summaryrefslogtreecommitdiffstats
path: root/gfx/wr/webrender/src/render_task_graph.rs
blob: 6c02de8b651f8c4122f5cad0da71bced0fc72e11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! This module contains the render task graph.
//!
//! Code associated with creating specific render tasks is in the render_task
//! module.

use api::units::*;
use api::ImageFormat;
use crate::gpu_cache::{GpuCache, GpuCacheAddress};
use crate::internal_types::{TextureSource, CacheTextureId, FastHashMap, FastHashSet, FrameId};
use crate::render_task::{StaticRenderTaskSurface, RenderTaskLocation, RenderTask};
use crate::render_target::RenderTargetKind;
use crate::render_task::{RenderTaskData, RenderTaskKind};
use crate::resource_cache::ResourceCache;
use crate::texture_pack::GuillotineAllocator;
use crate::prim_store::DeferredResolve;
use crate::image_source::{resolve_image, resolve_cached_render_task};
use crate::util::VecHelper;
use smallvec::SmallVec;
use std::mem;
use topological_sort::TopologicalSort;

use crate::render_target::{RenderTargetList, ColorRenderTarget};
use crate::render_target::{PictureCacheTarget, TextureCacheRenderTarget, AlphaRenderTarget};
use crate::util::Allocation;
use std::{usize, f32};

/// If we ever need a larger texture than the ideal, we better round it up to a
/// reasonable number in order to have a bit of leeway in case the size of this
/// this target is changing each frame.
const TEXTURE_DIMENSION_MASK: i32 = 0xFF;

/// Allows initializing a render task directly into the render task buffer.
///
/// See utils::VecHelpers. RenderTask is fairly large so avoiding the move when
/// pushing into the vector can save a lot of expensive memcpys on pages with many
/// render tasks.
pub struct RenderTaskAllocation<'a> {
    pub alloc: Allocation<'a, RenderTask>,
}

impl<'l> RenderTaskAllocation<'l> {
    #[inline(always)]
    pub fn init(self, value: RenderTask) -> RenderTaskId {
        RenderTaskId {
            index: self.alloc.init(value) as u32,
        }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
#[derive(MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderTaskId {
    pub index: u32,
}

impl RenderTaskId {
    pub const INVALID: RenderTaskId = RenderTaskId {
        index: u32::MAX,
    };
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq, PartialOrd, Ord)]
pub struct PassId(usize);

impl PassId {
    pub const MIN: PassId = PassId(0);
    pub const MAX: PassId = PassId(!0 - 1);
    pub const INVALID: PassId = PassId(!0 - 2);
}

/// An internal representation of a dynamic surface that tasks can be
/// allocated into. Maintains some extra metadata about each surface
/// during the graph build.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Surface {
    /// Whether this is a color or alpha render target
    kind: RenderTargetKind,
    /// Allocator for this surface texture
    allocator: GuillotineAllocator,
    /// We can only allocate into this for reuse if it's a shared surface
    is_shared: bool,
    /// The pass that we can free this surface after (guaranteed
    /// to be the same for all tasks assigned to this surface)
    free_after: PassId,
}

impl Surface {
    /// Allocate a rect within a shared surfce. Returns None if the
    /// format doesn't match, or allocation fails.
    fn alloc_rect(
        &mut self,
        size: DeviceIntSize,
        kind: RenderTargetKind,
        is_shared: bool,
        free_after: PassId,
    ) -> Option<DeviceIntPoint> {
        if self.kind == kind && self.is_shared == is_shared && self.free_after == free_after {
            self.allocator
                .allocate(&size)
                .map(|(_slice, origin)| origin)
        } else {
            None
        }
    }
}

/// A sub-pass can draw to either a dynamic (temporary render target) surface,
/// or a persistent surface (texture or picture cache).
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug)]
pub enum SubPassSurface {
    /// A temporary (intermediate) surface.
    Dynamic {
        /// The renderer texture id
        texture_id: CacheTextureId,
        /// Color / alpha render target
        target_kind: RenderTargetKind,
        /// The rectangle occupied by tasks in this surface. Used as a clear
        /// optimization on some GPUs.
        used_rect: DeviceIntRect,
    },
    Persistent {
        /// Reference to the texture or picture cache surface being drawn to.
        surface: StaticRenderTaskSurface,
    },
}

/// A subpass is a specific render target, and a list of tasks to draw to it.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SubPass {
    /// The surface this subpass draws to
    pub surface: SubPassSurface,
    /// The tasks assigned to this subpass.
    pub task_ids: Vec<RenderTaskId>,
}

/// A pass expresses dependencies between tasks. Each pass consists of a number
/// of subpasses.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct Pass {
    /// The tasks assigned to this render pass
    pub task_ids: Vec<RenderTaskId>,
    /// The subpasses that make up this dependency pass
    pub sub_passes: Vec<SubPass>,
    /// A list of intermediate surfaces that can be invalidated after
    /// this pass completes.
    pub textures_to_invalidate: Vec<CacheTextureId>,
}

