summaryrefslogtreecommitdiffstats
path: root/gfx/webrender_bindings/src/moz2d_renderer.rs
blob: ca1e76f96ffd72b43b2259d3e0ebe5bbae05fc04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#![deny(missing_docs)]

//! Provides the webrender-side implementation of gecko blob images.
//!
//! Pretty much this is just a shim that calls back into Moz2DImageRenderer, but
//! it also handles merging "partial" blob images (see `merge_blob_images`) and
//! registering fonts found in the blob (see `prepare_request`).

use bindings::{
    gecko_profiler_end_marker, gecko_profiler_start_marker, wr_moz2d_render_cb, ArcVecU8, ByteSlice, MutByteSlice,
};
use gecko_profiler::gecko_profiler_label;
use rayon::prelude::*;
use rayon::ThreadPool;
use webrender::api::units::{BlobDirtyRect, BlobToDeviceTranslation, DeviceIntRect};
use webrender::api::*;

use euclid::point2;
use std;
use std::collections::btree_map::BTreeMap;
use std::collections::hash_map;
use std::collections::hash_map::HashMap;
use std::collections::Bound::Included;
use std::i32;
use std::mem;
use std::os::raw::c_void;
use std::ptr;
use std::sync::Arc;

#[cfg(target_os = "windows")]
use dwrote;

#[cfg(any(target_os = "macos", target_os = "ios"))]
use core_foundation::string::CFString;
#[cfg(any(target_os = "macos", target_os = "ios"))]
use core_graphics::font::CGFont;
#[cfg(any(target_os = "macos", target_os = "ios"))]
use foreign_types::ForeignType;

#[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "windows")))]
use std::ffi::CString;
#[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "windows")))]
use std::os::unix::ffi::OsStrExt;

/// Local print-debugging utility
macro_rules! dlog {
    ($($e:expr),*) => { {$(let _ = $e;)*} }
    //($($t:tt)*) => { println!($($t)*) }
}

/// Debug prints a blob's item bounds, indicating whether the bounds are dirty or not.
fn dump_bounds(blob: &[u8], dirty_rect: DeviceIntRect) {
    let mut index = BlobReader::new(blob);
    while index.reader.has_more() {
        let e = index.read_entry();
        dlog!(
            "  {:?} {}",
            e.bounds,
            if dirty_rect.contains_box(&e.bounds) { "*" } else { "" }
        );
    }
}

/// Debug prints a blob's metadata.
fn dump_index(blob: &[u8]) {
    let mut index = BlobReader::new(blob);
    // we might get an empty result here because sub groups are not tightly bound
    // and we'll sometimes have display items that end up with empty bounds in
    // the blob image.
    while index.reader.has_more() {
        let e = index.read_entry();
        dlog!("result bounds: {} {} {:?}", e.end, e.extra_end, e.bounds);
    }
}

/// Handles the interpretation and rasterization of gecko-based (moz2d) WR blob images.
pub struct Moz2dBlobImageHandler {
    workers: Arc<ThreadPool>,
    workers_low_priority: Arc<ThreadPool>,
    blob_commands: HashMap<BlobImageKey, BlobCommand>,
    enable_multithreading: bool,
}

/// Transmute some bytes into a value.
///
/// FIXME: kill this with fire and/or do a super robust security audit
unsafe fn convert_from_bytes<T: Copy>(slice: &[u8]) -> T {
    assert!(mem::size_of::<T>() <= slice.len());
    ptr::read_unaligned(slice.as_ptr() as *const T)
}

/// Transmute a value into some bytes.
fn convert_to_bytes<T>(x: &T) -> &[u8] {
    unsafe {
        let ip: *const T = x;
        let bp: *const u8 = ip as *const _;
        ::std::slice::from_raw_parts(bp, mem::size_of::<T>())
    }
}

/// A simple helper for deserializing a bunch of transmuted POD data from bytes.
struct BufReader<'a> {
    /// The buffer to read from.
    buf: &'a [u8],
    /// Where we currently are reading from.
    pos: usize,
}

impl<'a> BufReader<'a> {
    /// Creates a reader over the given input.
    fn new(buf: &'a [u8]) -> BufReader<'a> {
        BufReader { buf, pos: 0 }
    }

