1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// When using a solid color with clip masking, the cost of loading the clip mask
// in the blend stage exceeds the cost of processing the color. Here we handle
// the entire span of clip mask texture before the blend stage to more
// efficiently process it and modulate it with color without incurring blend
// stage overheads.
template <typename P, typename C>
static void commit_masked_solid_span(P* buf, C color, int len) {
override_clip_mask();
uint8_t* mask = get_clip_mask(buf);
for (P* end = &buf[len]; buf < end; buf += 4, mask += 4) {
commit_span(
buf,
blend_span(
buf,
applyColor(expand_mask(buf, unpack(unaligned_load<PackedR8>(mask))),
color)));
}
restore_clip_mask();
}
// When using a solid color with anti-aliasing, most of the solid span will not
// benefit from anti-aliasing in the opaque region. We only want to apply the AA
// blend stage in the non-opaque start and end of the span where AA is needed.
template <typename P, typename R>
static ALWAYS_INLINE void commit_aa_solid_span(P* buf, R r, int len) {
if (int start = min((get_aa_opaque_start(buf) + 3) & ~3, len)) {
commit_solid_span<true>(buf, r, start);
buf += start;
len -= start;
}
if (int opaque = min((get_aa_opaque_size(buf) + 3) & ~3, len)) {
override_aa();
commit_solid_span<true>(buf, r, opaque);
restore_aa();
buf += opaque;
len -= opaque;
}
if (len > 0) {
commit_solid_span<true>(buf, r, len);
}
}
// Forces a value with vector run-class to have scalar run-class.
template <typename T>
static ALWAYS_INLINE auto swgl_forceScalar(T v) -> decltype(force_scalar(v)) {
return force_scalar(v);
}
// Advance all varying inperpolants by a single chunk
#define swgl_stepInterp() step_interp_inputs()
// Pseudo-intrinsic that accesses the interpolation step for a given varying
#define swgl_interpStep(v) (interp_step.v)
// Commit an entire span of a solid color. This dispatches to clip-masked and
// anti-aliased fast-paths as appropriate.
#define swgl_commitSolid(format, v, n) \
do { \
int len = (n); \
if (blend_key) { \
if (swgl_ClipFlags & SWGL_CLIP_FLAG_MASK) { \
commit_masked_solid_span(swgl_Out##format, \
packColor(swgl_Out##format, (v)), len); \
} else if (swgl_ClipFlags & SWGL_CLIP_FLAG_AA) { \
commit_aa_solid_span(swgl_Out##format, \
pack_span(swgl_Out##format, (v)), len); \
} else { \
commit_solid_span<true>(swgl_Out##format, \
pack_span(swgl_Out##format, (v)), len); \
} \
} else { \
commit_solid_span<false>(swgl_Out##format, \
pack_span(swgl_Out##format, (v)), len); \
} \
swgl_Out##format += len; \
swgl_SpanLength -= len; \
} while (0)
#define swgl_commitSolidRGBA8(v) swgl_commitSolid(RGBA8, v, swgl_SpanLength)
#define swgl_commitSolidR8(v) swgl_commitSolid(R8, v, swgl_SpanLength)
#define swgl_commitPartialSolidRGBA8(len, v) \
swgl_commitSolid(RGBA8, v, min(int(len), swgl_SpanLength))
#define swgl_commitPartialSolidR8(len, v) \
swgl_commitSolid(R8, v, min(int(len), swgl_SpanLength))
#define swgl_commitChunk(format, chunk) \
do { \
auto r = chunk; \
if (blend_key) r = blend_span(swgl_Out##format, r); \
commit_span(swgl_Out##format, r); \
swgl_Out##format += swgl_StepSize; \
swgl_SpanLength -= swgl_StepSize; \
} while (0)
// Commit a single chunk of a color
#define swgl_commitColor(format, color) \
swgl_commitChunk(format, pack_pixels_##format(color))
#define swgl_commitColorRGBA8(color) swgl_commitColor(RGBA8, color)
#define swgl_commitColorR8(color) swgl_commitColor(R8, color)
template <typename S>
static ALWAYS_INLINE bool swgl_isTextureLinear(S s) {
return s->filter == TextureFilter::LINEAR;
}
template <typename S>
static ALWAYS_INLINE bool swgl_isTextureRGBA8(S s) {
return s->format == TextureFormat::RGBA8;
}
template <typename S>
static ALWAYS_INLINE bool swgl_isTextureR8(S s) {
return s->format == TextureFormat::R8;
}
// Use the default linear quantization scale of 128. This gives 7 bits of
// fractional precision, which when multiplied with a signed 9 bit value
// still fits in a 16 bit integer.
const int swgl_LinearQuantizeScale = 128;
// Quantizes UVs for access into a linear texture.
template <typename S, typename T>
static ALWAYS_INLINE T swgl_linearQuantize(S s, T p) {
return linearQuantize(p, swgl_LinearQuantizeScale, s);
}
// Quantizes an interpolation step for UVs for access into a linear texture.
template <typename S, typename T>
static ALWAYS_INLINE T swgl_linearQuantizeStep(S s, T p) {
return samplerScale(s, p) * swgl_LinearQuantizeScale;
}
template <typename S>
static ALWAYS_INLINE WideRGBA8 textureLinearUnpacked(UNUSED uint32_t* buf,
S sampler, ivec2 i) {
return textureLinearUnpackedRGBA8(sampler, i);
}
template <typename S>
static ALWAYS_INLINE WideR8 textureLinearUnpacked(UNUSED uint8_t* buf,
S sampler, ivec2 i) {
return textureLinearUnpackedR8(sampler, i);
}
template <typename S>
static ALWAYS_INLINE bool matchTextureFormat(S s, UNUSED uint32_t* buf) {
return swgl_isTextureRGBA8(s);
}
template <typename S>
static ALWAYS_INLINE bool matchTextureFormat(S s, UNUSED uint8_t* buf) {
return swgl_isTextureR8(s);
}
// Quantizes the UVs to the 2^7 scale needed for calculating fractional offsets
// for linear sampling.
#define LINEAR_QUANTIZE_UV(sampler, uv, uv_step, uv_rect, min_uv, max_uv) \
uv = swgl_linearQuantize(sampler, uv); \
vec2_scalar uv_step = \
float(swgl_StepSize) * vec2_scalar{uv.x.y - uv.x.x, uv.y.y - uv.y.x}; \
vec2_scalar min_uv = max( \
swgl_linearQuantize(sampler, vec2_scalar{uv_rect.x, uv_rect.y}), 0.0f); \
vec2_scalar max_uv = \
max(swgl_linearQuantize(sampler, vec2_scalar{uv_rect.z, uv_rect.w}), \
min_uv);
// Implements the fallback linear filter that can deal with clamping and
// arbitrary scales.
template <bool BLEND, typename S, typename C, typename P>
static P* blendTextureLinearFallback(S sampler, vec2 uv, int span,
vec2_scalar uv_step, vec2_scalar min_uv,
vec2_scalar max_uv, C color, P* buf) {
for (P* end = buf + span; buf < end; buf += swgl_StepSize, uv += uv_step) {
commit_blend_span<BLEND>(
buf, applyColor(textureLinearUnpacked(buf, sampler,
ivec2(clamp(uv, min_uv, max_uv))),
color));
}
return buf;
}
static ALWAYS_INLINE U64 castForShuffle(V16<int16_t> r) {
return bit_cast<U64>(r);
}
static ALWAYS_INLINE U16 castForShuffle(V4<int16_t> r) {
return bit_cast<U16>(r);
}
static ALWAYS_INLINE V16<int16_t> applyFracX(V16<int16_t> r, I16 fracx) {
return r * fracx.xxxxyyyyzzzzwwww;
}
static ALWAYS_INLINE V4<int16_t> applyFracX(V4<int16_t> r, I16 fracx) {
return r * fracx;
}
// Implements a faster linear filter that works with axis-aligned constant Y but
// scales less than 1, i.e. upscaling. In this case we can optimize for the
// constant Y fraction as well as load all chunks from memory in a single tap
// for each row.
template <bool BLEND, typename S, typename C, typename P>
static void blendTextureLinearUpscale(S sampler, vec2 uv, int span,
vec2_scalar uv_step, vec2_scalar min_uv,
vec2_scalar max_uv, C color, P* buf) {
typedef VectorType<uint8_t, 4 * sizeof(P)> packed_type;
typedef VectorType<uint16_t, 4 * sizeof(P)> unpacked_type;
typedef VectorType<int16_t, 4 * sizeof(P)> signed_unpacked_type;
ivec2 i(clamp(uv, min_uv, max_uv));
ivec2 frac = i;
i >>= 7;
P* row0 = (P*)sampler->buf + computeRow(sampler, ivec2_scalar(0, i.y.x));
P* row1 = row0 + computeNextRowOffset(sampler, ivec2_scalar(0, i.y.x));
I16 fracx = computeFracX(sampler, i, frac);
int16_t fracy = computeFracY(frac).x;
auto src0 =
CONVERT(unaligned_load<packed_type>(&row0[i.x.x]), signed_unpacked_type);
auto src1 =
CONVERT(unaligned_load<packed_type>(&row1[i.x.x]), signed_unpacked_type);
auto src = castForShuffle(src0 + (((src1 - src0) * fracy) >> 7));
// We attempt to sample ahead by one chunk and interpolate it with the current
// one. However, due to the complication of upscaling, we may not necessarily
// shift in all the next set of samples.
for (P* end = buf + span; buf < end; buf += 4) {
uv.x += uv_step.x;
I32 ixn = cast(uv.x);
I16 fracn = computeFracNoClamp(ixn);
ixn >>= 7;
auto src0n = CONVERT(unaligned_load<packed_type>(&row0[ixn.x]),
signed_unpacked_type);
auto src1n = CONVERT(unaligned_load<packed_type>(&row1[ixn.x]),
signed_unpacked_type);
auto srcn = castForShuffle(src0n + (((src1n - src0n) * fracy) >> 7));
// Since we're upscaling, we know that a source pixel has a larger footprint
// than the destination pixel, and thus all the source pixels needed for
// this chunk will fall within a single chunk of texture data. However,
// since the source pixels don't map 1:1 with destination pixels, we need to
// shift the source pixels over based on their offset from the start of the
// chunk. This could conceivably be optimized better with usage of PSHUFB or
// VTBL instructions However, since PSHUFB requires SSSE3, instead we resort
// to masking in the correct pixels to avoid having to index into memory.
