1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/// This shader applies a (rounded) rectangle mask to the content of the framebuffer.
#include ps_quad,ellipse
varying highp vec4 vClipLocalPos;
#ifdef WR_FEATURE_FAST_PATH
flat varying highp vec3 v_clip_params; // xy = box size, z = radius
#else
flat varying highp vec4 vClipCenter_Radius_TL;
flat varying highp vec4 vClipCenter_Radius_TR;
flat varying highp vec4 vClipCenter_Radius_BR;
flat varying highp vec4 vClipCenter_Radius_BL;
// We pack 4 vec3 clip planes into 3 vec4 to save a varying slot.
flat varying highp vec4 vClipPlane_A;
flat varying highp vec4 vClipPlane_B;
flat varying highp vec4 vClipPlane_C;
#endif
flat varying highp vec2 vClipMode;
#ifdef WR_VERTEX_SHADER
PER_INSTANCE in ivec4 aClipData;
#define CLIP_SPACE_RASTER 0
#define CLIP_SPACE_PRIMITIVE 1
struct Clip {
RectWithEndpoint rect;
#ifdef WR_FEATURE_FAST_PATH
vec4 radii;
#else
vec4 radii_top;
vec4 radii_bottom;
#endif
float mode;
int space;
};
Clip fetch_clip(int index) {
Clip clip;
clip.space = aClipData.z;
#ifdef WR_FEATURE_FAST_PATH
vec4 texels[3] = fetch_from_gpu_buffer_3f(index);
clip.rect = RectWithEndpoint(texels[0].xy, texels[0].zw);
clip.radii = texels[1];
clip.mode = texels[2].x;
#else
vec4 texels[4] = fetch_from_gpu_buffer_4f(index);
clip.rect = RectWithEndpoint(texels[0].xy, texels[0].zw);
clip.radii_top = texels[1];
clip.radii_bottom = texels[2];
clip.mode = texels[3].x;
#endif
return clip;
}
void pattern_vertex(PrimitiveInfo prim_info) {
Clip clip = fetch_clip(aClipData.y);
Transform clip_transform = fetch_transform(aClipData.x);
vClipLocalPos = clip_transform.m * vec4(prim_info.local_pos, 0.0, 1.0);
#ifndef WR_FEATURE_FAST_PATH
if (clip.space == CLIP_SPACE_RASTER) {
vTransformBounds = vec4(clip.rect.p0, clip.rect.p1);
} else {
RectWithEndpoint xf_bounds = RectWithEndpoint(
max(clip.rect.p0, prim_info.local_clip_rect.p0),
min(clip.rect.p1, prim_info.local_clip_rect.p1)
);
vTransformBounds = vec4(xf_bounds.p0, xf_bounds.p1);
}
#endif
vClipMode.x = clip.mode;
#ifdef WR_FEATURE_FAST_PATH
// If the radii are all uniform, we can use a much simpler 2d
// signed distance function to get a rounded rect clip.
vec2 half_size = 0.5 * (clip.rect.p1 - clip.rect.p0);
float radius = clip.radii.x;
vClipLocalPos.xy -= (half_size + clip.rect.p0) * vClipLocalPos.w;
v_clip_params = vec3(half_size - vec2(radius), radius);
#else
vec2 r_tl = clip.radii_top.xy;
vec2 r_tr = clip.radii_top.zw;
vec2 r_br = clip.radii_bottom.zw;
vec2 r_bl = clip.radii_bottom.xy;
vClipCenter_Radius_TL = vec4(clip.rect.p0 + r_tl,
inverse_radii_squared(r_tl));
vClipCenter_Radius_TR = vec4(clip.rect.p1.x - r_tr.x,
clip.rect.p0.y + r_tr.y,
inverse_radii_squared(r_tr));
vClipCenter_Radius_BR = vec4(clip.rect.p1 - r_br,
inverse_radii_squared(r_br));
vClipCenter_Radius_BL = vec4(clip.rect.p0.x + r_bl.x,
clip.rect.p1.y - r_bl.y,
inverse_radii_squared(r_bl));
// We need to know the half-spaces of the corners separate from the center
// and radius. We compute a point that falls on the diagonal (which is just
// an inner vertex pushed out along one axis, but not on both) to get the
// plane offset of the half-space. We also compute the direction vector of
// the half-space, which is a perpendicular vertex (-y,x) of the vector of
// the diagonal. We leave the scales of the vectors unchanged.
vec2 n_tl = -r_tl.yx;
vec2 n_tr = vec2(r_tr.y, -r_tr.x);
vec2 n_br = r_br.yx;
vec2 n_bl = vec2(-r_bl.y, r_bl.x);
vec3 tl = vec3(n_tl,
dot(n_tl, vec2(clip.rect.p0.x, clip.rect.p0.y + r_tl.y)));
vec3 tr = vec3(n_tr,
dot(n_tr, vec2(clip.rect.p1.x - r_tr.x, clip.rect.p0.y)));
vec3 br = vec3(n_br,
dot(n_br, vec2(clip.rect.p1.x, clip.rect.p1.y - r_br.y)));
vec3 bl = vec3(n_bl,
dot(n_bl, vec2(clip.rect.p0.x + r_bl.x, clip.rect.p1.y)));
vClipPlane_A = vec4(tl.x, tl.y, tl.z, tr.x);
vClipPlane_B = vec4(tr.y, tr.z, br.x, br.y);
vClipPlane_C = vec4(br.z, bl.x, bl.y, bl.z);
#endif
}
#endif
#ifdef WR_FRAGMENT_SHADER
#ifdef WR_FEATURE_FAST_PATH
// See http://www.iquilezles.org/www/articles/distfunctions2d/distfunctions2d.htm
float sd_box(in vec2 pos, in vec2 box_size) {
vec2 d = abs(pos) - box_size;
return length(max(d, vec2(0.0))) + min(max(d.x,d.y), 0.0);
}
float sd_rounded_box(in vec2 pos, in vec2 box_size, in float radius) {
return sd_box(pos, box_size) - radius;
}
#endif
vec4 pattern_fragment(vec4 _base_color) {
vec2 clip_local_pos = vClipLocalPos.xy / vClipLocalPos.w;
float aa_range = compute_aa_range(clip_local_pos);
#ifdef WR_FEATURE_FAST_PATH
float dist = sd_rounded_box(clip_local_pos, v_clip_params.xy, v_clip_params.z);
#else
vec3 plane_tl = vec3(vClipPlane_A.x, vClipPlane_A.y, vClipPlane_A.z);
vec3 plane_tr = vec3(vClipPlane_A.w, vClipPlane_B.x, vClipPlane_B.y);
vec3 plane_br = vec3(vClipPlane_B.z, vClipPlane_B.w, vClipPlane_C.x);
vec3 plane_bl = vec3(vClipPlane_C.y, vClipPlane_C.z, vClipPlane_C.w);
float dist = distance_to_rounded_rect(
clip_local_pos,
plane_tl,
vClipCenter_Radius_TL,
plane_tr,
vClipCenter_Radius_TR,
plane_br,
vClipCenter_Radius_BR,
plane_bl,
vClipCenter_Radius_BL,
vTransformBounds
);
#endif
// Compute AA for the given dist and range.
float alpha = distance_aa(aa_range, dist);
// Select alpha or inverse alpha depending on clip in/out.
float final_alpha = mix(alpha, 1.0 - alpha, vClipMode.x);
return vec4(final_alpha);
}
#endif
|