    /// Transmute-deserializes a value of type T from the stream.
    ///
    /// !!! SUPER DANGEROUS !!!
    ///
    /// To limit the scope of this unsafety, please don't call this directly.
    /// Make a helper method for each whitelisted type.
    unsafe fn read<T: Copy>(&mut self) -> T {
        let ret = convert_from_bytes(&self.buf[self.pos..]);
        self.pos += mem::size_of::<T>();
        ret
    }

    /// Deserializes a BlobFont.
    fn read_blob_font(&mut self) -> BlobFont {
        unsafe { self.read::<BlobFont>() }
    }

    /// Deserializes a usize.
    fn read_usize(&mut self) -> usize {
        unsafe { self.read::<usize>() }
    }

    /// Deserializes a rectangle.
    fn read_box(&mut self) -> DeviceIntRect {
        unsafe { self.read::<DeviceIntRect>() }
    }

    /// Returns whether the buffer has more data to deserialize.
    fn has_more(&self) -> bool {
        self.pos < self.buf.len()
    }
}

/// Reads the metadata of a blob image.
///
/// Blob stream format:
/// { data[..], index[..], offset in the stream of the index array }
///
/// An 'item' has 'data' and 'extra_data'
///  - In our case the 'data' is the stream produced by DrawTargetRecording
///    and the 'extra_data' includes things like webrender font keys
///
/// The index is an array of entries of the following form:
/// { end, extra_end, bounds }
///
/// - end is the offset of the end of an item's data
///   an item's data goes from the begining of the stream or
///   the begining of the last item til end
/// - extra_end is the offset of the end of an item's extra data
///   an item's extra data goes from 'end' until 'extra_end'
/// - bounds is a set of 4 ints { min.x, min.y, max.x, max.y }
///
/// The offsets in the index should be monotonically increasing.
///
/// Design rationale:
///  - the index is smaller so we append it to the end of the data array
///  during construction. This makes it more likely that we'll fit inside
///  the data Vec
///  - we use indices/offsets instead of sizes to avoid having to deal with any
///  arithmetic that might overflow.
struct BlobReader<'a> {
    /// The buffer of the blob.
    reader: BufReader<'a>,
    /// Where the buffer head is.
    begin: usize,
}

#[derive(PartialEq, Debug, Eq, Clone, Copy)]
struct IntPoint {
    x: i32,
    y: i32,
}

/// The metadata for each display item in a blob image (doesn't match the serialized layout).
///
/// See BlobReader above for detailed docs of the blob image format.
struct Entry {
    /// The bounds of the display item.
    bounds: DeviceIntRect,
    /// Where the item's recorded drawing commands start.
    begin: usize,
    /// Where the item's recorded drawing commands end, and its extra data starts.
    end: usize,
    /// Where the item's extra data ends, and the next item's `begin`.
    extra_end: usize,
}

impl<'a> BlobReader<'a> {
    /// Creates a new BlobReader for the given buffer.
    fn new(buf: &'a [u8]) -> BlobReader<'a> {
        // The offset of the index is at the end of the buffer.
        let index_offset_pos = buf.len() - mem::size_of::<usize>();
        assert!(index_offset_pos < buf.len());
        let index_offset = unsafe { convert_from_bytes::<usize>(&buf[index_offset_pos..]) };

        BlobReader {
            reader: BufReader::new(&buf[index_offset..index_offset_pos]),
            begin: 0,
        }
    }

    /// Reads the next display item's metadata.
    fn read_entry(&mut self) -> Entry {
        let end = self.reader.read_usize();
        let extra_end = self.reader.read_usize();
        let bounds = self.reader.read_box();
        let ret = Entry {
            begin: self.begin,
            end,
            extra_end,
            bounds,
        };
        self.begin = extra_end;
        ret
    }
}

/// Writes new blob images.
///
/// In our case this is the result of merging an old one and a new one
struct BlobWriter {
    /// The buffer that the data and extra data for the items is accumulated.
    data: Vec<u8>,
    /// The buffer that the metadata for the items is accumulated.
    index: Vec<u8>,
}

impl BlobWriter {
    /// Creates an empty BlobWriter.
    fn new() -> BlobWriter {
        BlobWriter {
            data: Vec::new(),
            index: Vec::new(),
        }
    }