// For the last sample to interpolate with, we need to potentially shift in
// a sample from the next chunk over in the case the samples fill out an
// entire chunk.
auto shuf = src;
auto shufn = SHUFFLE(src, ixn.x == i.x.w ? srcn.yyyy : srcn, 1, 2, 3, 4);
if (i.x.y == i.x.x) {
shuf = shuf.xxyz;
shufn = shufn.xxyz;
}
if (i.x.z == i.x.y) {
shuf = shuf.xyyz;
shufn = shufn.xyyz;
}
if (i.x.w == i.x.z) {
shuf = shuf.xyzz;
shufn = shufn.xyzz;
}
// Convert back to a signed unpacked type so that we can interpolate the
// final result.
auto interp = bit_cast<signed_unpacked_type>(shuf);
auto interpn = bit_cast<signed_unpacked_type>(shufn);
interp += applyFracX(interpn - interp, fracx) >> 7;
commit_blend_span<BLEND>(
buf, applyColor(bit_cast<unpacked_type>(interp), color));
i.x = ixn;
fracx = fracn;
src = srcn;
}
}
// This is the fastest variant of the linear filter that still provides
// filtering. In cases where there is no scaling required, but we have a
// subpixel offset that forces us to blend in neighboring pixels, we can
// optimize away most of the memory loads and shuffling that is required by the
// fallback filter.
template <bool BLEND, typename S, typename C, typename P>
static void blendTextureLinearFast(S sampler, vec2 uv, int span,
vec2_scalar min_uv, vec2_scalar max_uv,
C color, P* buf) {
typedef VectorType<uint8_t, 4 * sizeof(P)> packed_type;
typedef VectorType<uint16_t, 4 * sizeof(P)> unpacked_type;
typedef VectorType<int16_t, 4 * sizeof(P)> signed_unpacked_type;
ivec2 i(clamp(uv, min_uv, max_uv));
ivec2 frac = i;
i >>= 7;
P* row0 = (P*)sampler->buf + computeRow(sampler, force_scalar(i));
P* row1 = row0 + computeNextRowOffset(sampler, force_scalar(i));
int16_t fracx = computeFracX(sampler, i, frac).x;
int16_t fracy = computeFracY(frac).x;
auto src0 = CONVERT(unaligned_load<packed_type>(row0), signed_unpacked_type);
auto src1 = CONVERT(unaligned_load<packed_type>(row1), signed_unpacked_type);
auto src = castForShuffle(src0 + (((src1 - src0) * fracy) >> 7));
// Since there is no scaling, we sample ahead by one chunk and interpolate it
// with the current one. We can then reuse this value on the next iteration.
for (P* end = buf + span; buf < end; buf += 4) {
row0 += 4;
row1 += 4;
auto src0n =
CONVERT(unaligned_load<packed_type>(row0), signed_unpacked_type);
auto src1n =
CONVERT(unaligned_load<packed_type>(row1), signed_unpacked_type);
auto srcn = castForShuffle(src0n + (((src1n - src0n) * fracy) >> 7));
// For the last sample to interpolate with, we need to potentially shift in
// a sample from the next chunk over since the samples fill out an entire
// chunk.
auto interp = bit_cast<signed_unpacked_type>(src);
auto interpn =
bit_cast<signed_unpacked_type>(SHUFFLE(src, srcn, 1, 2, 3, 4));
interp += ((interpn - interp) * fracx) >> 7;
commit_blend_span<BLEND>(
buf, applyColor(bit_cast<unpacked_type>(interp), color));
src = srcn;
}
}
// Implements a faster linear filter that works with axis-aligned constant Y but
// downscaling the texture by half. In this case we can optimize for the
// constant X/Y fractions and reduction factor while minimizing shuffling.
template <bool BLEND, typename S, typename C, typename P>
static NO_INLINE void blendTextureLinearDownscale(S sampler, vec2 uv, int span,
vec2_scalar min_uv,
vec2_scalar max_uv, C color,
P* buf) {
typedef VectorType<uint8_t, 4 * sizeof(P)> packed_type;
typedef VectorType<uint16_t, 4 * sizeof(P)> unpacked_type;
typedef VectorType<int16_t, 4 * sizeof(P)> signed_unpacked_type;
ivec2 i(clamp(uv, min_uv, max_uv));
ivec2 frac = i;
i >>= 7;
P* row0 = (P*)sampler->buf + computeRow(sampler, force_scalar(i));
P* row1 = row0 + computeNextRowOffset(sampler, force_scalar(i));
int16_t fracx = computeFracX(sampler, i, frac).x;
int16_t fracy = computeFracY(frac).x;
for (P* end = buf + span; buf < end; buf += 4) {
auto src0 =
CONVERT(unaligned_load<packed_type>(row0), signed_unpacked_type);
auto src1 =
CONVERT(unaligned_load<packed_type>(row1), signed_unpacked_type);
auto src = castForShuffle(src0 + (((src1 - src0) * fracy) >> 7));
row0 += 4;
row1 += 4;
auto src0n =
CONVERT(unaligned_load<packed_type>(row0), signed_unpacked_type);
auto src1n =
CONVERT(unaligned_load<packed_type>(row1), signed_unpacked_type);
auto srcn = castForShuffle(src0n + (((src1n - src0n) * fracy) >> 7));
row0 += 4;
row1 += 4;
auto interp =
bit_cast<signed_unpacked_type>(SHUFFLE(src, srcn, 0, 2, 4, 6));
auto interpn =
bit_cast<signed_unpacked_type>(SHUFFLE(src, srcn, 1, 3, 5, 7));
interp += ((interpn - interp) * fracx) >> 7;
commit_blend_span<BLEND>(
buf, applyColor(bit_cast<unpacked_type>(interp), color));
}
}
enum LinearFilter {
// No linear filter is needed.
LINEAR_FILTER_NEAREST = 0,
// The most general linear filter that handles clamping and varying scales.
LINEAR_FILTER_FALLBACK,
// A linear filter optimized for axis-aligned upscaling.
LINEAR_FILTER_UPSCALE,
// A linear filter with no scaling but with subpixel offset.
LINEAR_FILTER_FAST,
// A linear filter optimized for 2x axis-aligned downscaling.
LINEAR_FILTER_DOWNSCALE
};
// Dispatches to an appropriate linear filter depending on the selected filter.
template <bool BLEND, typename S, typename C, typename P>
static P* blendTextureLinearDispatch(S sampler, vec2 uv, int span,
vec2_scalar uv_step, vec2_scalar min_uv,
vec2_scalar max_uv, C color, P* buf,
LinearFilter filter) {
P* end = buf + span;
if (filter != LINEAR_FILTER_FALLBACK) {
// If we're not using the fallback, then Y is constant across the entire
// row. We just need to ensure that we handle any samples that might pull
// data from before the start of the row and require clamping.
float beforeDist = max(0.0f, min_uv.x) - uv.x.x;
if (beforeDist > 0) {
int before = clamp(int(ceil(beforeDist / uv_step.x)) * swgl_StepSize, 0,
int(end - buf));
buf = blendTextureLinearFallback<BLEND>(sampler, uv, before, uv_step,
min_uv, max_uv, color, buf);
uv.x += (before / swgl_StepSize) * uv_step.x;
}
// We need to check how many samples we can take from inside the row without
// requiring clamping. In case the filter oversamples the row by a step, we
// subtract off a step from the width to leave some room.
float insideDist =
min(max_uv.x, float((int(sampler->width) - swgl_StepSize) *
swgl_LinearQuantizeScale)) -
uv.x.x;
if (uv_step.x > 0.0f && insideDist >= uv_step.x) {
int32_t inside = int(end - buf);
if (filter == LINEAR_FILTER_DOWNSCALE) {
inside = min(int(insideDist * (0.5f / swgl_LinearQuantizeScale)) &
~(swgl_StepSize - 1),
inside);
if (inside > 0) {
blendTextureLinearDownscale<BLEND>(sampler, uv, inside, min_uv,
max_uv, color, buf);
buf += inside;
uv.x += (inside / swgl_StepSize) * uv_step.x;
}
} else if (filter == LINEAR_FILTER_UPSCALE) {
inside = min(int(insideDist / uv_step.x) * swgl_StepSize, inside);
if (inside > 0) {
blendTextureLinearUpscale<BLEND>(sampler, uv, inside, uv_step, min_uv,
max_uv, color, buf);
buf += inside;
uv.x += (inside / swgl_StepSize) * uv_step.x;
}
} else {
inside = min(int(insideDist * (1.0f / swgl_LinearQuantizeScale)) &
~(swgl_StepSize - 1),
inside);
if (inside > 0) {
blendTextureLinearFast<BLEND>(sampler, uv, inside, min_uv, max_uv,
color, buf);
buf += inside;
uv.x += (inside / swgl_StepSize) * uv_step.x;
}
}
}
}
// If the fallback filter was requested, or if there are any samples left that
// may be outside the row and require clamping, then handle that with here.
if (buf < end) {
buf = blendTextureLinearFallback<BLEND>(
sampler, uv, int(end - buf), uv_step, min_uv, max_uv, color, buf);
}
return buf;
}
// Helper function to quantize UVs for linear filtering before dispatch
template <bool BLEND, typename S, typename C, typename P>
static inline int blendTextureLinear(S sampler, vec2 uv, int span,
const vec4_scalar& uv_rect, C color,
P* buf, LinearFilter filter) {
if (!matchTextureFormat(sampler, buf)) {
return 0;
}
LINEAR_QUANTIZE_UV(sampler, uv, uv_step, uv_rect, min_uv, max_uv);
blendTextureLinearDispatch<BLEND>(sampler, uv, span, uv_step, min_uv, max_uv,
color, buf, filter);
return span;
}
// Samples an axis-aligned span of on a single row of a texture using 1:1
// nearest filtering. Sampling is constrained to only fall within the given UV
// bounds. This requires a pointer to the destination buffer. An optional color
// modulus can be supplied.
template <bool BLEND, typename S, typename C, typename P>
static int blendTextureNearestFast(S sampler, vec2 uv, int span,
const vec4_scalar& uv_rect, C color,
P* buf) {
if (!matchTextureFormat(sampler, buf)) {
return 0;
}
typedef VectorType<uint8_t, 4 * sizeof(P)> packed_type;
ivec2_scalar i = make_ivec2(samplerScale(sampler, force_scalar(uv)));
ivec2_scalar minUV =
make_ivec2(samplerScale(sampler, vec2_scalar{uv_rect.x, uv_rect.y}));
ivec2_scalar maxUV =
make_ivec2(samplerScale(sampler, vec2_scalar{uv_rect.z, uv_rect.w}));
// Calculate the row pointer within the buffer, clamping to within valid row
// bounds.