/// The RenderTaskGraph is the immutable representation of the render task graph. It is
/// built by the RenderTaskGraphBuilder, and is constructed once per frame.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderTaskGraph {
    /// List of tasks added to the graph
    pub tasks: Vec<RenderTask>,

    /// The passes that were created, based on dependencies between tasks
    pub passes: Vec<Pass>,

    /// Current frame id, used for debug validation
    frame_id: FrameId,

    /// GPU specific data for each task that is made available to shaders
    pub task_data: Vec<RenderTaskData>,

    /// Total number of intermediate surfaces that will be drawn to, used for test validation.
    #[cfg(test)]
    surface_count: usize,

    /// Total number of real allocated textures that will be drawn to, used for test validation.
    #[cfg(test)]
    unique_surfaces: FastHashSet<CacheTextureId>,
}

/// The persistent interface that is used during frame building to construct the
/// frame graph.
pub struct RenderTaskGraphBuilder {
    /// List of tasks added to the builder
    tasks: Vec<RenderTask>,

    /// List of task roots
    roots: FastHashSet<RenderTaskId>,

    /// Current frame id, used for debug validation
    frame_id: FrameId,

    /// A list of texture surfaces that can be freed at the end of a pass. Retained
    /// here to reduce heap allocations.
    textures_to_free: FastHashSet<CacheTextureId>,

    // Keep a map of `texture_id` to metadata about surfaces that are currently
    // borrowed from the render target pool.
    active_surfaces: FastHashMap<CacheTextureId, Surface>,
}

impl RenderTaskGraphBuilder {
    /// Construct a new graph builder. Typically constructed once and maintained
    /// over many frames, to avoid extra heap allocations where possible.
    pub fn new() -> Self {
        RenderTaskGraphBuilder {
            tasks: Vec::new(),
            roots: FastHashSet::default(),
            frame_id: FrameId::INVALID,
            textures_to_free: FastHashSet::default(),
            active_surfaces: FastHashMap::default(),
        }
    }

    pub fn frame_id(&self) -> FrameId {
        self.frame_id
    }

    /// Begin a new frame
    pub fn begin_frame(&mut self, frame_id: FrameId) {
        self.frame_id = frame_id;
        self.roots.clear();
    }

    /// Get immutable access to a task
    // TODO(gw): There's only a couple of places that existing code needs to access
    //           a task during the building step. Perhaps we can remove this?
    pub fn get_task(
        &self,
        task_id: RenderTaskId,
    ) -> &RenderTask {
        &self.tasks[task_id.index as usize]
    }

    /// Get mutable access to a task
    // TODO(gw): There's only a couple of places that existing code needs to access
    //           a task during the building step. Perhaps we can remove this?
    pub fn get_task_mut(
        &mut self,
        task_id: RenderTaskId,
    ) -> &mut RenderTask {
        &mut self.tasks[task_id.index as usize]
    }

    /// Add a new task to the graph.
    pub fn add(&mut self) -> RenderTaskAllocation {
        // Assume every task is a root to start with
        self.roots.insert(
            RenderTaskId { index: self.tasks.len() as u32 }
        );

        RenderTaskAllocation {
            alloc: self.tasks.alloc(),
        }
    }

    /// Express a dependency, such that `task_id` depends on `input` as a texture source.
    pub fn add_dependency(
        &mut self,
        task_id: RenderTaskId,
        input: RenderTaskId,
    ) {
        self.tasks[task_id.index as usize].children.push(input);

        // Once a task is an input, it's no longer a root
        self.roots.remove(&input);
    }

    /// End the graph building phase and produce the immutable task graph for this frame
    pub fn end_frame(
        &mut self,
        resource_cache: &mut ResourceCache,
        gpu_cache: &mut GpuCache,
        deferred_resolves: &mut Vec<DeferredResolve>,
        max_shared_surface_size: i32,
    ) -> RenderTaskGraph {
        // Copy the render tasks over to the immutable graph output
        let task_count = self.tasks.len();
        let tasks = mem::replace(
            &mut self.tasks,
            Vec::with_capacity(task_count),
        );

        let mut graph = RenderTaskGraph {
            tasks,
            passes: Vec::new(),
            task_data: Vec::with_capacity(task_count),
            frame_id: self.frame_id,
            #[cfg(test)]
            surface_count: 0,
            #[cfg(test)]
            unique_surfaces: FastHashSet::default(),
        };

        // First, use a topological sort of the dependency graph to split the task set in to
        // a list of passes. This is necessary because when we have a complex graph (e.g. due
        // to a large number of sibling backdrop-filter primitives) traversing it via a simple
        // recursion can be too slow. The second pass determines when the last time a render task
        // is used as an input, and assigns what pass the surface backing that render task can
        // be freed (the surface is then returned to the render target pool and may be aliased
        // or reused during subsequent passes).

        let mut pass_count = 0;
        let mut passes = Vec::new();
        let mut task_sorter = TopologicalSort::<RenderTaskId>::new();