    /// Writes a display item to the blob.
    fn new_entry(&mut self, extra_size: usize, bounds: DeviceIntRect, data: &[u8]) {
        self.data.extend_from_slice(data);
        // Write 'end' to the index: the offset where the regular data ends and the extra data starts.
        self.index
            .extend_from_slice(convert_to_bytes(&(self.data.len() - extra_size)));
        // Write 'extra_end' to the index: the offset where the extra data ends.
        self.index.extend_from_slice(convert_to_bytes(&self.data.len()));
        // XXX: we can aggregate these writes
        // Write the bounds to the index.
        self.index.extend_from_slice(convert_to_bytes(&bounds.min.x));
        self.index.extend_from_slice(convert_to_bytes(&bounds.min.y));
        self.index.extend_from_slice(convert_to_bytes(&bounds.max.x));
        self.index.extend_from_slice(convert_to_bytes(&bounds.max.y));
    }

    /// Completes the blob image, producing a single buffer containing it.
    fn finish(mut self) -> Vec<u8> {
        // Append the index to the end of the buffer
        // and then append the offset to the beginning of the index.
        let index_begin = self.data.len();
        self.data.extend_from_slice(&self.index);
        self.data.extend_from_slice(convert_to_bytes(&index_begin));
        self.data
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
struct CacheKey {
    x1: i32,
    y1: i32,
    x2: i32,
    y2: i32,
    cache_order: u32,
}

impl CacheKey {
    pub fn new(bounds: DeviceIntRect, cache_order: u32) -> Self {
        CacheKey {
            x1: bounds.min.x,
            y1: bounds.min.y,
            x2: bounds.max.x,
            y2: bounds.max.y,
            cache_order,
        }
    }
}

/// Provides an API for looking up the display items in a blob image by bounds, yielding items
/// with equal bounds in their original relative ordering.
///
/// This is used to implement `merge_blobs_images`.
///
/// We use a BTree as a kind of multi-map, by appending an integer "cache_order" to the key.
/// This lets us use multiple items with matching bounds in the map and allows
/// us to fetch and remove them while retaining the ordering of the original list.
struct CachedReader<'a> {
    /// Wrapped reader.
    reader: BlobReader<'a>,
    /// Cached entries that have been read but not yet requested by our consumer.
    cache: BTreeMap<CacheKey, Entry>,
    /// The current number of internally read display items, used to preserve list order.
    cache_index_counter: u32,
}

impl<'a> CachedReader<'a> {
    /// Creates a new CachedReader.
    pub fn new(buf: &'a [u8]) -> CachedReader {
        CachedReader {
            reader: BlobReader::new(buf),
            cache: BTreeMap::new(),
            cache_index_counter: 0,
        }
    }

    /// Tries to find the given bounds in the cache of internally read items, removing it if found.
    fn take_entry_with_bounds_from_cache(&mut self, bounds: &DeviceIntRect) -> Option<Entry> {
        if self.cache.is_empty() {
            return None;
        }

        let key_to_delete = match self
            .cache
            .range((
                Included(CacheKey::new(*bounds, 0u32)),
                Included(CacheKey::new(*bounds, std::u32::MAX)),
            ))
            .next()
        {
            Some((&key, _)) => key,
            None => return None,
        };

        Some(
            self.cache
                .remove(&key_to_delete)
                .expect("We just got this key from range, it needs to be present"),
        )
    }

    /// Yields the next item in the blob image with the given bounds.
    ///
    /// If the given bounds aren't found in the blob, this panics. `merge_blob_images` should
    /// avoid this by construction if the blob images are well-formed.
    pub fn next_entry_with_bounds(&mut self, bounds: &DeviceIntRect, ignore_rect: &DeviceIntRect) -> Entry {
        if let Some(entry) = self.take_entry_with_bounds_from_cache(bounds) {
            return entry;
        }

        loop {
            // This will panic if we run through the whole list without finding our bounds.
            let old = self.reader.read_entry();
            if old.bounds == *bounds {
                return old;
            } else if !ignore_rect.contains_box(&old.bounds) {
                self.cache
                    .insert(CacheKey::new(old.bounds, self.cache_index_counter), old);
                self.cache_index_counter += 1;
            }
        }
    }
}