P* row =
&((P*)sampler
->buf)[clampCoord(clamp(i.y, minUV.y, maxUV.y), sampler->height) *
sampler->stride];
// Find clamped X bounds within the row.
int minX = clamp(minUV.x, 0, sampler->width - 1);
int maxX = clamp(maxUV.x, minX, sampler->width - 1);
int curX = i.x;
int endX = i.x + span;
// If we need to start sampling below the valid sample bounds, then we need to
// fill this section with a constant clamped sample.
if (curX < minX) {
int n = min(minX, endX) - curX;
auto src =
applyColor(unpack(bit_cast<packed_type>(V4<P>(row[minX]))), color);
commit_solid_span<BLEND>(buf, src, n);
buf += n;
curX += n;
}
// Here we only deal with valid samples within the sample bounds. No clamping
// should occur here within these inner loops.
int n = max(min(maxX + 1, endX) - curX, 0);
// Try to process as many chunks as possible with full loads and stores.
for (int end = curX + (n & ~3); curX < end; curX += 4, buf += 4) {
auto src = applyColor(unaligned_load<packed_type>(&row[curX]), color);
commit_blend_span<BLEND>(buf, src);
}
n &= 3;
// If we have any leftover samples after processing chunks, use partial loads
// and stores.
if (n > 0) {
auto src = applyColor(partial_load_span<packed_type>(&row[curX], n), color);
commit_blend_span<BLEND>(buf, src, n);
buf += n;
curX += n;
}
// If we still have samples left above the valid sample bounds, then we again
// need to fill this section with a constant clamped sample.
if (curX < endX) {
auto src =
applyColor(unpack(bit_cast<packed_type>(V4<P>(row[maxX]))), color);
commit_solid_span<BLEND>(buf, src, endX - curX);
}
return span;
}
// We need to verify that the pixel step reasonably approximates stepping by a
// single texel for every pixel we need to reproduce. Try to ensure that the
// margin of error is no more than approximately 2^-7. Also, we check here if
// the scaling can be quantized for acceleration.
template <typename T>
static ALWAYS_INLINE int spanNeedsScale(int span, T P) {
span &= ~(128 - 1);
span += 128;
int scaled = round((P.x.y - P.x.x) * span);
return scaled != span ? (scaled == span * 2 ? 2 : 1) : 0;
}
// Helper function to decide whether we can safely apply 1:1 nearest filtering
// without diverging too much from the linear filter.
template <typename S, typename T>
static inline LinearFilter needsTextureLinear(S sampler, T P, int span) {
// If each row is not wide enough for linear filtering, then just use nearest
// filtering.
if (sampler->width < 2) {
return LINEAR_FILTER_NEAREST;
}
// First verify if the row Y doesn't change across samples
if (P.y.x != P.y.y) {
return LINEAR_FILTER_FALLBACK;
}
P = samplerScale(sampler, P);
if (int scale = spanNeedsScale(span, P)) {
// If the source region is not flipped and smaller than the destination,
// then we can use the upscaling filter since row Y is constant.
return P.x.x < P.x.y && P.x.y - P.x.x <= 1
? LINEAR_FILTER_UPSCALE
: (scale == 2 ? LINEAR_FILTER_DOWNSCALE
: LINEAR_FILTER_FALLBACK);
}
// Also verify that we're reasonably close to the center of a texel
// so that it doesn't look that much different than if a linear filter
// was used.
if ((int(P.x.x * 4.0f + 0.5f) & 3) != 2 ||
(int(P.y.x * 4.0f + 0.5f) & 3) != 2) {
// The source and destination regions are the same, but there is a
// significant subpixel offset. We can use a faster linear filter to deal
// with the offset in this case.
return LINEAR_FILTER_FAST;
}
// Otherwise, we have a constant 1:1 step and we're stepping reasonably close
// to the center of each pixel, so it's safe to disable the linear filter and
// use nearest.
return LINEAR_FILTER_NEAREST;
}
// Commit an entire span with linear filtering
#define swgl_commitTextureLinear(format, s, p, uv_rect, color, n) \
do { \
auto packed_color = packColor(swgl_Out##format, color); \
int len = (n); \
int drawn = 0; \
if (LinearFilter filter = needsTextureLinear(s, p, len)) { \
if (blend_key) { \
drawn = blendTextureLinear<true>(s, p, len, uv_rect, packed_color, \
swgl_Out##format, filter); \
} else { \
drawn = blendTextureLinear<false>(s, p, len, uv_rect, packed_color, \
swgl_Out##format, filter); \
} \
} else if (blend_key) { \
drawn = blendTextureNearestFast<true>(s, p, len, uv_rect, packed_color, \
swgl_Out##format); \
} else { \
drawn = blendTextureNearestFast<false>(s, p, len, uv_rect, packed_color, \
swgl_Out##format); \
} \
swgl_Out##format += drawn; \
swgl_SpanLength -= drawn; \
} while (0)
#define swgl_commitTextureLinearRGBA8(s, p, uv_rect) \
swgl_commitTextureLinear(RGBA8, s, p, uv_rect, NoColor(), swgl_SpanLength)
#define swgl_commitTextureLinearR8(s, p, uv_rect) \
swgl_commitTextureLinear(R8, s, p, uv_rect, NoColor(), swgl_SpanLength)
// Commit a partial span with linear filtering, optionally inverting the color
#define swgl_commitPartialTextureLinearR8(len, s, p, uv_rect) \
swgl_commitTextureLinear(R8, s, p, uv_rect, NoColor(), \
min(int(len), swgl_SpanLength))
#define swgl_commitPartialTextureLinearInvertR8(len, s, p, uv_rect) \
swgl_commitTextureLinear(R8, s, p, uv_rect, InvertColor(), \
min(int(len), swgl_SpanLength))
// Commit an entire span with linear filtering that is scaled by a color
#define swgl_commitTextureLinearColorRGBA8(s, p, uv_rect, color) \
swgl_commitTextureLinear(RGBA8, s, p, uv_rect, color, swgl_SpanLength)
#define swgl_commitTextureLinearColorR8(s, p, uv_rect, color) \
swgl_commitTextureLinear(R8, s, p, uv_rect, color, swgl_SpanLength)
// Helper function that samples from an R8 texture while expanding it to support
// a differing framebuffer format.
template <bool BLEND, typename S, typename C, typename P>
static inline int blendTextureLinearR8(S sampler, vec2 uv, int span,
const vec4_scalar& uv_rect, C color,
P* buf) {
if (!swgl_isTextureR8(sampler) || sampler->width < 2) {
return 0;
}
LINEAR_QUANTIZE_UV(sampler, uv, uv_step, uv_rect, min_uv, max_uv);
for (P* end = buf + span; buf < end; buf += swgl_StepSize, uv += uv_step) {
commit_blend_span<BLEND>(
buf, applyColor(expand_mask(buf, textureLinearUnpackedR8(
sampler,
ivec2(clamp(uv, min_uv, max_uv)))),
color));
}
return span;
}
// Commit an entire span with linear filtering while expanding from R8 to RGBA8
#define swgl_commitTextureLinearColorR8ToRGBA8(s, p, uv_rect, color) \
do { \
auto packed_color = packColor(swgl_OutRGBA8, color); \
int drawn = 0; \
if (blend_key) { \
drawn = blendTextureLinearR8<true>(s, p, swgl_SpanLength, uv_rect, \
packed_color, swgl_OutRGBA8); \
} else { \
drawn = blendTextureLinearR8<false>(s, p, swgl_SpanLength, uv_rect, \
packed_color, swgl_OutRGBA8); \
} \
swgl_OutRGBA8 += drawn; \
swgl_SpanLength -= drawn; \
} while (0)
#define swgl_commitTextureLinearR8ToRGBA8(s, p, uv_rect) \
swgl_commitTextureLinearColorR8ToRGBA8(s, p, uv_rect, NoColor())
// Compute repeating UVs, possibly constrained by tile repeat limits
static inline vec2 tileRepeatUV(vec2 uv, const vec2_scalar& tile_repeat) {
if (tile_repeat.x > 0.0f) {
// Clamp to a number slightly less than the tile repeat limit so that
// it results in a number close to but not equal to 1 after fract().
// This avoids fract() yielding 0 if the limit was left as whole integer.
uv = clamp(uv, vec2_scalar(0.0f), tile_repeat - 1.0e-6f);
}
return fract(uv);
}
// Compute the number of non-repeating steps before we need to potentially
// repeat the UVs.
static inline int computeNoRepeatSteps(Float uv, float uv_step,
float tile_repeat, int steps) {
if (uv.w < uv.x) {
// Ensure the UV taps are ordered low to high.
uv = uv.wzyx;
}
// Check if the samples cross the boundary of the next whole integer or the
// tile repeat limit, whichever is lower.
float limit = floor(uv.x) + 1.0f;
if (tile_repeat > 0.0f) {
limit = min(limit, tile_repeat);
}
return uv.x >= 0.0f && uv.w < limit
? (uv_step != 0.0f
? int(clamp((limit - uv.x) / uv_step, 0.0f, float(steps)))
: steps)
: 0;
}
// Blends an entire span of texture with linear filtering and repeating UVs.
template <bool BLEND, typename S, typename C, typename P>
static int blendTextureLinearRepeat(S sampler, vec2 uv, int span,
const vec2_scalar& tile_repeat,
const vec4_scalar& uv_repeat,
const vec4_scalar& uv_rect, C color,
P* buf) {
if (!matchTextureFormat(sampler, buf)) {
return 0;
}
vec2_scalar uv_scale = {uv_repeat.z - uv_repeat.x, uv_repeat.w - uv_repeat.y};
vec2_scalar uv_offset = {uv_repeat.x, uv_repeat.y};
// Choose a linear filter to use for no-repeat sub-spans
LinearFilter filter =
needsTextureLinear(sampler, uv * uv_scale + uv_offset, span);
// We need to step UVs unscaled and unquantized so that we can modulo them
// with fract. We use uv_scale and uv_offset to map them into the correct
// range.