        // Iterate the task list, and add all the dependencies to the topo sort
        for (parent_id, task) in graph.tasks.iter().enumerate() {
            let parent_id = RenderTaskId { index: parent_id as u32 };

            for child_id in &task.children {
                task_sorter.add_dependency(
                    parent_id,
                    *child_id,
                );
            }
        }

        // Pop the sorted passes off the topological sort
        loop {
            // Get the next set of tasks that can be drawn
            let tasks = task_sorter.pop_all();

            // If there are no tasks left, we're done
            if tasks.is_empty() {
                // If the task sorter itself isn't empty but we couldn't pop off any
                // tasks, that implies a circular dependency in the task graph
                assert!(task_sorter.is_empty());
                break;
            } else {
                // Assign the `render_on` field to the task
                for task_id in &tasks {
                    graph.tasks[task_id.index as usize].render_on = PassId(pass_count);
                }

                // Store the task list for this pass, used later for `assign_free_pass`.
                passes.push(tasks);
                pass_count += 1;
            }
        }

        // Always create at least one pass for root tasks
        pass_count = pass_count.max(1);

        // Determine which pass each task can be freed on, which depends on which is
        // the last task that has this as an input. This must be done in top-down
        // pass order to ensure that RenderTaskLocation::Existing references are
        // visited in the correct order
        for pass in passes {
            for task_id in pass {
                assign_free_pass(
                    task_id,
                    &mut graph,
                );
            }
        }

        // Construct passes array for tasks to be assigned to below
        for _ in 0 .. pass_count {
            graph.passes.push(Pass {
                task_ids: Vec::new(),
                sub_passes: Vec::new(),
                textures_to_invalidate: Vec::new(),
            });
        }

        // Assign tasks to each pass based on their `render_on` attribute
        for (index, task) in graph.tasks.iter().enumerate() {
            if task.kind.is_a_rendering_operation() {
                let id = RenderTaskId { index: index as u32 };
                graph.passes[task.render_on.0].task_ids.push(id);
            }
        }

        // At this point, tasks are assigned to each dependency pass. Now we
        // can go through each pass and create sub-passes, assigning each task
        // to a target and destination rect.
        assert!(self.active_surfaces.is_empty());

        for (pass_id, pass) in graph.passes.iter_mut().enumerate().rev() {
            assert!(self.textures_to_free.is_empty());

            for task_id in &pass.task_ids {

                let task_location = graph.tasks[task_id.index as usize].location.clone();

                match task_location {
                    RenderTaskLocation::Unallocated { size } => {
                        let task = &mut graph.tasks[task_id.index as usize];

                        let mut location = None;
                        let kind = task.kind.target_kind();

                        // If a task is used as part of an existing-chain then we can't
                        // safely share it (nor would we want to).
                        let can_use_shared_surface =
                            task.kind.can_use_shared_surface() &&
                            task.free_after != PassId::INVALID;

                        if can_use_shared_surface {
                            // If we can use a shared surface, step through the existing shared
                            // surfaces for this subpass, and see if we can allocate the task
                            // to one of these targets.
                            for sub_pass in &mut pass.sub_passes {
                                if let SubPassSurface::Dynamic { texture_id, ref mut used_rect, .. } = sub_pass.surface {
                                    let surface = self.active_surfaces.get_mut(&texture_id).unwrap();
                                    if let Some(p) = surface.alloc_rect(size, kind, true, task.free_after) {
                                        location = Some((texture_id, p));
                                        *used_rect = used_rect.union(&DeviceIntRect::from_origin_and_size(p, size));
                                        sub_pass.task_ids.push(*task_id);
                                        break;
                                    }
                                }
                            }
                        }

                        if location.is_none() {
                            // If it wasn't possible to allocate the task to a shared surface, get a new
                            // render target from the resource cache pool/

                            // If this is a really large task, don't bother allocating it as a potential
                            // shared surface for other tasks.

                            let can_use_shared_surface = can_use_shared_surface &&
                                size.width <= max_shared_surface_size &&
                                size.height <= max_shared_surface_size;

                            let surface_size = if can_use_shared_surface {
                                DeviceIntSize::new(
                                    max_shared_surface_size,
                                    max_shared_surface_size,
                                )
                            } else {
                                // Round up size here to avoid constant re-allocs during resizing
                                DeviceIntSize::new(
                                    (size.width + TEXTURE_DIMENSION_MASK) & !TEXTURE_DIMENSION_MASK,
                                    (size.height + TEXTURE_DIMENSION_MASK) & !TEXTURE_DIMENSION_MASK,
                                )
                            };

                            if surface_size.is_empty() {
                                // We would panic in the guillotine allocator. Instead, panic here
                                // with some context.
                                let task_name = graph.tasks[task_id.index as usize].kind.as_str();
                                panic!("{} render task has invalid size {:?}", task_name, surface_size);
                            }

                            let format = match kind {
                                RenderTargetKind::Color => ImageFormat::RGBA8,
                                RenderTargetKind::Alpha => ImageFormat::R8,
                            };

