summaryrefslogtreecommitdiffstats
path: root/gfx/wr/webrender/src/renderer/upload.rs
blob: c987038651199e91c539fc50fe988e13a238aa82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! This module contains the convoluted logic that goes into uploading content into
//! the texture cache's textures.
//!
//! We need to support various combinations of code paths depending on the quirks of
//! each hardware/driver configuration:
//! - direct upload,
//! - staged upload via a pixel buffer object,
//! - staged upload via a direct upload to a staging texture where PBO's aren't supported,
//! - copy from the staging to destination textures, either via blits or batched draw calls.
//!
//! Conceptually a lot of this logic should probably be in the device module, but some code
//! here relies on submitting draw calls via the renderer.


use std::mem;
use std::collections::VecDeque;
use std::sync::Arc;
use std::time::Duration;
use euclid::{Transform3D, point2};
use time::precise_time_ns;
use malloc_size_of::MallocSizeOfOps;
use api::units::*;
use api::{ExternalImageSource, ImageBufferKind, ImageFormat};
use crate::renderer::{
    Renderer, VertexArrayKind, RendererStats, TextureSampler, TEXTURE_CACHE_DBG_CLEAR_COLOR
};
use crate::internal_types::{
    FastHashMap, TextureUpdateSource, Swizzle, TextureCacheUpdate,
    CacheTextureId, RenderTargetInfo,
};
use crate::device::{
    Device, UploadMethod, Texture, DrawTarget, UploadStagingBuffer, TextureFlags, TextureUploader,
    TextureFilter,
};
use crate::gpu_types::CopyInstance;
use crate::batch::BatchTextures;
use crate::texture_pack::{GuillotineAllocator, FreeRectSlice};
use crate::profiler;
use crate::render_api::MemoryReport;

pub const BATCH_UPLOAD_TEXTURE_SIZE: DeviceIntSize = DeviceIntSize::new(512, 512);
const BATCH_UPLOAD_FORMAT_COUNT: usize = 4;

/// Upload a number of items to texture cache textures.
///
/// This is the main entry point of the texture cache upload code.
/// See also the module documentation for more information.
pub fn upload_to_texture_cache(
    renderer: &mut Renderer,
    update_list: FastHashMap<CacheTextureId, Vec<TextureCacheUpdate>>,
) {

    let mut stats = UploadStats {
        num_draw_calls: 0,
        upload_time: 0,
        cpu_buffer_alloc_time: 0,
        texture_alloc_time: 0,
        cpu_copy_time: 0,
        gpu_copy_commands_time: 0,
        bytes_uploaded: 0,
        items_uploaded: 0,
    };

    let upload_total_start = precise_time_ns();

    let mut batch_upload_textures = Vec::new();

    // A list of copies that must be performed from the temporary textures to the texture cache.
    let mut batch_upload_copies = Vec::new();

    // For each texture format, this stores a list of staging buffers
    // and a texture allocator for packing the buffers.
    let mut batch_upload_buffers = FastHashMap::default();

    // For best performance we use a single TextureUploader for all uploads.
    // This allows us to fill PBOs more efficiently and therefore allocate fewer PBOs.
    let mut uploader = renderer.device.upload_texture(
        &mut renderer.texture_upload_pbo_pool,
    );

    let num_updates = update_list.len();

    for (texture_id, updates) in update_list {
        let texture = &renderer.texture_resolver.texture_cache_map[&texture_id].texture;
        for update in updates {
            let TextureCacheUpdate { rect, stride, offset, format_override, source } = update;
            let mut arc_data = None; 
            let dummy_data;
            let data = match source {
                TextureUpdateSource::Bytes { ref data } => {
                    arc_data = Some(data.clone());
                    &data[offset as usize ..]
                }
                TextureUpdateSource::External { id, channel_index } => {
                    let handler = renderer.external_image_handler
                        .as_mut()
                        .expect("Found external image, but no handler set!");
                    // The filter is only relevant for NativeTexture external images.
                    match handler.lock(id, channel_index).source {
                        ExternalImageSource::RawData(data) => {
                            &data[offset as usize ..]
                        }
                        ExternalImageSource::Invalid => {
                            // Create a local buffer to fill the pbo.
                            let bpp = texture.get_format().bytes_per_pixel();
                            let width = stride.unwrap_or(rect.width() * bpp);
                            let total_size = width * rect.height();
                            // WR haven't support RGBAF32 format in texture_cache, so
                            // we use u8 type here.
                            dummy_data = vec![0xFFu8; total_size as usize];
                            &dummy_data
                        }
                        ExternalImageSource::NativeTexture(eid) => {
                            panic!("Unexpected external texture {:?} for the texture cache update of {:?}", eid, id);
                        }
                    }
                }
                TextureUpdateSource::DebugClear => {
                    let draw_target = DrawTarget::from_texture(
                        texture,
                        false,
                    );
                    renderer.device.bind_draw_target(draw_target);
                    renderer.device.clear_target(
                        Some(TEXTURE_CACHE_DBG_CLEAR_COLOR),
                        None,
                        Some(draw_target.to_framebuffer_rect(update.rect.to_i32()))
                    );