vec2_scalar uv_step =
float(swgl_StepSize) * vec2_scalar{uv.x.y - uv.x.x, uv.y.y - uv.y.x};
uv_scale = swgl_linearQuantizeStep(sampler, uv_scale);
uv_offset = swgl_linearQuantize(sampler, uv_offset);
vec2_scalar min_uv = max(
swgl_linearQuantize(sampler, vec2_scalar{uv_rect.x, uv_rect.y}), 0.0f);
vec2_scalar max_uv = max(
swgl_linearQuantize(sampler, vec2_scalar{uv_rect.z, uv_rect.w}), min_uv);
for (P* end = buf + span; buf < end; buf += swgl_StepSize, uv += uv_step) {
int steps = int(end - buf) / swgl_StepSize;
// Find the sub-span before UVs repeat to avoid expensive repeat math
steps = computeNoRepeatSteps(uv.x, uv_step.x, tile_repeat.x, steps);
if (steps > 0) {
steps = computeNoRepeatSteps(uv.y, uv_step.y, tile_repeat.y, steps);
if (steps > 0) {
buf = blendTextureLinearDispatch<BLEND>(
sampler, fract(uv) * uv_scale + uv_offset, steps * swgl_StepSize,
uv_step * uv_scale, min_uv, max_uv, color, buf, filter);
if (buf >= end) {
break;
}
uv += steps * uv_step;
}
}
// UVs might repeat within this step, so explicitly compute repeated UVs
vec2 repeated_uv = clamp(
tileRepeatUV(uv, tile_repeat) * uv_scale + uv_offset, min_uv, max_uv);
commit_blend_span<BLEND>(
buf, applyColor(textureLinearUnpacked(buf, sampler, ivec2(repeated_uv)),
color));
}
return span;
}
// Commit an entire span with linear filtering and repeating UVs
#define swgl_commitTextureLinearRepeat(format, s, p, tile_repeat, uv_repeat, \
uv_rect, color) \
do { \
auto packed_color = packColor(swgl_Out##format, color); \
int drawn = 0; \
if (blend_key) { \
drawn = blendTextureLinearRepeat<true>(s, p, swgl_SpanLength, \
tile_repeat, uv_repeat, uv_rect, \
packed_color, swgl_Out##format); \
} else { \
drawn = blendTextureLinearRepeat<false>(s, p, swgl_SpanLength, \
tile_repeat, uv_repeat, uv_rect, \
packed_color, swgl_Out##format); \
} \
swgl_Out##format += drawn; \
swgl_SpanLength -= drawn; \
} while (0)
#define swgl_commitTextureLinearRepeatRGBA8(s, p, tile_repeat, uv_repeat, \
uv_rect) \
swgl_commitTextureLinearRepeat(RGBA8, s, p, tile_repeat, uv_repeat, uv_rect, \
NoColor())
#define swgl_commitTextureLinearRepeatColorRGBA8(s, p, tile_repeat, uv_repeat, \
uv_rect, color) \
swgl_commitTextureLinearRepeat(RGBA8, s, p, tile_repeat, uv_repeat, uv_rect, \
color)
template <typename S>
static ALWAYS_INLINE PackedRGBA8 textureNearestPacked(UNUSED uint32_t* buf,
S sampler, ivec2 i) {
return textureNearestPackedRGBA8(sampler, i);
}
// Blends an entire span of texture with nearest filtering and either
// repeated or clamped UVs.
template <bool BLEND, bool REPEAT, typename S, typename C, typename P>
static int blendTextureNearestRepeat(S sampler, vec2 uv, int span,
const vec2_scalar& tile_repeat,
const vec4_scalar& uv_rect, C color,
P* buf) {
if (!matchTextureFormat(sampler, buf)) {
return 0;
}
if (!REPEAT) {
// If clamping, then we step pre-scaled to the sampler. For repeat modes,
// this will be accomplished via uv_scale instead.
uv = samplerScale(sampler, uv);
}
vec2_scalar uv_step =
float(swgl_StepSize) * vec2_scalar{uv.x.y - uv.x.x, uv.y.y - uv.y.x};
vec2_scalar min_uv = samplerScale(sampler, vec2_scalar{uv_rect.x, uv_rect.y});
vec2_scalar max_uv = samplerScale(sampler, vec2_scalar{uv_rect.z, uv_rect.w});
vec2_scalar uv_scale = max_uv - min_uv;
// If the effective sampling area of this texture is only a single pixel, then
// treat it as a solid span. For repeat modes, the bounds are specified on
// pixel boundaries, whereas for clamp modes, bounds are on pixel centers, so
// the test varies depending on which. If the sample range on an axis is
// greater than one pixel, we can still check if we don't move far enough from
// the pixel center on that axis to hit the next pixel.
if ((int(min_uv.x) + (REPEAT ? 1 : 0) >= int(max_uv.x) ||
(abs(uv_step.x) * span * (REPEAT ? uv_scale.x : 1.0f) < 0.5f)) &&
(int(min_uv.y) + (REPEAT ? 1 : 0) >= int(max_uv.y) ||
(abs(uv_step.y) * span * (REPEAT ? uv_scale.y : 1.0f) < 0.5f))) {
vec2 repeated_uv = REPEAT
? tileRepeatUV(uv, tile_repeat) * uv_scale + min_uv
: clamp(uv, min_uv, max_uv);
commit_solid_span<BLEND>(buf,
applyColor(unpack(textureNearestPacked(
buf, sampler, ivec2(repeated_uv))),
color),
span);
} else {
for (P* end = buf + span; buf < end; buf += swgl_StepSize, uv += uv_step) {
if (REPEAT) {
int steps = int(end - buf) / swgl_StepSize;
// Find the sub-span before UVs repeat to avoid expensive repeat math
steps = computeNoRepeatSteps(uv.x, uv_step.x, tile_repeat.x, steps);
if (steps > 0) {
steps = computeNoRepeatSteps(uv.y, uv_step.y, tile_repeat.y, steps);
if (steps > 0) {
vec2 inside_uv = fract(uv) * uv_scale + min_uv;
vec2 inside_step = uv_step * uv_scale;
for (P* outside = &buf[steps * swgl_StepSize]; buf < outside;
buf += swgl_StepSize, inside_uv += inside_step) {
commit_blend_span<BLEND>(
buf, applyColor(
textureNearestPacked(buf, sampler, ivec2(inside_uv)),
color));
}
if (buf >= end) {
break;
}
uv += steps * uv_step;
}
}
}
// UVs might repeat within this step, so explicitly compute repeated UVs
vec2 repeated_uv = REPEAT
? tileRepeatUV(uv, tile_repeat) * uv_scale + min_uv
: clamp(uv, min_uv, max_uv);
commit_blend_span<BLEND>(
buf,
applyColor(textureNearestPacked(buf, sampler, ivec2(repeated_uv)),
color));
}
}
return span;
}
// Determine if we can use the fast nearest filter for the given nearest mode.
// If the Y coordinate varies more than half a pixel over
// the span (which might cause the texel to alias to the next one), or the span
// needs X scaling, then we have to use the fallback.
template <typename S, typename T>
static ALWAYS_INLINE bool needsNearestFallback(S sampler, T P, int span) {
P = samplerScale(sampler, P);
return (P.y.y - P.y.x) * span >= 0.5f || spanNeedsScale(span, P);
}
// Commit an entire span with nearest filtering and either clamped or repeating
// UVs
#define swgl_commitTextureNearest(format, s, p, uv_rect, color) \
do { \
auto packed_color = packColor(swgl_Out##format, color); \
int drawn = 0; \
if (needsNearestFallback(s, p, swgl_SpanLength)) { \
if (blend_key) { \
drawn = blendTextureNearestRepeat<true, false>( \
s, p, swgl_SpanLength, 0.0f, uv_rect, packed_color, \
swgl_Out##format); \
} else { \
drawn = blendTextureNearestRepeat<false, false>( \
s, p, swgl_SpanLength, 0.0f, uv_rect, packed_color, \
swgl_Out##format); \
} \
} else if (blend_key) { \
drawn = blendTextureNearestFast<true>(s, p, swgl_SpanLength, uv_rect, \
packed_color, swgl_Out##format); \
} else { \
drawn = blendTextureNearestFast<false>(s, p, swgl_SpanLength, uv_rect, \
packed_color, swgl_Out##format); \
} \
swgl_Out##format += drawn; \
swgl_SpanLength -= drawn; \
} while (0)
#define swgl_commitTextureNearestRGBA8(s, p, uv_rect) \
swgl_commitTextureNearest(RGBA8, s, p, uv_rect, NoColor())
#define swgl_commitTextureNearestColorRGBA8(s, p, uv_rect, color) \
swgl_commitTextureNearest(RGBA8, s, p, uv_rect, color)
#define swgl_commitTextureNearestRepeat(format, s, p, tile_repeat, uv_rect, \
color) \
do { \
auto packed_color = packColor(swgl_Out##format, color); \
int drawn = 0; \
if (blend_key) { \
drawn = blendTextureNearestRepeat<true, true>( \
s, p, swgl_SpanLength, tile_repeat, uv_rect, packed_color, \
swgl_Out##format); \
} else { \
drawn = blendTextureNearestRepeat<false, true>( \
s, p, swgl_SpanLength, tile_repeat, uv_rect, packed_color, \
swgl_Out##format); \
} \
swgl_Out##format += drawn; \
swgl_SpanLength -= drawn; \
} while (0)
#define swgl_commitTextureNearestRepeatRGBA8(s, p, tile_repeat, uv_repeat, \
uv_rect) \
swgl_commitTextureNearestRepeat(RGBA8, s, p, tile_repeat, uv_repeat, \
NoColor())
#define swgl_commitTextureNearestRepeatColorRGBA8(s, p, tile_repeat, \
uv_repeat, uv_rect, color) \
swgl_commitTextureNearestRepeat(RGBA8, s, p, tile_repeat, uv_repeat, color)
// Commit an entire span of texture with filtering determined by sampler state.
#define swgl_commitTexture(format, s, ...) \
do { \
if (s->filter == TextureFilter::LINEAR) { \
swgl_commitTextureLinear##format(s, __VA_ARGS__); \
} else { \
swgl_commitTextureNearest##format(s, __VA_ARGS__); \
} \
} while (0)
#define swgl_commitTextureRGBA8(...) swgl_commitTexture(RGBA8, __VA_ARGS__)
#define swgl_commitTextureColorRGBA8(...) \
swgl_commitTexture(ColorRGBA8, __VA_ARGS__)
#define swgl_commitTextureRepeatRGBA8(...) \
swgl_commitTexture(RepeatRGBA8, __VA_ARGS__)
#define swgl_commitTextureRepeatColorRGBA8(...) \
swgl_commitTexture(RepeatColorRGBA8, __VA_ARGS__)
// Commit an entire span of a separable pass of a Gaussian blur that falls
// within the given radius scaled by supplied coefficients, clamped to uv_rect
// bounds.