                            // Get render target of appropriate size and format from resource cache
                            let texture_id = resource_cache.get_or_create_render_target_from_pool(
                                surface_size,
                                format,
                            );

                            // Allocate metadata we need about this surface while it's active
                            let mut surface = Surface {
                                kind,
                                allocator: GuillotineAllocator::new(Some(surface_size)),
                                is_shared: can_use_shared_surface,
                                free_after: task.free_after,
                            };

                            // Allocation of the task must fit in this new surface!
                            let p = surface.alloc_rect(
                                size,
                                kind,
                                can_use_shared_surface,
                                task.free_after,
                            ).expect("bug: alloc must succeed!");

                            location = Some((texture_id, p));

                            // Store the metadata about this newly active surface. We should never
                            // get a target surface with the same texture_id as a currently active surface.
                            let _prev_surface = self.active_surfaces.insert(texture_id, surface);
                            assert!(_prev_surface.is_none());

                            // Store some information about surface allocations if in test mode
                            #[cfg(test)]
                            {
                                graph.surface_count += 1;
                                graph.unique_surfaces.insert(texture_id);
                            }

                            // Add the target as a new subpass for this render pass.
                            pass.sub_passes.push(SubPass {
                                surface: SubPassSurface::Dynamic {
                                    texture_id,
                                    target_kind: kind,
                                    used_rect: DeviceIntRect::from_origin_and_size(p, size),
                                },
                                task_ids: vec![*task_id],
                            });
                        }

                        // By now, we must have allocated a surface and rect for this task, so assign it!
                        assert!(location.is_some());
                        task.location = RenderTaskLocation::Dynamic {
                            texture_id: location.unwrap().0,
                            rect: DeviceIntRect::from_origin_and_size(location.unwrap().1, size),
                        };
                    }
                    RenderTaskLocation::Existing { parent_task_id, size: existing_size, .. } => {
                        let parent_task_location = graph.tasks[parent_task_id.index as usize].location.clone();

                        match parent_task_location {
                            RenderTaskLocation::Unallocated { .. } |
                            RenderTaskLocation::CacheRequest { .. } |
                            RenderTaskLocation::Existing { .. } => {
                                panic!("bug: reference to existing task must be allocated by now");
                            }
                            RenderTaskLocation::Dynamic { texture_id, rect, .. } => {
                                assert_eq!(existing_size, rect.size());

                                let kind = graph.tasks[parent_task_id.index as usize].kind.target_kind();

                                // A sub-pass is always created in this case, as existing tasks by definition can't be shared.
                                pass.sub_passes.push(SubPass {
                                    surface: SubPassSurface::Dynamic {
                                        texture_id,
                                        target_kind: kind,
                                        used_rect: rect,        // clear will be skipped due to no-op check anyway
                                    },
                                    task_ids: vec![*task_id],
                                });

                                let task = &mut graph.tasks[task_id.index as usize];
                                task.location = parent_task_location;
                            }
                            RenderTaskLocation::Static { .. } => {
                                unreachable!("bug: not possible since we don't dup static locations");
                            }
                        }
                    }
                    RenderTaskLocation::Static { ref surface, .. } => {
                        // No need to allocate for this surface, since it's a persistent
                        // target. Instead, just create a new sub-pass for it.
                        pass.sub_passes.push(SubPass {
                            surface: SubPassSurface::Persistent {
                                surface: surface.clone(),
                            },
                            task_ids: vec![*task_id],
                        });
                    }
                    RenderTaskLocation::CacheRequest { .. } => {
                        // No need to allocate nor to create a sub-path for read-only locations.
                    }
                    RenderTaskLocation::Dynamic { .. } => {
                        // Dynamic tasks shouldn't be allocated by this point
                        panic!("bug: encountered an already allocated task");
                    }
                }

                // Return the shared surfaces from this pass
                let task = &graph.tasks[task_id.index as usize];
                for child_id in &task.children {
                    let child_task = &graph.tasks[child_id.index as usize];
                    match child_task.location {
                        RenderTaskLocation::Unallocated { .. } |
                        RenderTaskLocation::Existing { .. } => panic!("bug: must be allocated"),
                        RenderTaskLocation::Dynamic { texture_id, .. } => {
                            // If this task can be freed after this pass, include it in the
                            // unique set of textures to be returned to the render target pool below.
                            if child_task.free_after == PassId(pass_id) {
                                self.textures_to_free.insert(texture_id);
                            }
                        }
                        RenderTaskLocation::Static { .. } => {}
                        RenderTaskLocation::CacheRequest { .. } => {}
                    }
                }
            }

            // Return no longer used textures to the pool, so that they can be reused / aliased
            // by later passes.
            for texture_id in self.textures_to_free.drain() {
                resource_cache.return_render_target_to_pool(texture_id);
                self.active_surfaces.remove(&texture_id).unwrap();
                pass.textures_to_invalidate.push(texture_id);
            }
        }

        // By now, all surfaces that were borrowed from the render target pool must
        // be returned to the resource cache, or we are leaking intermediate surfaces!
        assert!(self.active_surfaces.is_empty());