                    continue;
                }
            };

            stats.items_uploaded += 1;

            let use_batch_upload = renderer.device.use_batched_texture_uploads() &&
                texture.flags().contains(TextureFlags::IS_SHARED_TEXTURE_CACHE) &&
                rect.width() <= BATCH_UPLOAD_TEXTURE_SIZE.width &&
                rect.height() <= BATCH_UPLOAD_TEXTURE_SIZE.height &&
                rect.area() < renderer.device.batched_upload_threshold();

            if use_batch_upload
                && arc_data.is_some()
                && matches!(renderer.device.upload_method(), &UploadMethod::Immediate)
                && rect.area() > BATCH_UPLOAD_TEXTURE_SIZE.area() / 2 {
                skip_staging_buffer(
                    &mut renderer.device,
                    &mut renderer.staging_texture_pool,
                    rect,
                    stride,
                    arc_data.unwrap(),
                    texture_id,
                    texture,
                    &mut batch_upload_buffers,
                    &mut batch_upload_textures,
                    &mut batch_upload_copies,
                    &mut stats,
                );
            } else if use_batch_upload {
                copy_into_staging_buffer(
                    &mut renderer.device,
                    &mut uploader,
                    &mut renderer.staging_texture_pool,
                    rect,
                    stride,
                    data,
                    texture_id,
                    texture,
                    &mut batch_upload_buffers,
                    &mut batch_upload_textures,
                    &mut batch_upload_copies,
                    &mut stats,
                );
            } else {
                let upload_start_time = precise_time_ns();

                stats.bytes_uploaded += uploader.upload(
                    &mut renderer.device,
                    texture,
                    rect,
                    stride,
                    format_override,
                    data.as_ptr(),
                    data.len()
                );

                stats.upload_time += precise_time_ns() - upload_start_time;
            }

            if let TextureUpdateSource::External { id, channel_index } = source {
                let handler = renderer.external_image_handler
                    .as_mut()
                    .expect("Found external image, but no handler set!");
                handler.unlock(id, channel_index);
            }
        }
    }

    let upload_start_time = precise_time_ns();
    // Upload batched texture updates to their temporary textures.
    for batch_buffer in batch_upload_buffers.into_iter().map(|(_, (_, buffers))| buffers).flatten() {
        let texture = &batch_upload_textures[batch_buffer.texture_index];
        match batch_buffer.staging_buffer {
            StagingBufferKind::Pbo(pbo) => {
                stats.bytes_uploaded += uploader.upload_staged(
                    &mut renderer.device,
                    texture,
                    DeviceIntRect::from_size(texture.get_dimensions()),
                    None,
                    pbo,
                );
            }
            StagingBufferKind::CpuBuffer { bytes, .. } => {
                let bpp = texture.get_format().bytes_per_pixel();
                stats.bytes_uploaded += uploader.upload(
                    &mut renderer.device,
                    texture,
                    batch_buffer.upload_rect,
                    Some(BATCH_UPLOAD_TEXTURE_SIZE.width * bpp),
                    None,
                    bytes.as_ptr(),
                    bytes.len()
                );
                renderer.staging_texture_pool.return_temporary_buffer(bytes);
            }
            StagingBufferKind::Image { bytes, stride } => {
                stats.bytes_uploaded += uploader.upload(
                    &mut renderer.device,
                    texture,
                    batch_buffer.upload_rect,
                    stride,
                    None,
                    bytes.as_ptr(),
                    bytes.len()
                );
            }
        }
    }
    stats.upload_time += precise_time_ns() - upload_start_time;