/// Merges a new partial blob image into an existing complete one.
///
/// A blob image represents a recording of the drawing commands needed to render
/// (part of) a display list. A partial blob image is a diff between the old display
/// list and a new one. It contains an entry for every display item in the new list, but
/// the actual drawing commands are missing for any item that isn't strictly contained
/// in the dirty rect. This is possible because not being contained in the dirty
/// rect implies that the item is unchanged between the old and new list, so we can
/// just grab the drawing commands from the old list.
///
/// The dirty rect strictly contains the bounds of every item that has been inserted
/// into or deleted from the old list to create the new list. (For simplicity
/// you may think of any other update as deleting and reinserting the item).
///
/// Partial blobs are based on gecko's "retained display list" system, and
/// in particular rely on one key property: if two items have overlapping bounds
/// and *aren't* contained in the dirty rect, then their relative order in both
/// the old and new list will not change. This lets us uniquely identify a display
/// item using only its bounds and relative order in the list.
///
/// That is, the first non-dirty item in the new list with bounds (10, 15, 100, 100)
/// is *also* the first non-dirty item in the old list with those bounds.
///
/// Note that *every* item contained inside the dirty rect will be fully recorded in
/// the new list, even if it is actually unchanged from the old list.
///
/// All of this together gives us a fairly simple merging algorithm: all we need
/// to do is walk through the new (partial) list, determine which of the two lists
/// has the recording for that item, and copy the recording into the result.
///
/// If an item is contained in the dirty rect, then the new list contains the
/// correct recording for that item, so we always copy it from there. Otherwise, we find
/// the first not-yet-copied item with those bounds in the old list and copy that.
/// Any items found in the old list but not the new one can be safely assumed to
/// have been deleted.
fn merge_blob_images(
    old_buf: &[u8],
    new_buf: &[u8],
    dirty_rect: DeviceIntRect,
    old_visible_rect: DeviceIntRect,
    new_visible_rect: DeviceIntRect,
) -> Vec<u8> {
    let mut result = BlobWriter::new();
    dlog!("dirty rect: {:?}", dirty_rect);
    dlog!("old:");
    dump_bounds(old_buf, dirty_rect);
    dlog!("new:");
    dump_bounds(new_buf, dirty_rect);
    dlog!("old visibile rect: {:?}", old_visible_rect);
    dlog!("new visibile rect: {:?}", new_visible_rect);

    let mut old_reader = CachedReader::new(old_buf);
    let mut new_reader = BlobReader::new(new_buf);
    let preserved_rect = old_visible_rect.intersection_unchecked(&new_visible_rect);

    // Loop over both new and old entries merging them.
    // Both new and old must have the same number of entries that
    // overlap but are not contained by the dirty rect, and they
    // must be in the same order.
    while new_reader.reader.has_more() {
        let new = new_reader.read_entry();
        dlog!("bounds: {} {} {:?}", new.end, new.extra_end, new.bounds);
        let preserved_bounds = new.bounds.intersection_unchecked(&preserved_rect);
        if dirty_rect.contains_box(&preserved_bounds) {
            result.new_entry(new.extra_end - new.end, new.bounds, &new_buf[new.begin..new.extra_end]);
        } else {
            let old = old_reader.next_entry_with_bounds(&new.bounds, &dirty_rect);
            result.new_entry(old.extra_end - old.end, new.bounds, &old_buf[old.begin..old.extra_end])
        }
    }

    // XXX: future work: ensure that items that have been deleted but aren't in the blob's visible
    // rect don't affect the dirty rect -- this allows us to scroll content out of view while only
    // updating the areas where items have been scrolled *into* view. This is very important for
    // the performance of blobs that are larger than the viewport. When this is done this
    // assertion will need to be modified to factor in the visible rect, or removed.

    // Ensure all remaining items will be discarded
    while old_reader.reader.reader.has_more() {
        let old = old_reader.reader.read_entry();
        dlog!("new bounds: {} {} {:?}", old.end, old.extra_end, old.bounds);
        //assert!(dirty_rect.contains_box(&old.bounds));
    }

    //assert!(old_reader.cache.is_empty());

    let result = result.finish();
    dump_index(&result);
    result
}

/// A font used by a blob image.
#[repr(C)]
#[derive(Copy, Clone)]
struct BlobFont {
    /// The font key.
    font_instance_key: FontInstanceKey,
    /// A pointer to the scaled font.
    scaled_font_ptr: u64,
}