        // Each task is now allocated to a surface and target rect. Write that to the
        // GPU blocks and task_data. After this point, the graph is returned and is
        // considered to be immutable for the rest of the frame building process.

        for task in &mut graph.tasks {
            // First check whether the render task texture and uv rects are managed
            // externally. This is the case for image tasks and cached tasks. In both
            // cases it results in a finding the information in the texture cache.
            let cache_item = if let Some(ref cache_handle) = task.cache_handle {
                Some(resolve_cached_render_task(
                    cache_handle,
                    resource_cache,
                ))
            } else if let RenderTaskKind::Image(request) = &task.kind {
                Some(resolve_image(
                    *request,
                    resource_cache,
                    gpu_cache,
                    deferred_resolves,
                ))
            } else {
                // General case (non-cached non-image tasks).
                None
            };

            if let Some(cache_item) = cache_item {
                // Update the render task even if the item is invalid.
                // We'll handle it later and it's easier to not have to
                // deal with unexpected location variants like
                // RenderTaskLocation::CacheRequest when we do.
                let source = cache_item.texture_id;
                task.uv_rect_handle = cache_item.uv_rect_handle;
                task.location = RenderTaskLocation::Static {
                    surface: StaticRenderTaskSurface::ReadOnly { source },
                    rect: cache_item.uv_rect,
                };
            }
            // Give the render task an opportunity to add any
            // information to the GPU cache, if appropriate.
            let target_rect = task.get_target_rect();

            task.write_gpu_blocks(
                target_rect,
                gpu_cache,
            );

            graph.task_data.push(
                task.kind.write_task_data(target_rect)
            );
        }

        graph
    }
}

impl RenderTaskGraph {
    /// Print the render task graph to console
    #[allow(dead_code)]
    pub fn print(
        &self,
    ) {
        debug!("-- RenderTaskGraph --");

        for (i, task) in self.tasks.iter().enumerate() {
            debug!("Task {} [{}]: render_on={} free_after={} children={:?}",
                i,
                task.kind.as_str(),
                task.render_on.0,
                task.free_after.0,
                task.children,
            );
        }

        for (p, pass) in self.passes.iter().enumerate() {
            debug!("Pass {}:", p);

            for (s, sub_pass) in pass.sub_passes.iter().enumerate() {
                debug!("\tSubPass {}: {:?}",
                    s,
                    sub_pass.surface,
                );

                for task_id in &sub_pass.task_ids {
                    debug!("\t\tTask {:?}", task_id.index);
                }
            }
        }
    }

    pub fn resolve_texture(
        &self,
        task_id: impl Into<Option<RenderTaskId>>,
    ) -> Option<TextureSource> {
        let task_id = task_id.into()?;
        let task = &self[task_id];

        match task.get_texture_source() {
            TextureSource::Invalid => None,
            source => Some(source),
        }
    }

    pub fn resolve_location(
        &self,
        task_id: impl Into<Option<RenderTaskId>>,
        gpu_cache: &GpuCache,
    ) -> Option<(GpuCacheAddress, TextureSource)> {
        self.resolve_impl(task_id.into()?, gpu_cache)
    }

    fn resolve_impl(
        &self,
        task_id: RenderTaskId,
        gpu_cache: &GpuCache,
    ) -> Option<(GpuCacheAddress, TextureSource)> {
        let task = &self[task_id];
        let texture_source = task.get_texture_source();

        if let TextureSource::Invalid = texture_source {
            return None;
        }

        let uv_address = task.get_texture_address(gpu_cache);

        Some((uv_address, texture_source))
    }


    #[cfg(test)]
    pub fn new_for_testing() -> Self {
        RenderTaskGraph {
            tasks: Vec::new(),
            passes: Vec::new(),
            frame_id: FrameId::INVALID,
            task_data: Vec::new(),
            surface_count: 0,
            unique_surfaces: FastHashSet::default(),
        }
    }

    /// Return the surface and texture counts, used for testing
    #[cfg(test)]
    pub fn surface_counts(&self) -> (usize, usize) {
        (self.surface_count, self.unique_surfaces.len())
    }

    /// Return current frame id, used for validation
    #[cfg(debug_assertions)]
    pub fn frame_id(&self) -> FrameId {
        self.frame_id
    }
}

/// Batching uses index access to read information about tasks
impl std::ops::Index<RenderTaskId> for RenderTaskGraph {
    type Output = RenderTask;
    fn index(&self, id: RenderTaskId) -> &RenderTask {
        &self.tasks[id.index as usize]
    }
}

fn assign_free_pass(
    id: RenderTaskId,
    graph: &mut RenderTaskGraph,
) {
    let task = &mut graph.tasks[id.index as usize];
    let render_on = task.render_on;

    let mut child_task_ids: SmallVec<[RenderTaskId; 8]> = SmallVec::new();
    child_task_ids.extend_from_slice(&task.children);

    for child_id in child_task_ids {
        let child_location = graph.tasks[child_id.index as usize].location.clone();