template <bool BLEND, typename S, typename P>
static int blendGaussianBlur(S sampler, vec2 uv, const vec4_scalar& uv_rect,
P* buf, int span, bool hori, int radius,
vec2_scalar coeffs) {
if (!matchTextureFormat(sampler, buf)) {
return 0;
}
vec2_scalar size = {float(sampler->width), float(sampler->height)};
ivec2_scalar curUV = make_ivec2(force_scalar(uv) * size);
ivec4_scalar bounds = make_ivec4(uv_rect * make_vec4(size, size));
int startX = curUV.x;
int endX = min(min(bounds.z, curUV.x + span), int(size.x));
if (hori) {
for (; curUV.x + swgl_StepSize <= endX;
buf += swgl_StepSize, curUV.x += swgl_StepSize) {
commit_blend_span<BLEND>(
buf, gaussianBlurHorizontal<P>(sampler, curUV, bounds.x, bounds.z,
radius, coeffs.x, coeffs.y));
}
} else {
for (; curUV.x + swgl_StepSize <= endX;
buf += swgl_StepSize, curUV.x += swgl_StepSize) {
commit_blend_span<BLEND>(
buf, gaussianBlurVertical<P>(sampler, curUV, bounds.y, bounds.w,
radius, coeffs.x, coeffs.y));
}
}
return curUV.x - startX;
}
#define swgl_commitGaussianBlur(format, s, p, uv_rect, hori, radius, coeffs) \
do { \
int drawn = 0; \
if (blend_key) { \
drawn = blendGaussianBlur<true>(s, p, uv_rect, swgl_Out##format, \
swgl_SpanLength, hori, radius, coeffs); \
} else { \
drawn = blendGaussianBlur<false>(s, p, uv_rect, swgl_Out##format, \
swgl_SpanLength, hori, radius, coeffs); \
} \
swgl_Out##format += drawn; \
swgl_SpanLength -= drawn; \
} while (0)
#define swgl_commitGaussianBlurRGBA8(s, p, uv_rect, hori, radius, coeffs) \
swgl_commitGaussianBlur(RGBA8, s, p, uv_rect, hori, radius, coeffs)
#define swgl_commitGaussianBlurR8(s, p, uv_rect, hori, radius, coeffs) \
swgl_commitGaussianBlur(R8, s, p, uv_rect, hori, radius, coeffs)
// Convert and pack planar YUV samples to RGB output using a color space
static ALWAYS_INLINE PackedRGBA8 convertYUV(const YUVMatrix& rgb_from_ycbcr,
U16 y, U16 u, U16 v) {
auto yy = V8<int16_t>(zip(y, y));
auto uv = V8<int16_t>(zip(u, v));
return rgb_from_ycbcr.convert(yy, uv);
}
// Helper functions to sample from planar YUV textures before converting to RGB
template <typename S0>
static ALWAYS_INLINE PackedRGBA8 sampleYUV(S0 sampler0, ivec2 uv0,
const YUVMatrix& rgb_from_ycbcr,
UNUSED int rescaleFactor) {
switch (sampler0->format) {
case TextureFormat::RGBA8: {
auto planar = textureLinearPlanarRGBA8(sampler0, uv0);
return convertYUV(rgb_from_ycbcr, highHalf(planar.rg), lowHalf(planar.rg),
lowHalf(planar.ba));
}
case TextureFormat::YUV422: {
auto planar = textureLinearPlanarYUV422(sampler0, uv0);
return convertYUV(rgb_from_ycbcr, planar.y, planar.u, planar.v);
}
default:
assert(false);
return PackedRGBA8(0);
}
}
template <bool BLEND, typename S0, typename P, typename C = NoColor>
static int blendYUV(P* buf, int span, S0 sampler0, vec2 uv0,
const vec4_scalar& uv_rect0, const vec3_scalar& ycbcr_bias,
const mat3_scalar& rgb_from_debiased_ycbcr,
int rescaleFactor, C color = C()) {
if (!swgl_isTextureLinear(sampler0)) {
return 0;
}
LINEAR_QUANTIZE_UV(sampler0, uv0, uv_step0, uv_rect0, min_uv0, max_uv0);
const auto rgb_from_ycbcr =
YUVMatrix::From(ycbcr_bias, rgb_from_debiased_ycbcr, rescaleFactor);
auto c = packColor(buf, color);
auto* end = buf + span;
for (; buf < end; buf += swgl_StepSize, uv0 += uv_step0) {
commit_blend_span<BLEND>(
buf, applyColor(sampleYUV(sampler0, ivec2(clamp(uv0, min_uv0, max_uv0)),
rgb_from_ycbcr, rescaleFactor),
c));
}
return span;
}
template <typename S0, typename S1>
static ALWAYS_INLINE PackedRGBA8 sampleYUV(S0 sampler0, ivec2 uv0, S1 sampler1,
ivec2 uv1,
const YUVMatrix& rgb_from_ycbcr,
int rescaleFactor) {
switch (sampler1->format) {
case TextureFormat::RG8: {
assert(sampler0->format == TextureFormat::R8);
auto y = textureLinearUnpackedR8(sampler0, uv0);
auto planar = textureLinearPlanarRG8(sampler1, uv1);
return convertYUV(rgb_from_ycbcr, y, lowHalf(planar.rg),
highHalf(planar.rg));
}
case TextureFormat::RGBA8: {
assert(sampler0->format == TextureFormat::R8);
auto y = textureLinearUnpackedR8(sampler0, uv0);
auto planar = textureLinearPlanarRGBA8(sampler1, uv1);
return convertYUV(rgb_from_ycbcr, y, lowHalf(planar.ba),
highHalf(planar.rg));
}
case TextureFormat::RG16: {
assert(sampler0->format == TextureFormat::R16);
// The rescaling factor represents how many bits to add to renormalize the
// texture to 16 bits, and so the color depth is actually 16 minus the
// rescaling factor.
// Need to right shift the sample by the amount of bits over 8 it
// occupies. On output from textureLinearUnpackedR16, we have lost 1 bit
// of precision at the low end already, hence 1 is subtracted from the
// color depth.
int colorDepth = 16 - rescaleFactor;
int rescaleBits = (colorDepth - 1) - 8;
auto y = textureLinearUnpackedR16(sampler0, uv0) >> rescaleBits;
auto uv = textureLinearUnpackedRG16(sampler1, uv1) >> rescaleBits;
return rgb_from_ycbcr.convert(zip(y, y), uv);
}
default:
assert(false);
return PackedRGBA8(0);
}
}
template <bool BLEND, typename S0, typename S1, typename P,
typename C = NoColor>
static int blendYUV(P* buf, int span, S0 sampler0, vec2 uv0,
const vec4_scalar& uv_rect0, S1 sampler1, vec2 uv1,
const vec4_scalar& uv_rect1, const vec3_scalar& ycbcr_bias,
const mat3_scalar& rgb_from_debiased_ycbcr,
int rescaleFactor, C color = C()) {
if (!swgl_isTextureLinear(sampler0) || !swgl_isTextureLinear(sampler1)) {
return 0;
}
LINEAR_QUANTIZE_UV(sampler0, uv0, uv_step0, uv_rect0, min_uv0, max_uv0);
LINEAR_QUANTIZE_UV(sampler1, uv1, uv_step1, uv_rect1, min_uv1, max_uv1);
const auto rgb_from_ycbcr =
YUVMatrix::From(ycbcr_bias, rgb_from_debiased_ycbcr, rescaleFactor);
auto c = packColor(buf, color);
auto* end = buf + span;
for (; buf < end; buf += swgl_StepSize, uv0 += uv_step0, uv1 += uv_step1) {
commit_blend_span<BLEND>(
buf, applyColor(sampleYUV(sampler0, ivec2(clamp(uv0, min_uv0, max_uv0)),
sampler1, ivec2(clamp(uv1, min_uv1, max_uv1)),
rgb_from_ycbcr, rescaleFactor),
c));
}
return span;
}
template <typename S0, typename S1, typename S2>
static ALWAYS_INLINE PackedRGBA8 sampleYUV(S0 sampler0, ivec2 uv0, S1 sampler1,
ivec2 uv1, S2 sampler2, ivec2 uv2,
const YUVMatrix& rgb_from_ycbcr,
int rescaleFactor) {
assert(sampler0->format == sampler1->format &&
sampler0->format == sampler2->format);
switch (sampler0->format) {
case TextureFormat::R8: {
auto y = textureLinearUnpackedR8(sampler0, uv0);
auto u = textureLinearUnpackedR8(sampler1, uv1);
auto v = textureLinearUnpackedR8(sampler2, uv2);
return convertYUV(rgb_from_ycbcr, y, u, v);
}
case TextureFormat::R16: {
// The rescaling factor represents how many bits to add to renormalize the
// texture to 16 bits, and so the color depth is actually 16 minus the
// rescaling factor.
// Need to right shift the sample by the amount of bits over 8 it
// occupies. On output from textureLinearUnpackedR16, we have lost 1 bit
// of precision at the low end already, hence 1 is subtracted from the
// color depth.
int colorDepth = 16 - rescaleFactor;
int rescaleBits = (colorDepth - 1) - 8;
auto y = textureLinearUnpackedR16(sampler0, uv0) >> rescaleBits;
auto u = textureLinearUnpackedR16(sampler1, uv1) >> rescaleBits;
auto v = textureLinearUnpackedR16(sampler2, uv2) >> rescaleBits;
return convertYUV(rgb_from_ycbcr, U16(y), U16(u), U16(v));
}
default:
assert(false);
return PackedRGBA8(0);
}
}
// Fallback helper for when we can't specifically accelerate YUV with
// composition.
template <bool BLEND, typename S0, typename S1, typename S2, typename P,
typename C>
static void blendYUVFallback(P* buf, int span, S0 sampler0, vec2 uv0,
vec2_scalar uv_step0, vec2_scalar min_uv0,
vec2_scalar max_uv0, S1 sampler1, vec2 uv1,
vec2_scalar uv_step1, vec2_scalar min_uv1,
vec2_scalar max_uv1, S2 sampler2, vec2 uv2,
vec2_scalar uv_step2, vec2_scalar min_uv2,
vec2_scalar max_uv2, const vec3_scalar& ycbcr_bias,
const mat3_scalar& rgb_from_debiased_ycbcr,
int rescaleFactor, C color) {
const auto rgb_from_ycbcr =
YUVMatrix::From(ycbcr_bias, rgb_from_debiased_ycbcr, rescaleFactor);
for (auto* end = buf + span; buf < end; buf += swgl_StepSize, uv0 += uv_step0,
uv1 += uv_step1, uv2 += uv_step2) {
commit_blend_span<BLEND>(
buf, applyColor(sampleYUV(sampler0, ivec2(clamp(uv0, min_uv0, max_uv0)),
sampler1, ivec2(clamp(uv1, min_uv1, max_uv1)),
sampler2, ivec2(clamp(uv2, min_uv2, max_uv2)),
rgb_from_ycbcr, rescaleFactor),
color));
}
}
template <bool BLEND, typename S0, typename S1, typename S2, typename P,
typename C = NoColor>
static int blendYUV(P* buf, int span, S0 sampler0, vec2 uv0,
const vec4_scalar& uv_rect0, S1 sampler1, vec2 uv1,
const vec4_scalar& uv_rect1, S2 sampler2, vec2 uv2,
const vec4_scalar& uv_rect2, const vec3_scalar& ycbcr_bias,
const mat3_scalar& rgb_from_debiased_ycbcr,
int rescaleFactor, C color = C()) {
if (!swgl_isTextureLinear(sampler0) || !swgl_isTextureLinear(sampler1) ||
!swgl_isTextureLinear(sampler2)) {
return 0;
}
LINEAR_QUANTIZE_UV(sampler0, uv0, uv_step0, uv_rect0, min_uv0, max_uv0);
LINEAR_QUANTIZE_UV(sampler1, uv1, uv_step1, uv_rect1, min_uv1, max_uv1);
LINEAR_QUANTIZE_UV(sampler2, uv2, uv_step2, uv_rect2, min_uv2, max_uv2);
auto c = packColor(buf, color);
blendYUVFallback<BLEND>(buf, span, sampler0, uv0, uv_step0, min_uv0, max_uv0,
sampler1, uv1, uv_step1, min_uv1, max_uv1, sampler2,
uv2, uv_step2, min_uv2, max_uv2, ycbcr_bias,
rgb_from_debiased_ycbcr, rescaleFactor, c);
return span;
}
// A variant of the blendYUV that attempts to reuse the inner loops from the
// CompositeYUV infrastructure. CompositeYUV imposes stricter requirements on
// the source data, which in turn allows it to be much faster than blendYUV.