/// A blob image and extra data provided by webrender on how to rasterize it.
#[derive(Clone)]
struct BlobCommand {
    /// The blob.
    data: Arc<BlobImageData>,
    /// What part of the blob should be rasterized (visible_rect's top-left corresponds to
    /// (0,0) in the blob's rasterization)
    visible_rect: DeviceIntRect,
    /// The size of the tiles to use in rasterization.
    tile_size: TileSize,
}

struct Job {
    request: BlobImageRequest,
    descriptor: BlobImageDescriptor,
    commands: Arc<BlobImageData>,
    dirty_rect: BlobDirtyRect,
    visible_rect: DeviceIntRect,
    tile_size: TileSize,
}

/// Rasterizes gecko blob images.
struct Moz2dBlobRasterizer {
    /// Pool of rasterizers.
    workers: Arc<ThreadPool>,
    /// Pool of low priority rasterizers.
    workers_low_priority: Arc<ThreadPool>,
    /// Blobs to rasterize.
    blob_commands: HashMap<BlobImageKey, BlobCommand>,
    ///
    enable_multithreading: bool,
}

struct GeckoProfilerMarker {
    name: &'static str,
}

impl GeckoProfilerMarker {
    pub fn new(name: &'static str) -> GeckoProfilerMarker {
        gecko_profiler_start_marker(name);
        GeckoProfilerMarker { name }
    }
}

impl Drop for GeckoProfilerMarker {
    fn drop(&mut self) {
        gecko_profiler_end_marker(self.name);
    }
}

impl AsyncBlobImageRasterizer for Moz2dBlobRasterizer {
    fn rasterize(
        &mut self,
        requests: &[BlobImageParams],
        low_priority: bool,
    ) -> Vec<(BlobImageRequest, BlobImageResult)> {
        // All we do here is spin up our workers to callback into gecko to replay the drawing commands.
        gecko_profiler_label!(Graphics, Rasterization);
        let _marker = GeckoProfilerMarker::new("BlobRasterization");

        let requests: Vec<Job> = requests
            .iter()
            .map(|params| {
                let command = &self.blob_commands[&params.request.key];
                let blob = Arc::clone(&command.data);
                assert!(!params.descriptor.rect.is_empty());

                Job {
                    request: params.request,
                    descriptor: params.descriptor,
                    commands: blob,
                    visible_rect: command.visible_rect,
                    dirty_rect: params.dirty_rect,
                    tile_size: command.tile_size,
                }
            })
            .collect();

        // If we don't have a lot of blobs it is probably not worth the initial cost
        // of installing work on rayon's thread pool so we do it serially on this thread.
        let should_parallelize = if !self.enable_multithreading {
            false
        } else if low_priority {
            requests.len() > 2
        } else {
            // For high priority requests we don't "risk" the potential priority inversion of
            // dispatching to a thread pool full of low priority jobs unless it is really
            // appealing.
            requests.len() > 4
        };

        if should_parallelize {
            // Parallel version synchronously installs a job on the thread pool which will
            // try to do the work in parallel.
            // This thread is blocked until the thread pool is done doing the work.
            let lambda = || requests.into_par_iter().map(rasterize_blob).collect();
            if low_priority {
                //TODO --bpe runtime flag to A/B test these two
                self.workers_low_priority.install(lambda)
            //self.workers.install(lambda)
            } else {
                self.workers.install(lambda)
            }
        } else {
            requests.into_iter().map(rasterize_blob).collect()
        }
    }
}

// a cross platform wrapper that creates an autorelease pool
// on macOS
fn autoreleasepool<T, F: FnOnce() -> T>(f: F) -> T {
    #[cfg(target_os = "macos")]
    {
        objc::rc::autoreleasepool(f)
    }
    #[cfg(not(target_os = "macos"))]
    {
        f()
    }
}

fn rasterize_blob(job: Job) -> (BlobImageRequest, BlobImageResult) {
    gecko_profiler_label!(Graphics, Rasterization);
    let descriptor = job.descriptor;
    let buf_size = (descriptor.rect.area() * descriptor.format.bytes_per_pixel()) as usize;

    let mut output = vec![0u8; buf_size];

    let dirty_rect = match job.dirty_rect {
        DirtyRect::Partial(rect) => Some(rect),
        DirtyRect::All => None,
    };
    assert!(!descriptor.rect.is_empty());

    let result = autoreleasepool(|| {
        unsafe {
            if wr_moz2d_render_cb(
                ByteSlice::new(&job.commands[..]),
                descriptor.format,
                &descriptor.rect,
                &job.visible_rect,
                job.tile_size,
                &job.request.tile,
                dirty_rect.as_ref(),
                MutByteSlice::new(output.as_mut_slice()),
            ) {
                // We want the dirty rect local to the tile rather than the whole image.
                // TODO(nical): move that up and avoid recomupting the tile bounds in the callback
                let dirty_rect = job.dirty_rect.to_subrect_of(&descriptor.rect);
                let tx: BlobToDeviceTranslation = (-descriptor.rect.min.to_vector()).into();
                let rasterized_rect = tx.transform_box(&dirty_rect);