        // Each dynamic child task can free its backing surface after the last
        // task that references it as an input. Using min here ensures the
        // safe time to free this surface in the presence of multiple paths
        // to this task from the root(s).
        match child_location {
            RenderTaskLocation::CacheRequest { .. } => {}
            RenderTaskLocation::Static { .. } => {
                // never get freed anyway, so can leave untouched
                // (could validate that they remain at PassId::MIN)
            }
            RenderTaskLocation::Dynamic { .. } => {
                panic!("bug: should not be allocated yet");
            }
            RenderTaskLocation::Unallocated { .. } => {
                let child_task = &mut graph.tasks[child_id.index as usize];

                if child_task.free_after != PassId::INVALID {
                    child_task.free_after = child_task.free_after.min(render_on);
                }
            }
            RenderTaskLocation::Existing { parent_task_id, .. } => {
                let parent_task = &mut graph.tasks[parent_task_id.index as usize];
                parent_task.free_after = PassId::INVALID;

                let child_task = &mut graph.tasks[child_id.index as usize];

                if child_task.free_after != PassId::INVALID {
                    child_task.free_after = child_task.free_after.min(render_on);
                }
            }
        }
    }
}

/// A render pass represents a set of rendering operations that don't depend on one
/// another.
///
/// A render pass can have several render targets if there wasn't enough space in one
/// target to do all of the rendering for that pass. See `RenderTargetList`.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderPass {
    /// The subpasses that describe targets being rendered to in this pass
    pub alpha: RenderTargetList<AlphaRenderTarget>,
    pub color: RenderTargetList<ColorRenderTarget>,
    pub texture_cache: FastHashMap<CacheTextureId, TextureCacheRenderTarget>,
    pub picture_cache: Vec<PictureCacheTarget>,
    pub textures_to_invalidate: Vec<CacheTextureId>,
}

impl RenderPass {
    /// Creates an intermediate off-screen pass.
    pub fn new(src: &Pass) -> Self {
        RenderPass {
            color: RenderTargetList::new(
                ImageFormat::RGBA8,
            ),
            alpha: RenderTargetList::new(
                ImageFormat::R8,
            ),
            texture_cache: FastHashMap::default(),
            picture_cache: Vec::new(),
            textures_to_invalidate: src.textures_to_invalidate.clone(),
        }
    }
}

// Dump an SVG visualization of the render graph for debugging purposes
#[cfg(feature = "capture")]
pub fn dump_render_tasks_as_svg(
    render_tasks: &RenderTaskGraph,
    output: &mut dyn std::io::Write,
) -> std::io::Result<()> {
    use svg_fmt::*;

    let node_width = 80.0;
    let node_height = 30.0;
    let vertical_spacing = 8.0;
    let horizontal_spacing = 20.0;
    let margin = 10.0;
    let text_size = 10.0;

    let mut pass_rects = Vec::new();
    let mut nodes = vec![None; render_tasks.tasks.len()];

    let mut x = margin;
    let mut max_y: f32 = 0.0;

    #[derive(Clone)]
    struct Node {
        rect: Rectangle,
        label: Text,
        size: Text,
    }

    for pass in render_tasks.passes.iter().rev() {
        let mut layout = VerticalLayout::new(x, margin, node_width);

        for task_id in &pass.task_ids {
            let task_index = task_id.index as usize;
            let task = &render_tasks.tasks[task_index];

            let rect = layout.push_rectangle(node_height);

            let tx = rect.x + rect.w / 2.0;
            let ty = rect.y + 10.0;

            let label = text(tx, ty, format!("{}", task.kind.as_str()));
            let size = text(tx, ty + 12.0, format!("{:?}", task.location.size()));

            nodes[task_index] = Some(Node { rect, label, size });

            layout.advance(vertical_spacing);
        }

        pass_rects.push(layout.total_rectangle());

        x += node_width + horizontal_spacing;
        max_y = max_y.max(layout.y + margin);
    }

    let mut links = Vec::new();
    for node_index in 0..nodes.len() {
        if nodes[node_index].is_none() {
            continue;
        }

        let task = &render_tasks.tasks[node_index];
        for dep in &task.children {
            let dep_index = dep.index as usize;

            if let (&Some(ref node), &Some(ref dep_node)) = (&nodes[node_index], &nodes[dep_index]) {
                links.push((
                    dep_node.rect.x + dep_node.rect.w,
                    dep_node.rect.y + dep_node.rect.h / 2.0,
                    node.rect.x,
                    node.rect.y + node.rect.h / 2.0,
                ));
            }
        }
    }

    let svg_w = x + margin;
    let svg_h = max_y + margin;
    writeln!(output, "{}", BeginSvg { w: svg_w, h: svg_h })?;

    // Background.
    writeln!(output,
        "    {}",
        rectangle(0.0, 0.0, svg_w, svg_h)
            .inflate(1.0, 1.0)
            .fill(rgb(50, 50, 50))
    )?;

    // Passes.
    for rect in pass_rects {
        writeln!(output,
            "    {}",
            rect.inflate(3.0, 3.0)
                .border_radius(4.0)
                .opacity(0.4)
                .fill(black())
        )?;
    }