    // Flush all uploads, batched or otherwise.
    let flush_start_time = precise_time_ns();
    uploader.flush(&mut renderer.device);
    stats.upload_time += precise_time_ns() - flush_start_time;

    if !batch_upload_copies.is_empty() {
        // Copy updates that were batch uploaded to their correct destination in the texture cache.
        // Sort them by destination and source to minimize framebuffer binding changes.
        batch_upload_copies.sort_unstable_by_key(|b| (b.dest_texture_id.0, b.src_texture_index));

        let gpu_copy_start = precise_time_ns();

        if renderer.device.use_draw_calls_for_texture_copy() {
            // Some drivers have a very high CPU overhead when submitting hundreds of small blit
            // commands (low end intel drivers on Windows for example can take take 100+ ms submitting a
            // few hundred blits). In this case we do the copy with batched draw calls.
            copy_from_staging_to_cache_using_draw_calls(
                renderer,
                &mut stats,
                &batch_upload_textures,
                batch_upload_copies,
            );
        } else {
            copy_from_staging_to_cache(
                renderer,
                &batch_upload_textures,
                batch_upload_copies,
            );
        }

        stats.gpu_copy_commands_time += precise_time_ns() - gpu_copy_start;
    }

    for texture in batch_upload_textures.drain(..) {
        renderer.staging_texture_pool.return_texture(texture);
    }

    // Update the profile counters. We use add instead of set because
    // this function can be called several times per frame.
    // We don't update the counters when their value is zero, so that
    // the profiler can treat them as events and we can get notified
    // when they happen.

    let upload_total = precise_time_ns() - upload_total_start;
    renderer.profile.add(
        profiler::TOTAL_UPLOAD_TIME,
        profiler::ns_to_ms(upload_total)
    );

    if num_updates > 0 {
        renderer.profile.add(profiler::TEXTURE_UPLOADS, num_updates);
    }

    if stats.bytes_uploaded > 0 {
        renderer.profile.add(
            profiler::TEXTURE_UPLOADS_MEM,
            profiler::bytes_to_mb(stats.bytes_uploaded)
        );
    }

    if stats.cpu_copy_time > 0 {
        renderer.profile.add(
            profiler::UPLOAD_CPU_COPY_TIME,
            profiler::ns_to_ms(stats.cpu_copy_time)
        );
    }
    if stats.upload_time > 0 {
        renderer.profile.add(
            profiler::UPLOAD_TIME,
            profiler::ns_to_ms(stats.upload_time)
        );
    }
    if stats.texture_alloc_time > 0 {
        renderer.profile.add(
            profiler::STAGING_TEXTURE_ALLOCATION_TIME,
            profiler::ns_to_ms(stats.texture_alloc_time)
        );
    }
    if stats.cpu_buffer_alloc_time > 0 {
        renderer.profile.add(
            profiler::CPU_TEXTURE_ALLOCATION_TIME,
            profiler::ns_to_ms(stats.cpu_buffer_alloc_time)
        );
    }
    if stats.num_draw_calls > 0{
        renderer.profile.add(
            profiler::UPLOAD_NUM_COPY_BATCHES,
            stats.num_draw_calls
        );
    }

    if stats.gpu_copy_commands_time > 0 {
        renderer.profile.add(
            profiler::UPLOAD_GPU_COPY_TIME,
            profiler::ns_to_ms(stats.gpu_copy_commands_time)
        );
    }

    let add_markers = profiler::thread_is_being_profiled();
    if add_markers && stats.bytes_uploaded > 0 {
    	let details = format!("{} bytes uploaded, {} items", stats.bytes_uploaded, stats.items_uploaded);
    	profiler::add_text_marker(&"Texture uploads", &details, Duration::from_nanos(upload_total));
    }
}

/// Copy an item into a batched upload staging buffer.
fn copy_into_staging_buffer<'a>(
    device: &mut Device,
    uploader: &mut TextureUploader< 'a>,
    staging_texture_pool: &mut UploadTexturePool,
    update_rect: DeviceIntRect,
    update_stride: Option<i32>,
    data: &[u8],
    dest_texture_id: CacheTextureId,
    texture: &Texture,
    batch_upload_buffers: &mut FastHashMap<ImageFormat, (GuillotineAllocator, Vec<BatchUploadBuffer<'a>>)>,
    batch_upload_textures: &mut Vec<Texture>,
    batch_upload_copies: &mut Vec<BatchUploadCopy>,
    stats: &mut UploadStats
) {
    let (allocator, buffers) = batch_upload_buffers.entry(texture.get_format())
        .or_insert_with(|| (GuillotineAllocator::new(None), Vec::new()));

