toHalf>(
            (packedValue >> redShift) & rgbMask, offsetOutput + (0 * outputComponentSize));
        priv::CopyPackedRGB<isSigned, normalized, toFloat, toHalf>(
            (packedValue >> greenShift) & rgbMask, offsetOutput + (1 * outputComponentSize));
        priv::CopyPackedRGB<isSigned, normalized, toFloat, toHalf>(
            (packedValue >> blueShift) & rgbMask, offsetOutput + (2 * outputComponentSize));
        priv::CopyPackedAlpha<isSigned, normalized, toFloat, toHalf>(
            (packedValue >> alphaShift) & alphaMask, offsetOutput + (3 * outputComponentSize));
    }
}

template <bool isSigned, bool normalized, bool toHalf>
inline void CopyXYZ10ToXYZWFloatVertexData(const uint8_t *input,
                                           size_t stride,
                                           size_t count,
                                           uint8_t *output)
{
    const size_t outputComponentSize = toHalf ? 2 : 4;
    const size_t componentCount      = 4;

    const uint32_t rgbMask  = 0x3FF;  // 1 set in bits 0 through 9
    const size_t redShift   = 22;     // red is bits 22 through 31
    const size_t greenShift = 12;     // green is bits 12 through 21
    const size_t blueShift  = 2;      // blue is bits 2 through 11

    const uint32_t alphaDefaultValueBits = normalized ? (isSigned ? 0x1 : 0x3) : 0x1;

    for (size_t i = 0; i < count; i++)
    {
        GLuint packedValue    = *reinterpret_cast<const GLuint *>(input + (i * stride));
        uint8_t *offsetOutput = output + (i * outputComponentSize * componentCount);

        priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
            (packedValue >> redShift) & rgbMask, offsetOutput + (0 * outputComponentSize));
        priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
            (packedValue >> greenShift) & rgbMask, offsetOutput + (1 * outputComponentSize));
        priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
            (packedValue >> blueShift) & rgbMask, offsetOutput + (2 * outputComponentSize));
        priv::CopyPackedAlpha<isSigned, normalized, true, toHalf>(
            alphaDefaultValueBits, offsetOutput + (3 * outputComponentSize));
    }
}

template <bool isSigned, bool normalized, bool toHalf>
inline void CopyW2XYZ10ToXYZWFloatVertexData(const uint8_t *input,
                                             size_t stride,
                                             size_t count,
                                             uint8_t *output)
{
    const size_t outputComponentSize = toHalf ? 2 : 4;
    const size_t componentCount      = 4;

    const uint32_t rgbMask  = 0x3FF;  // 1 set in bits 0 through 9
    const size_t redShift   = 22;     // red is bits 22 through 31
    const size_t greenShift = 12;     // green is bits 12 through 21
    const size_t blueShift  = 2;      // blue is bits 2 through 11

    const uint32_t alphaMask = 0x3;  // 1 set in bits 0 and 1
    const size_t alphaShift  = 0;    // Alpha is the 30 and 31 bits

    for (size_t i = 0; i < count; i++)
    {
        GLuint packedValue    = *reinterpret_cast<const GLuint *>(input + (i * stride));
        uint8_t *offsetOutput = output + (i * outputComponentSize * componentCount);

        priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
            (packedValue >> redShift) & rgbMask, offsetOutput + (0 * outputComponentSize));
        priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
            (packedValue >> greenShift) & rgbMask, offsetOutput + (1 * outputComponentSize));
        priv::CopyPackedRGB<isSigned, normalized, true, toHalf>(
            (packedValue >> blueShift) & rgbMask, offsetOutput + (2 * outputComponentSize));
        priv::CopyPackedAlpha<isSigned, normalized, true, toHalf>(
            (packedValue >> alphaShift) & alphaMask, offsetOutput + (3 * outputComponentSize));
    }
}
}  // namespace rx