    // Links.
    for (x1, y1, x2, y2) in links {
        dump_task_dependency_link(output, x1, y1, x2, y2);
    }

    // Tasks.
    for node in &nodes {
        if let Some(node) = node {
            writeln!(output,
                "    {}",
                node.rect
                    .clone()
                    .fill(black())
                    .border_radius(3.0)
                    .opacity(0.5)
                    .offset(0.0, 2.0)
            )?;
            writeln!(output,
                "    {}",
                node.rect
                    .clone()
                    .fill(rgb(200, 200, 200))
                    .border_radius(3.0)
                    .opacity(0.8)
            )?;

            writeln!(output,
                "    {}",
                node.label
                    .clone()
                    .size(text_size)
                    .align(Align::Center)
                    .color(rgb(50, 50, 50))
            )?;
            writeln!(output,
                "    {}",
                node.size
                    .clone()
                    .size(text_size * 0.7)
                    .align(Align::Center)
                    .color(rgb(50, 50, 50))
            )?;
        }
    }

    writeln!(output, "{}", EndSvg)
}

#[allow(dead_code)]
fn dump_task_dependency_link(
    output: &mut dyn std::io::Write,
    x1: f32, y1: f32,
    x2: f32, y2: f32,
) {
    use svg_fmt::*;

    // If the link is a straight horizontal line and spans over multiple passes, it
    // is likely to go straight though unrelated nodes in a way that makes it look like
    // they are connected, so we bend the line upward a bit to avoid that.
    let simple_path = (y1 - y2).abs() > 1.0 || (x2 - x1) < 45.0;

    let mid_x = (x1 + x2) / 2.0;
    if simple_path {
        write!(output, "    {}",
            path().move_to(x1, y1)
                .cubic_bezier_to(mid_x, y1, mid_x, y2, x2, y2)
                .fill(Fill::None)
                .stroke(Stroke::Color(rgb(100, 100, 100), 3.0))
        ).unwrap();
    } else {
        let ctrl1_x = (mid_x + x1) / 2.0;
        let ctrl2_x = (mid_x + x2) / 2.0;
        let ctrl_y = y1 - 25.0;
        write!(output, "    {}",
            path().move_to(x1, y1)
                .cubic_bezier_to(ctrl1_x, y1, ctrl1_x, ctrl_y, mid_x, ctrl_y)
                .cubic_bezier_to(ctrl2_x, ctrl_y, ctrl2_x, y2, x2, y2)
                .fill(Fill::None)
                .stroke(Stroke::Color(rgb(100, 100, 100), 3.0))
        ).unwrap();
    }
}

/// Construct a picture cache render task location for testing
#[cfg(test)]
fn pc_target(
    surface_id: u64,
    tile_x: i32,
    tile_y: i32,
) -> RenderTaskLocation {
    use crate::{
        composite::{NativeSurfaceId, NativeTileId},
        picture::ResolvedSurfaceTexture,
    };

    let width = 512;
    let height = 512;

    RenderTaskLocation::Static {
        surface: StaticRenderTaskSurface::PictureCache {
            surface: ResolvedSurfaceTexture::Native {
                id: NativeTileId {
                    surface_id: NativeSurfaceId(surface_id),
                    x: tile_x,
                    y: tile_y,
                },
                size: DeviceIntSize::new(width, height),
            },
        },
        rect: DeviceIntSize::new(width, height).into(),
    }
}

#[cfg(test)]
impl RenderTaskGraphBuilder {
    fn test_expect(
        mut self,
        pass_count: usize,
        total_surface_count: usize,
        unique_surfaces: &[(i32, i32, ImageFormat)],
    ) {
        use crate::internal_types::FrameStamp;
        use api::{DocumentId, IdNamespace};

        let mut rc = ResourceCache::new_for_testing();
        let mut gc =  GpuCache::new();

        let mut frame_stamp = FrameStamp::first(DocumentId::new(IdNamespace(1), 1));
        frame_stamp.advance();
        gc.prepare_for_frames();
        gc.begin_frame(frame_stamp);

        let g = self.end_frame(&mut rc, &mut gc, &mut Vec::new(), 2048);
        g.print();

        assert_eq!(g.passes.len(), pass_count);
        assert_eq!(g.surface_counts(), (total_surface_count, unique_surfaces.len()));

        rc.validate_surfaces(unique_surfaces);
    }
}

/// Construct a testing render task with given location
#[cfg(test)]
fn task_location(location: RenderTaskLocation) -> RenderTask {
    RenderTask::new_test(
        location,
        RenderTargetKind::Color,
    )
}

/// Construct a dynamic render task location for testing
#[cfg(test)]
fn task_dynamic(size: i32) -> RenderTask {
    RenderTask::new_test(
        RenderTaskLocation::Unallocated { size: DeviceIntSize::new(size, size) },
        RenderTargetKind::Color,
    )
}

#[test]
fn fg_test_1() {
    // Test that a root target can be used as an input for readbacks
    // This functionality isn't currently used, but will be in future.