                Ok(RasterizedBlobImage {
                    rasterized_rect,
                    data: Arc::new(output),
                })
            } else {
                panic!("Moz2D replay problem");
            }
        }
    });

    (job.request, result)
}

impl BlobImageHandler for Moz2dBlobImageHandler {
    fn create_similar(&self) -> Box<dyn BlobImageHandler> {
        Box::new(Self::new(
            Arc::clone(&self.workers),
            Arc::clone(&self.workers_low_priority),
        ))
    }

    fn add(&mut self, key: BlobImageKey, data: Arc<BlobImageData>, visible_rect: &DeviceIntRect, tile_size: TileSize) {
        {
            let index = BlobReader::new(&data);
            assert!(index.reader.has_more());
        }
        self.blob_commands.insert(
            key,
            BlobCommand {
                data: Arc::clone(&data),
                visible_rect: *visible_rect,
                tile_size,
            },
        );
    }

    fn update(
        &mut self,
        key: BlobImageKey,
        data: Arc<BlobImageData>,
        visible_rect: &DeviceIntRect,
        dirty_rect: &BlobDirtyRect,
    ) {
        match self.blob_commands.entry(key) {
            hash_map::Entry::Occupied(mut e) => {
                let command = e.get_mut();
                let dirty_rect = if let DirtyRect::Partial(rect) = *dirty_rect {
                    rect.cast_unit()
                } else {
                    DeviceIntRect {
                        min: point2(i32::MIN, i32::MIN),
                        max: point2(i32::MAX, i32::MAX),
                    }
                };
                command.data = Arc::new(merge_blob_images(
                    &command.data,
                    &data,
                    dirty_rect,
                    command.visible_rect,
                    *visible_rect,
                ));
                command.visible_rect = *visible_rect;
            },
            _ => {
                panic!("missing image key");
            },
        }
    }

    fn delete(&mut self, key: BlobImageKey) {
        self.blob_commands.remove(&key);
    }

    fn create_blob_rasterizer(&mut self) -> Box<dyn AsyncBlobImageRasterizer> {
        Box::new(Moz2dBlobRasterizer {
            workers: Arc::clone(&self.workers),
            workers_low_priority: Arc::clone(&self.workers_low_priority),
            blob_commands: self.blob_commands.clone(),
            enable_multithreading: self.enable_multithreading,
        })
    }

    fn delete_font(&mut self, font: FontKey) {
        unsafe {
            DeleteFontData(font);
        }
    }

    fn delete_font_instance(&mut self, key: FontInstanceKey) {
        unsafe {
            DeleteBlobFont(key);
        }
    }

    fn clear_namespace(&mut self, namespace: IdNamespace) {
        unsafe {
            ClearBlobImageResources(namespace);
        }
    }

    fn prepare_resources(&mut self, resources: &dyn BlobImageResources, requests: &[BlobImageParams]) {
        for params in requests {
            let commands = &self.blob_commands[&params.request.key];
            let blob = Arc::clone(&commands.data);
            self.prepare_request(&blob, resources);
        }
    }

    fn enable_multithreading(&mut self, enable: bool) {
        self.enable_multithreading = enable;
    }
}

use bindings::{WrFontInstanceKey, WrFontKey, WrIdNamespace};

#[allow(improper_ctypes)] // this is needed so that rustc doesn't complain about passing the &Arc<Vec> to an extern function
extern "C" {
    fn HasFontData(key: WrFontKey) -> bool;
    fn AddFontData(key: WrFontKey, data: *const u8, size: usize, index: u32, vec: &ArcVecU8);
    fn AddNativeFontHandle(key: WrFontKey, handle: *mut c_void, index: u32);
    fn DeleteFontData(key: WrFontKey);
    fn AddBlobFont(
        instance_key: WrFontInstanceKey,
        font_key: WrFontKey,
        size: f32,
        options: Option<&FontInstanceOptions>,
        platform_options: Option<&FontInstancePlatformOptions>,
        variations: *const FontVariation,
        num_variations: usize,
    );
    fn DeleteBlobFont(key: WrFontInstanceKey);
    fn ClearBlobImageResources(namespace: WrIdNamespace);