// At a minimum, we need to ensure that we are outputting to a BGRA8 framebuffer
// and that no color scaling is applied, which we can accomplish via template
// specialization. We need to further validate inside that texture formats
// and dimensions are sane for video and that the video is axis-aligned before
// acceleration can proceed.
template <bool BLEND>
static int blendYUV(uint32_t* buf, int span, sampler2DRect sampler0, vec2 uv0,
const vec4_scalar& uv_rect0, sampler2DRect sampler1,
vec2 uv1, const vec4_scalar& uv_rect1,
sampler2DRect sampler2, vec2 uv2,
const vec4_scalar& uv_rect2, const vec3_scalar& ycbcr_bias,
const mat3_scalar& rgb_from_debiased_ycbcr,
int rescaleFactor, NoColor noColor = NoColor()) {
if (!swgl_isTextureLinear(sampler0) || !swgl_isTextureLinear(sampler1) ||
!swgl_isTextureLinear(sampler2)) {
return 0;
}
LINEAR_QUANTIZE_UV(sampler0, uv0, uv_step0, uv_rect0, min_uv0, max_uv0);
LINEAR_QUANTIZE_UV(sampler1, uv1, uv_step1, uv_rect1, min_uv1, max_uv1);
LINEAR_QUANTIZE_UV(sampler2, uv2, uv_step2, uv_rect2, min_uv2, max_uv2);
auto* end = buf + span;
// CompositeYUV imposes further restrictions on the source textures, such that
// the the Y/U/V samplers must all have a matching format, the U/V samplers
// must have matching sizes and sample coordinates, and there must be no
// change in row across the entire span.
if (sampler0->format == sampler1->format &&
sampler1->format == sampler2->format &&
sampler1->width == sampler2->width &&
sampler1->height == sampler2->height && uv_step0.y == 0 &&
uv_step0.x > 0 && uv_step1.y == 0 && uv_step1.x > 0 &&
uv_step1 == uv_step2 && uv1.x.x == uv2.x.x && uv1.y.x == uv2.y.x) {
// CompositeYUV does not support a clamp rect, so we must take care to
// advance till we're inside the bounds of the clamp rect.
int outside = min(int(ceil(max((min_uv0.x - uv0.x.x) / uv_step0.x,
(min_uv1.x - uv1.x.x) / uv_step1.x))),
(end - buf) / swgl_StepSize);
if (outside > 0) {
blendYUVFallback<BLEND>(buf, outside * swgl_StepSize, sampler0, uv0,
uv_step0, min_uv0, max_uv0, sampler1, uv1,
uv_step1, min_uv1, max_uv1, sampler2, uv2,
uv_step2, min_uv2, max_uv2, ycbcr_bias,
rgb_from_debiased_ycbcr, rescaleFactor, noColor);
buf += outside * swgl_StepSize;
uv0.x += outside * uv_step0.x;
uv1.x += outside * uv_step1.x;
uv2.x += outside * uv_step2.x;
}
// Find the amount of chunks inside the clamp rect before we hit the
// maximum. If there are any chunks inside, we can finally dispatch to
// CompositeYUV.
int inside = min(int(min((max_uv0.x - uv0.x.x) / uv_step0.x,
(max_uv1.x - uv1.x.x) / uv_step1.x)),
(end - buf) / swgl_StepSize);
if (inside > 0) {
// We need the color depth, which is relative to the texture format and
// rescale factor.
int colorDepth =
(sampler0->format == TextureFormat::R16 ? 16 : 8) - rescaleFactor;
// Finally, call the inner loop of CompositeYUV.
const auto rgb_from_ycbcr =
YUVMatrix::From(ycbcr_bias, rgb_from_debiased_ycbcr, rescaleFactor);
linear_row_yuv<BLEND>(
buf, inside * swgl_StepSize, sampler0, force_scalar(uv0),
uv_step0.x / swgl_StepSize, sampler1, sampler2, force_scalar(uv1),
uv_step1.x / swgl_StepSize, colorDepth, rgb_from_ycbcr);
// Now that we're done, advance past the processed inside portion.
buf += inside * swgl_StepSize;
uv0.x += inside * uv_step0.x;
uv1.x += inside * uv_step1.x;
uv2.x += inside * uv_step2.x;
}
}
// We either got here because we have some samples outside the clamp rect, or
// because some of the preconditions were not satisfied. Process whatever is
// left of the span.
blendYUVFallback<BLEND>(buf, end - buf, sampler0, uv0, uv_step0, min_uv0,
max_uv0, sampler1, uv1, uv_step1, min_uv1, max_uv1,
sampler2, uv2, uv_step2, min_uv2, max_uv2, ycbcr_bias,
rgb_from_debiased_ycbcr, rescaleFactor, noColor);
return span;
}
// Commit a single chunk of a YUV surface represented by multiple planar
// textures. This requires a color space specifier selecting how to convert
// from YUV to RGB output. In the case of HDR formats, a rescaling factor
// selects how many bits of precision must be utilized on conversion. See the
// sampleYUV dispatcher functions for the various supported plane
// configurations this intrinsic accepts.
#define swgl_commitTextureLinearYUV(...) \
do { \
int drawn = 0; \
if (blend_key) { \
drawn = blendYUV<true>(swgl_OutRGBA8, swgl_SpanLength, __VA_ARGS__); \
} else { \
drawn = blendYUV<false>(swgl_OutRGBA8, swgl_SpanLength, __VA_ARGS__); \
} \
swgl_OutRGBA8 += drawn; \
swgl_SpanLength -= drawn; \
} while (0)
// Commit a single chunk of a YUV surface scaled by a color.
#define swgl_commitTextureLinearColorYUV(...) \
swgl_commitTextureLinearYUV(__VA_ARGS__)
// Each gradient stops entry is a pair of RGBA32F start color and end step.
struct GradientStops {
Float startColor;
union {
Float stepColor;
vec4_scalar stepData;
};
// Whether this gradient entry can be merged with an adjacent entry. The
// step will be equal with the adjacent step if and only if they can be
// merged, or rather, that the stops are actually part of a single larger
// gradient.
bool can_merge(const GradientStops& next) const {
return stepData == next.stepData;
}
// Get the interpolated color within the entry based on the offset from its
// start.
Float interpolate(float offset) const {
return startColor + stepColor * offset;
}
// Get the end color of the entry where interpolation stops.
Float end_color() const { return startColor + stepColor; }
};
// Checks if a gradient table of the specified size exists at the UV coords of
// the address within an RGBA32F texture. If so, a linear address within the
// texture is returned that may be used to sample the gradient table later. If
// the address doesn't describe a valid gradient, then a negative value is
// returned.
static inline int swgl_validateGradient(sampler2D sampler, ivec2_scalar address,
int entries) {
return sampler->format == TextureFormat::RGBA32F && address.y >= 0 &&
address.y < int(sampler->height) && address.x >= 0 &&
address.x < int(sampler->width) && entries > 0 &&
address.x +
int(sizeof(GradientStops) / sizeof(Float)) * entries <=
int(sampler->width)
? address.y * sampler->stride + address.x * 4
: -1;
}
static inline WideRGBA8 sampleGradient(sampler2D sampler, int address,
Float entry) {
assert(sampler->format == TextureFormat::RGBA32F);
assert(address >= 0 && address < int(sampler->height * sampler->stride));
// Get the integer portion of the entry index to find the entry colors.
I32 index = cast(entry);
// Use the fractional portion of the entry index to control blending between
// entry colors.
Float offset = entry - cast(index);
// Every entry is a pair of colors blended by the fractional offset.
assert(test_all(index >= 0 &&
index * int(sizeof(GradientStops) / sizeof(Float)) <
int(sampler->width)));
GradientStops* stops = (GradientStops*)&sampler->buf[address];
// Blend between the colors for each SIMD lane, then pack them to RGBA8
// result. Since the layout of the RGBA8 framebuffer is actually BGRA while
// the gradient table has RGBA colors, swizzling is required.
return combine(
packRGBA8(round_pixel(stops[index.x].interpolate(offset.x).zyxw),
round_pixel(stops[index.y].interpolate(offset.y).zyxw)),
packRGBA8(round_pixel(stops[index.z].interpolate(offset.z).zyxw),
round_pixel(stops[index.w].interpolate(offset.w).zyxw)));
}
// Samples a gradient entry from the gradient at the provided linearized
// address. The integer portion of the entry index is used to find the entry
// within the table whereas the fractional portion is used to blend between
// adjacent table entries.
#define swgl_commitGradientRGBA8(sampler, address, entry) \
swgl_commitChunk(RGBA8, sampleGradient(sampler, address, entry))
// Variant that allows specifying a color multiplier of the gradient result.
#define swgl_commitGradientColorRGBA8(sampler, address, entry, color) \
swgl_commitChunk(RGBA8, applyColor(sampleGradient(sampler, address, entry), \
packColor(swgl_OutRGBA, color)))
// Samples an entire span of a linear gradient by crawling the gradient table
// and looking for consecutive stops that can be merged into a single larger
// gradient, then interpolating between those larger gradients within the span.
template <bool BLEND>
static bool commitLinearGradient(sampler2D sampler, int address, float size,
bool tileRepeat, bool gradientRepeat, vec2 pos,
const vec2_scalar& scaleDir, float startOffset,
uint32_t* buf, int span) {
assert(sampler->format == TextureFormat::RGBA32F);
assert(address >= 0 && address < int(sampler->height * sampler->stride));
GradientStops* stops = (GradientStops*)&sampler->buf[address];
// Get the chunk delta from the difference in offset steps. This represents
// how far within the gradient table we advance for every step in output,
// normalized to gradient table size.
vec2_scalar posStep = dFdx(pos) * 4.0f;
float delta = dot(posStep, scaleDir);
if (!isfinite(delta)) {
return false;
}
// If we have a repeating brush, then the position will be modulo the [0,1)
// interval. Compute coefficients that can be used to quickly evaluate the
// distance to the interval boundary where the offset will wrap.
vec2_scalar distCoeffsX = {0.25f * span, 0.0f};
vec2_scalar distCoeffsY = distCoeffsX;
if (tileRepeat) {
if (posStep.x != 0.0f) {
distCoeffsX = vec2_scalar{step(0.0f, posStep.x), 1.0f} * recip(posStep.x);
}
if (posStep.y != 0.0f) {
distCoeffsY = vec2_scalar{step(0.0f, posStep.y), 1.0f} * recip(posStep.y);
}
}
for (; span > 0;) {
// Try to process as many chunks as are within the span if possible.
float chunks = 0.25f * span;
vec2 repeatPos = pos;
if (tileRepeat) {
// If this is a repeating brush, then limit the chunks to not cross the
// interval boundaries.
repeatPos = fract(pos);
chunks = min(chunks, distCoeffsX.x - repeatPos.x.x * distCoeffsX.y);
chunks = min(chunks, distCoeffsY.x - repeatPos.y.x * distCoeffsY.y);
}
// Compute the gradient offset from the position.