    let mut gb = RenderTaskGraphBuilder::new();

    let root_target = pc_target(0, 0, 0);

    let root = gb.add().init(task_location(root_target.clone()));

    let readback = gb.add().init(task_dynamic(100));
    gb.add_dependency(readback, root);

    let mix_blend_content = gb.add().init(task_dynamic(50));

    let content = gb.add().init(task_location(root_target));
    gb.add_dependency(content, readback);
    gb.add_dependency(content, mix_blend_content);

    gb.test_expect(3, 1, &[
        (2048, 2048, ImageFormat::RGBA8),
    ]);
}

#[test]
fn fg_test_3() {
    // Test that small targets are allocated in a shared surface, and that large
    // tasks are allocated in a rounded up texture size.

    let mut gb = RenderTaskGraphBuilder::new();

    let pc_root = gb.add().init(task_location(pc_target(0, 0, 0)));

    let child_pic_0 = gb.add().init(task_dynamic(128));
    let child_pic_1 = gb.add().init(task_dynamic(3000));

    gb.add_dependency(pc_root, child_pic_0);
    gb.add_dependency(pc_root, child_pic_1);

    gb.test_expect(2, 2, &[
        (2048, 2048, ImageFormat::RGBA8),
        (3072, 3072, ImageFormat::RGBA8),
    ]);
}

#[test]
fn fg_test_4() {
    // Test that for a simple dependency chain of tasks, that render
    // target surfaces are aliased and reused between passes where possible.

    let mut gb = RenderTaskGraphBuilder::new();

    let pc_root = gb.add().init(task_location(pc_target(0, 0, 0)));

    let child_pic_0 = gb.add().init(task_dynamic(128));
    let child_pic_1 = gb.add().init(task_dynamic(128));
    let child_pic_2 = gb.add().init(task_dynamic(128));

    gb.add_dependency(pc_root, child_pic_0);
    gb.add_dependency(child_pic_0, child_pic_1);
    gb.add_dependency(child_pic_1, child_pic_2);

    gb.test_expect(4, 3, &[
        (2048, 2048, ImageFormat::RGBA8),
        (2048, 2048, ImageFormat::RGBA8),
    ]);
}

#[test]
fn fg_test_5() {
    // Test that a task that is used as an input by direct parent and also
    // distance ancestor are scheduled correctly, and allocates the correct
    // number of passes, taking advantage of surface reuse / aliasing where feasible.

    let mut gb = RenderTaskGraphBuilder::new();

    let pc_root = gb.add().init(task_location(pc_target(0, 0, 0)));

    let child_pic_0 = gb.add().init(task_dynamic(128));
    let child_pic_1 = gb.add().init(task_dynamic(64));
    let child_pic_2 = gb.add().init(task_dynamic(32));
    let child_pic_3 = gb.add().init(task_dynamic(16));

    gb.add_dependency(pc_root, child_pic_0);
    gb.add_dependency(child_pic_0, child_pic_1);
    gb.add_dependency(child_pic_1, child_pic_2);
    gb.add_dependency(child_pic_2, child_pic_3);
    gb.add_dependency(pc_root, child_pic_3);

    gb.test_expect(5, 4, &[
        (2048, 2048, ImageFormat::RGBA8),
        (2048, 2048, ImageFormat::RGBA8),
        (2048, 2048, ImageFormat::RGBA8),
    ]);
}

#[test]
fn fg_test_6() {
    // Test that a task that is used as an input dependency by two parent
    // tasks is correctly allocated and freed.

    let mut gb = RenderTaskGraphBuilder::new();

    let pc_root_1 = gb.add().init(task_location(pc_target(0, 0, 0)));
    let pc_root_2 = gb.add().init(task_location(pc_target(0, 1, 0)));

    let child_pic = gb.add().init(task_dynamic(128));

    gb.add_dependency(pc_root_1, child_pic);
    gb.add_dependency(pc_root_2, child_pic);

    gb.test_expect(2, 1, &[
        (2048, 2048, ImageFormat::RGBA8),
    ]);
}

#[test]
fn fg_test_7() {
    // Test that a standalone surface is not incorrectly used to
    // allocate subsequent shared task rects.

    let mut gb = RenderTaskGraphBuilder::new();

    let pc_root = gb.add().init(task_location(pc_target(0, 0, 0)));

    let child0 = gb.add().init(task_dynamic(16));
    let child1 = gb.add().init(task_dynamic(16));

    let child2 = gb.add().init(task_dynamic(16));
    let child3 = gb.add().init(task_dynamic(16));

    gb.add_dependency(pc_root, child0);
    gb.add_dependency(child0, child1);
    gb.add_dependency(pc_root, child1);

    gb.add_dependency(pc_root, child2);
    gb.add_dependency(child2, child3);

    gb.test_expect(3, 3, &[
        (2048, 2048, ImageFormat::RGBA8),
        (2048, 2048, ImageFormat::RGBA8),
        (2048, 2048, ImageFormat::RGBA8),
    ]);
}