}

impl Moz2dBlobImageHandler {
    /// Create a new BlobImageHandler with the given thread pool.
    pub fn new(workers: Arc<ThreadPool>, workers_low_priority: Arc<ThreadPool>) -> Self {
        Moz2dBlobImageHandler {
            blob_commands: HashMap::new(),
            workers,
            workers_low_priority,
            enable_multithreading: true,
        }
    }

    /// Does early preprocessing of a blob's resources.
    ///
    /// Currently just sets up fonts found in the blob.
    fn prepare_request(&self, blob: &[u8], resources: &dyn BlobImageResources) {
        #[cfg(target_os = "windows")]
        fn process_native_font_handle(key: FontKey, handle: &NativeFontHandle) {
            let file = dwrote::FontFile::new_from_path(&handle.path).unwrap();
            let face = file
                .create_face(handle.index, dwrote::DWRITE_FONT_SIMULATIONS_NONE)
                .unwrap();
            unsafe { AddNativeFontHandle(key, face.as_ptr() as *mut c_void, 0) };
        }

        #[cfg(any(target_os = "macos", target_os = "ios"))]
        fn process_native_font_handle(key: FontKey, handle: &NativeFontHandle) {
            let font = match CGFont::from_name(&CFString::new(&handle.name)) {
                Ok(font) => font,
                Err(_) => {
                    // If for some reason we failed to load a font descriptor, then our
                    // only options are to either abort or substitute a fallback font.
                    // It is preferable to use a fallback font instead so that rendering
                    // can at least still proceed in some fashion without erroring.
                    // Lucida Grande is the fallback font in Gecko, so use that here.
                    CGFont::from_name(&CFString::from_static_string("Lucida Grande"))
                        .expect("Failed reading font descriptor and could not load fallback font")
                },
            };
            unsafe { AddNativeFontHandle(key, font.as_ptr() as *mut c_void, 0) };
        }

        #[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "windows")))]
        fn process_native_font_handle(key: FontKey, handle: &NativeFontHandle) {
            let cstr = CString::new(handle.path.as_os_str().as_bytes()).unwrap();
            unsafe { AddNativeFontHandle(key, cstr.as_ptr() as *mut c_void, handle.index) };
        }

        fn process_fonts(
            mut extra_data: BufReader,
            resources: &dyn BlobImageResources,
            unscaled_fonts: &mut Vec<FontKey>,
            scaled_fonts: &mut Vec<FontInstanceKey>,
        ) {
            let font_count = extra_data.read_usize();
            for _ in 0..font_count {
                let font = extra_data.read_blob_font();
                if scaled_fonts.contains(&font.font_instance_key) {
                    continue;
                }
                scaled_fonts.push(font.font_instance_key);
                if let Some(instance) = resources.get_font_instance_data(font.font_instance_key) {
                    if !unscaled_fonts.contains(&instance.font_key) {
                        unscaled_fonts.push(instance.font_key);
                        if !unsafe { HasFontData(instance.font_key) } {
                            let template = resources.get_font_data(instance.font_key).unwrap();
                            match template {
                                FontTemplate::Raw(ref data, ref index) => unsafe {
                                    AddFontData(instance.font_key, data.as_ptr(), data.len(), *index, data);
                                },
                                FontTemplate::Native(ref handle) => {
                                    process_native_font_handle(instance.font_key, handle);
                                },
                            }
                        }
                    }
                    unsafe {
                        AddBlobFont(
                            font.font_instance_key,
                            instance.font_key,
                            instance.size,
                            instance.options.as_ref(),
                            instance.platform_options.as_ref(),
                            instance.variations.as_ptr(),
                            instance.variations.len(),
                        );
                    }
                }
            }
        }

        {
            let mut index = BlobReader::new(blob);
            let mut unscaled_fonts = Vec::new();
            let mut scaled_fonts = Vec::new();
            while index.reader.pos < index.reader.buf.len() {
                let e = index.read_entry();
                process_fonts(
                    BufReader::new(&blob[e.end..e.extra_end]),
                    resources,
                    &mut unscaled_fonts,
                    &mut scaled_fonts,
                );
            }
        }
    }
}