Float offset =
repeatPos.x * scaleDir.x + repeatPos.y * scaleDir.y - startOffset;
// If repeat is desired, we need to limit the offset to a fractional value.
if (gradientRepeat) {
offset = fract(offset);
}
// To properly handle both clamping and repeating of the table offset, we
// need to ensure we don't run past the 0 and 1 points. Here we compute the
// intercept points depending on whether advancing forwards or backwards in
// the gradient table to ensure the chunk count is limited by the amount
// before intersection. If there is no delta, then we compute no intercept.
float startEntry;
int minIndex, maxIndex;
if (offset.x < 0) {
// If we're below the gradient table, use the first color stop. We can
// only intercept the table if walking forward.
startEntry = 0;
minIndex = int(startEntry);
maxIndex = minIndex;
if (delta > 0) {
chunks = min(chunks, -offset.x / delta);
}
} else if (offset.x < 1) {
// Otherwise, we're inside the gradient table. Depending on the direction
// we're walking the the table, we may intersect either the 0 or 1 offset.
// Compute the start entry based on our initial offset, and compute the
// end entry based on the available chunks limited by intercepts. Clamp
// them into the valid range of the table.
startEntry = 1.0f + offset.x * size;
if (delta < 0) {
chunks = min(chunks, -offset.x / delta);
} else if (delta > 0) {
chunks = min(chunks, (1 - offset.x) / delta);
}
float endEntry = clamp(1.0f + (offset.x + delta * int(chunks)) * size,
0.0f, 1.0f + size);
// Now that we know the range of entries we need to sample, we want to
// find the largest possible merged gradient within that range. Depending
// on which direction we are advancing in the table, we either walk up or
// down the table trying to merge the current entry with the adjacent
// entry. We finally limit the chunks to only sample from this merged
// gradient.
minIndex = int(startEntry);
maxIndex = minIndex;
if (delta > 0) {
while (maxIndex + 1 < endEntry &&
stops[maxIndex].can_merge(stops[maxIndex + 1])) {
maxIndex++;
}
chunks = min(chunks, (maxIndex + 1 - startEntry) / (delta * size));
} else if (delta < 0) {
while (minIndex - 1 > endEntry &&
stops[minIndex - 1].can_merge(stops[minIndex])) {
minIndex--;
}
chunks = min(chunks, (minIndex - startEntry) / (delta * size));
}
} else {
// If we're above the gradient table, use the last color stop. We can
// only intercept the table if walking backward.
startEntry = 1.0f + size;
minIndex = int(startEntry);
maxIndex = minIndex;
if (delta < 0) {
chunks = min(chunks, (1 - offset.x) / delta);
}
}
// If there are any amount of whole chunks of a merged gradient found,
// then we want to process that as a single gradient span with the start
// and end colors from the min and max entries.
if (chunks >= 1.0f) {
int inside = int(chunks);
// Sample the start color from the min entry and the end color from the
// max entry of the merged gradient. These are scaled to a range of
// 0..0xFF00, as that is the largest shifted value that can fit in a U16.
// Since we are only doing addition with the step value, we can still
// represent negative step values without having to use an explicit sign
// bit, as the result will still come out the same, allowing us to gain an
// extra bit of precision. We will later shift these into 8 bit output
// range while committing the span, but stepping with higher precision to
// avoid banding. We convert from RGBA to BGRA here to avoid doing this in
// the inner loop.
auto minColorF = stops[minIndex].startColor.zyxw * float(0xFF00);
auto maxColorF = stops[maxIndex].end_color().zyxw * float(0xFF00);
// Get the color range of the merged gradient, normalized to its size.
auto colorRangeF =
(maxColorF - minColorF) * (1.0f / (maxIndex + 1 - minIndex));
// Compute the actual starting color of the current start offset within
// the merged gradient. The value 0.5 is added to the low bits (0x80) so
// that the color will effectively round to the nearest increment below.
auto colorF =
minColorF + colorRangeF * (startEntry - minIndex) + float(0x80);
// Compute the portion of the color range that we advance on each chunk.
Float deltaColorF = colorRangeF * (delta * size);
// Quantize the color delta and current color. These have already been
// scaled to the 0..0xFF00 range, so we just need to round them to U16.
auto deltaColor = repeat4(CONVERT(round_pixel(deltaColorF, 1), U16));
for (int remaining = inside;;) {
auto color =
combine(CONVERT(round_pixel(colorF, 1), U16),
CONVERT(round_pixel(colorF + deltaColorF * 0.25f, 1), U16),
CONVERT(round_pixel(colorF + deltaColorF * 0.5f, 1), U16),
CONVERT(round_pixel(colorF + deltaColorF * 0.75f, 1), U16));
// Finally, step the current color through the output chunks, shifting
// it into 8 bit range and outputting as we go. Only process a segment
// at a time to avoid overflowing 8-bit precision due to rounding of
// deltas.
int segment = min(remaining, 256 / 4);
for (auto* end = buf + segment * 4; buf < end; buf += 4) {
commit_blend_span<BLEND>(buf, bit_cast<WideRGBA8>(color >> 8));
color += deltaColor;
}
remaining -= segment;
if (remaining <= 0) {
break;
}
colorF += deltaColorF * segment;
}
// Deduct the number of chunks inside the gradient from the remaining
// overall span. If we exhausted the span, bail out.
span -= inside * 4;
if (span <= 0) {
break;
}
// Otherwise, assume we're in a transitional section of the gradient that
// will probably require per-sample table lookups, so fall through below.
// We need to re-evaluate the position and offset first, though.
pos += posStep * float(inside);
repeatPos = tileRepeat ? fract(pos) : pos;
offset =
repeatPos.x * scaleDir.x + repeatPos.y * scaleDir.y - startOffset;
if (gradientRepeat) {
offset = fract(offset);
}
}
// If we get here, there were no whole chunks of a merged gradient found
// that we could process, but we still have a non-zero amount of span left.
// That means we have segments of gradient that begin or end at the current
// entry we're on. For this case, we just fall back to sampleGradient which
// will calculate a table entry for each sample, assuming the samples may
// have different table entries.
Float entry = clamp(offset * size + 1.0f, 0.0f, 1.0f + size);
commit_blend_span<BLEND>(buf, sampleGradient(sampler, address, entry));
span -= 4;
buf += 4;
pos += posStep;
}
return true;
}
// Commits an entire span of a linear gradient, given the address of a table
// previously resolved with swgl_validateGradient. The size of the inner portion
// of the table is given, assuming the table start and ends with a single entry
// each to deal with clamping. Repeating will be handled if necessary. The
// initial offset within the table is used to designate where to start the span
// and how to step through the gradient table.
#define swgl_commitLinearGradientRGBA8(sampler, address, size, tileRepeat, \
gradientRepeat, pos, scaleDir, \
startOffset) \
do { \
bool drawn = false; \
if (blend_key) { \
drawn = commitLinearGradient<true>( \
sampler, address, size, tileRepeat, gradientRepeat, pos, scaleDir, \
startOffset, swgl_OutRGBA8, swgl_SpanLength); \
} else { \
drawn = commitLinearGradient<false>( \
sampler, address, size, tileRepeat, gradientRepeat, pos, scaleDir, \
startOffset, swgl_OutRGBA8, swgl_SpanLength); \
} \
if (drawn) { \
swgl_OutRGBA8 += swgl_SpanLength; \
swgl_SpanLength = 0; \
} \
} while (0)
template <bool CLAMP, typename V>
static ALWAYS_INLINE V fastSqrt(V v) {
if (CLAMP) {
// Clamp to avoid zero or negative.
v = max(v, V(1.0e-12f));
}
#if USE_SSE2 || USE_NEON
return v * inversesqrt(v);
#else
return sqrt(v);
#endif
}
template <bool CLAMP, typename V>
static ALWAYS_INLINE auto fastLength(V v) {
return fastSqrt<CLAMP>(dot(v, v));
}
// Samples an entire span of a radial gradient by crawling the gradient table
// and looking for consecutive stops that can be merged into a single larger
// gradient, then interpolating between those larger gradients within the span
// based on the computed position relative to a radius.
template <bool BLEND>
static bool commitRadialGradient(sampler2D sampler, int address, float size,
bool repeat, vec2 pos, float radius,
uint32_t* buf, int span) {
assert(sampler->format == TextureFormat::RGBA32F);
assert(address >= 0 && address < int(sampler->height * sampler->stride));
GradientStops* stops = (GradientStops*)&sampler->buf[address];
// clang-format off
// Given position p, delta d, and radius r, we need to repeatedly solve the
// following quadratic for the pixel offset t:
// length(p + t*d) = r
// (px + t*dx)^2 + (py + t*dy)^2 = r^2
// Rearranged into quadratic equation form (t^2*a + t*b + c = 0) this is:
// t^2*(dx^2+dy^2) + t*2*(dx*px+dy*py) + (px^2+py^2-r^2) = 0
// t^2*d.d + t*2*d.p + (p.p-r^2) = 0
// The solution of the quadratic formula t=(-b+-sqrt(b^2-4ac))/2a reduces to:
// t = -d.p/d.d +- sqrt((d.p/d.d)^2 - (p.p-r^2)/d.d)
// Note that d.p, d.d, p.p, and r^2 are constant across the gradient, and so
// we cache them below for faster computation.
//
// The quadratic has two solutions, representing the span intersecting the
// given radius of gradient, which can occur at two offsets. If there is only
// one solution (where b^2-4ac = 0), this represents the point at which the
// span runs tangent to the radius. This middle point is significant in that
// before it, we walk down the gradient ramp, and after it, we walk up the
// ramp.
// clang-format on
vec2_scalar pos0 = {pos.x.x, pos.y.x};
vec2_scalar delta = {pos.x.y - pos.x.x, pos.y.y - pos.y.x};
float deltaDelta = dot(delta, delta);
if (!isfinite(deltaDelta) || !isfinite(radius)) {
return false;
}
float invDelta, middleT, middleB;
if (deltaDelta > 0) {
invDelta = 1.0f / deltaDelta;
middleT = -dot(delta, pos0) * invDelta;
middleB = middleT * middleT - dot(pos0, pos0) * invDelta;
} else {
// If position is invariant, just set the coefficients so the quadratic
// always reduces to the end of the span.
invDelta = 0.0f;
middleT = float(span);
middleB = 0.0f;
}
// We only want search for merged gradients up to the minimum of either the
// mid-point or the span length. Cache those offsets here as they don't vary
// in the inner loop.
Float middleEndRadius = fastLength<true>(
pos0 + delta * (Float){middleT, float(span), 0.0f, 0.0f});
float middleRadius = span < middleT ? middleEndRadius.y : middleEndRadius.x;
float endRadius = middleEndRadius.y;
// Convert delta to change in position per chunk.
delta *= 4;
deltaDelta *= 4 * 4;
// clang-format off
// Given current position p and delta d, we reduce:
// length(p) = sqrt(dot(p,p)) = dot(p,p) * invsqrt(dot(p,p))
// where dot(p+d,p+d) can be accumulated as:
// (x+dx)^2+(y+dy)^2 = (x^2+y^2) + 2(x*dx+y*dy) + (dx^2+dy^2)
// = p.p + 2p.d + d.d
// Since p increases by d every loop iteration, p.d increases by d.d, and thus
// we can accumulate d.d to calculate 2p.d, then allowing us to get the next
// dot-product by adding it to dot-product p.p of the prior iteration. This
// saves us some multiplications and an expensive sqrt inside the inner loop.
// clang-format on
Float dotPos = dot(pos, pos);
Float dotPosDelta = 2.0f * dot(pos, delta) + deltaDelta;
float deltaDelta2 = 2.0f * deltaDelta;
for (int t = 0; t < span;) {
// Compute the gradient table offset from the current position.
Float offset = fastSqrt<true>(dotPos) - radius;
float startRadius = radius;
// If repeat is desired, we need to limit the offset to a fractional value.
if (repeat) {
// The non-repeating radius at which the gradient table actually starts,
// radius + floor(offset) = radius + (offset - fract(offset)).
startRadius += offset.x;
offset = fract(offset);
startRadius -= offset.x;
}
// We need to find the min/max index in the table of the gradient we want to
// use as well as the intercept point where we leave this gradient.
float intercept = -1;
int minIndex = 0;
int maxIndex = int(1.0f + size);
if (offset.x < 0) {
// If inside the inner radius of the gradient table, then use the first
// stop. Set the intercept to advance forward to the start of the gradient
// table.
maxIndex = minIndex;
if (t >= middleT) {
intercept = radius;
}
} else if (offset.x < 1) {
// Otherwise, we're inside the valid part of the gradient table.
minIndex = int(1.0f + offset.x * size);
maxIndex = minIndex;
// Find the offset in the gradient that corresponds to the search limit.
// We only search up to the minimum of either the mid-point or the span
// length. Get the table index that corresponds to this offset, clamped so
// that we avoid hitting the beginning (0) or end (1 + size) of the table.
float searchOffset =
(t >= middleT ? endRadius : middleRadius) - startRadius;
int searchIndex = int(clamp(1.0f + size * searchOffset, 1.0f, size));
// If we are past the mid-point, walk up the gradient table trying to
// merge stops. If we're below the mid-point, we need to walk down the
// table. We note the table index at which we need to look for an
// intercept to determine a valid span.
if (t >= middleT) {
while (maxIndex + 1 <= searchIndex &&
stops[maxIndex].can_merge(stops[maxIndex + 1])) {
maxIndex++;
}
intercept = maxIndex + 1;
} else {
while (minIndex - 1 >= searchIndex &&
stops[minIndex - 1].can_merge(stops[minIndex])) {
minIndex--;
}
intercept = minIndex;
}
// Convert from a table index into units of radius from the center of the
// gradient.
intercept = clamp((intercept - 1.0f) / size, 0.0f, 1.0f) + startRadius;
} else {
// If outside the outer radius of the gradient table, then use the last
// stop. Set the intercept to advance toward the valid part of the
// gradient table if going in, or just run to the end of the span if going
// away from the gradient.
minIndex = maxIndex;
if (t < middleT) {
intercept = radius + 1;
}
}
// Solve the quadratic for t to find where the merged gradient ends. If no
// intercept is found, just go to the middle or end of the span.
float endT = t >= middleT ? span : min(span, int(middleT));
if (intercept >= 0) {
float b = middleB + intercept * intercept * invDelta;
if (b > 0) {
b = fastSqrt<false>(b);
endT = min(endT, t >= middleT ? middleT + b : middleT - b);
} else {
// Due to the imprecision of fastSqrt in offset calculations, solving
// the quadratic may fail. However, if the discriminant is still close
// to 0, then just assume it is 0.
endT = min(endT, middleT);
}
}
// Figure out how many chunks are actually inside the merged gradient.
if (t + 4.0f <= endT) {
int inside = int(endT - t) & ~3;
// Convert start and end colors to BGRA and scale to 0..255 range later.
auto minColorF = stops[minIndex].startColor.zyxw * 255.0f;
auto maxColorF = stops[maxIndex].end_color().zyxw * 255.0f;
// Compute the change in color per change in gradient offset.
auto deltaColorF =
(maxColorF - minColorF) * (size / (maxIndex + 1 - minIndex));
// Subtract off the color difference of the beginning of the current span
// from the beginning of the gradient.
Float colorF =
minColorF - deltaColorF * (startRadius + (minIndex - 1) / size);
// Finally, walk over the span accumulating the position dot product and
// getting its sqrt as an offset into the color ramp. Since we're already
// in BGRA format and scaled to 255, we just need to round to an integer
// and pack down to pixel format.
for (auto* end = buf + inside; buf < end; buf += 4) {
Float offsetG = fastSqrt<false>(dotPos);
commit_blend_span<BLEND>(
buf,
combine(
packRGBA8(round_pixel(colorF + deltaColorF * offsetG.x, 1),
round_pixel(colorF + deltaColorF * offsetG.y, 1)),
packRGBA8(round_pixel(colorF + deltaColorF * offsetG.z, 1),
round_pixel(colorF + deltaColorF * offsetG.w, 1))));
dotPos += dotPosDelta;
dotPosDelta += deltaDelta2;
}
// Advance past the portion of gradient we just processed.
t += inside;
// If we hit the end of the span, exit out now.
if (t >= span) {
break;
}
// Otherwise, we are most likely in a transitional section of the gradient
// between stops that will likely require doing per-sample table lookups.
// Rather than having to redo all the searching above to figure that out,
// just assume that to be the case and fall through below to doing the
// table lookups to hopefully avoid an iteration.
offset = fastSqrt<true>(dotPos) - radius;
if (repeat) {
offset = fract(offset);
}
}
// If we got here, that means we still have span left to process but did not
// have any whole chunks that fell within a merged gradient. Just fall back
// to doing a table lookup for each sample.
Float entry = clamp(offset * size + 1.0f, 0.0f, 1.0f + size);
commit_blend_span<BLEND>(buf, sampleGradient(sampler, address, entry));
buf += 4;
t += 4;
dotPos += dotPosDelta;
dotPosDelta += deltaDelta2;
}
return true;
}
// Commits an entire span of a radial gradient similar to
// swglcommitLinearGradient, but given a varying 2D position scaled to
// gradient-space and a radius at which the distance from the origin maps to the
// start of the gradient table.
#define swgl_commitRadialGradientRGBA8(sampler, address, size, repeat, pos, \
radius) \
do { \
bool drawn = false; \
if (blend_key) { \
drawn = \
commitRadialGradient<true>(sampler, address, size, repeat, pos, \
radius, swgl_OutRGBA8, swgl_SpanLength); \
} else { \
drawn = \
commitRadialGradient<false>(sampler, address, size, repeat, pos, \
radius, swgl_OutRGBA8, swgl_SpanLength); \
} \
if (drawn) { \
swgl_OutRGBA8 += swgl_SpanLength; \
swgl_SpanLength = 0; \
} \
} while (0)
// Extension to set a clip mask image to be sampled during blending. The offset
// specifies the positioning of the clip mask image relative to the viewport
// origin. The bounding box specifies the rectangle relative to the clip mask's
// origin that constrains sampling within the clip mask. Blending must be
// enabled for this to work.
static sampler2D swgl_ClipMask = nullptr;
static IntPoint swgl_ClipMaskOffset = {0, 0};
static IntRect swgl_ClipMaskBounds = {0, 0, 0, 0};
#define swgl_clipMask(mask, offset, bb_origin, bb_size) \
do { \
if (bb_size != vec2_scalar(0.0f, 0.0f)) { \
swgl_ClipFlags |= SWGL_CLIP_FLAG_MASK; \
swgl_ClipMask = mask; \
swgl_ClipMaskOffset = make_ivec2(offset); \
swgl_ClipMaskBounds = \
IntRect(make_ivec2(bb_origin), make_ivec2(bb_size)); \
} \
} while (0)
// Extension to enable anti-aliasing for the given edges of a quad.
// Blending must be enable for this to work.
static int swgl_AAEdgeMask = 0;
static ALWAYS_INLINE int calcAAEdgeMask(bool on) { return on ? 0xF : 0; }
static ALWAYS_INLINE int calcAAEdgeMask(int mask) { return mask; }
static ALWAYS_INLINE int calcAAEdgeMask(bvec4_scalar mask) {
return (mask.x ? 1 : 0) | (mask.y ? 2 : 0) | (mask.z ? 4 : 0) |
(mask.w ? 8 : 0);
}
#define swgl_antiAlias(edges) \
do { \
swgl_AAEdgeMask = calcAAEdgeMask(edges); \
if (swgl_AAEdgeMask) { \
swgl_ClipFlags |= SWGL_CLIP_FLAG_AA; \
} \
} while (0)
#define swgl_blendDropShadow(color) \
do { \
swgl_ClipFlags |= SWGL_CLIP_FLAG_BLEND_OVERRIDE; \
swgl_BlendOverride = BLEND_KEY(SWGL_BLEND_DROP_SHADOW); \
swgl_BlendColorRGBA8 = packColor<uint32_t>(color); \
} while (0)
#define swgl_blendSubpixelText(color) \
do { \
swgl_ClipFlags |= SWGL_CLIP_FLAG_BLEND_OVERRIDE; \
swgl_BlendOverride = BLEND_KEY(SWGL_BLEND_SUBPIXEL_TEXT); \
swgl_BlendColorRGBA8 = packColor<uint32_t>(color); \
swgl_BlendAlphaRGBA8 = alphas(swgl_BlendColorRGBA8); \
} while (0)
// Dispatch helper used by the GLSL translator to swgl_drawSpan functions.
// The number of pixels committed is tracked by checking for the difference in
// swgl_SpanLength. Any varying interpolants used will be advanced past the
// committed part of the span in case the fragment shader must be executed for
// any remaining pixels that were not committed by the span shader.
#define DISPATCH_DRAW_SPAN(self, format) \
do { \
int total = self->swgl_SpanLength; \
self->swgl_drawSpan##format(); \
int drawn = total - self->swgl_SpanLength; \
if (drawn) self->step_interp_inputs(drawn); \
return drawn; \
} while (0)
|