    // Allocate a region within the staging buffer for this update. If there is
    // no room in an existing buffer then allocate another texture and buffer.
    let (slice, origin) = match allocator.allocate(&update_rect.size()) {
        Some((slice, origin)) => (slice, origin),
        None => {
            let new_slice = FreeRectSlice(buffers.len() as u32);
            allocator.extend(new_slice, BATCH_UPLOAD_TEXTURE_SIZE, update_rect.size());

            let texture_alloc_time_start = precise_time_ns();
            let staging_texture = staging_texture_pool.get_texture(device, texture.get_format());
            stats.texture_alloc_time = precise_time_ns() - texture_alloc_time_start;

            let texture_index = batch_upload_textures.len();
            batch_upload_textures.push(staging_texture);

            let cpu_buffer_alloc_start_time = precise_time_ns();
            let staging_buffer = match device.upload_method() {
                UploadMethod::Immediate => StagingBufferKind::CpuBuffer {
                    bytes: staging_texture_pool.get_temporary_buffer(),
                },
                UploadMethod::PixelBuffer(_) => {
                    let pbo = uploader.stage(
                        device,
                        texture.get_format(),
                        BATCH_UPLOAD_TEXTURE_SIZE,
                    ).unwrap();

                    StagingBufferKind::Pbo(pbo)
                }
            };
            stats.cpu_buffer_alloc_time += precise_time_ns() - cpu_buffer_alloc_start_time;

            buffers.push(BatchUploadBuffer {
                staging_buffer,
                texture_index,
                upload_rect: DeviceIntRect::zero()
            });

            (new_slice, DeviceIntPoint::zero())
        }
    };
    let buffer = &mut buffers[slice.0 as usize];
    let allocated_rect = DeviceIntRect::from_origin_and_size(origin, update_rect.size());
    buffer.upload_rect = buffer.upload_rect.union(&allocated_rect);

    batch_upload_copies.push(BatchUploadCopy {
        src_texture_index: buffer.texture_index,
        src_offset: allocated_rect.min,
        dest_texture_id,
        dest_offset: update_rect.min,
        size: update_rect.size(),
    });

    unsafe {
        let memcpy_start_time = precise_time_ns();
        let bpp = texture.get_format().bytes_per_pixel() as usize;
        let width_bytes = update_rect.width() as usize * bpp;
        let src_stride = update_stride.map_or(width_bytes, |stride| {
            assert!(stride >= 0);
            stride as usize
        });
        let src_size = (update_rect.height() as usize - 1) * src_stride + width_bytes;
        assert!(src_size <= data.len());

        let src: &[mem::MaybeUninit<u8>] = std::slice::from_raw_parts(data.as_ptr() as *const _, src_size);
        let (dst_stride, dst) = match &mut buffer.staging_buffer {
            StagingBufferKind::Pbo(buffer) => (
                buffer.get_stride(),
                buffer.get_mapping(),
            ),
            StagingBufferKind::CpuBuffer { bytes } => (
                BATCH_UPLOAD_TEXTURE_SIZE.width as usize * bpp,
                &mut bytes[..],
            ),
            StagingBufferKind::Image { .. } => unreachable!(),
        };

        // copy the data line-by-line in to the buffer so that we do not overwrite
        // any other region of the buffer.
        for y in 0..allocated_rect.height() as usize {
            let src_start = y * src_stride;
            let src_end = src_start + width_bytes;
            let dst_start = (allocated_rect.min.y as usize + y as usize) * dst_stride +
                allocated_rect.min.x as usize * bpp;
            let dst_end = dst_start + width_bytes;

            dst[dst_start..dst_end].copy_from_slice(&src[src_start..src_end])
        }

        stats.cpu_copy_time += precise_time_ns() - memcpy_start_time;
    }
}

/// Take this code path instead of copying into a staging CPU buffer when the image
/// we would copy is large enough that it's unlikely anything else would fit in the
/// buffer, therefore we might as well copy directly from the source image's pixels.
fn skip_staging_buffer<'a>(
    device: &mut Device,
    staging_texture_pool: &mut UploadTexturePool,
    update_rect: DeviceIntRect,
    stride: Option<i32>,
    data: Arc<Vec<u8>>,
    dest_texture_id: CacheTextureId,
    texture: &Texture,
    batch_upload_buffers: &mut FastHashMap<ImageFormat, (GuillotineAllocator, Vec<BatchUploadBuffer<'a>>)>,
    batch_upload_textures: &mut Vec<Texture>,
    batch_upload_copies: &mut Vec<BatchUploadCopy>,
    stats: &mut UploadStats
) {
    let (_, buffers) = batch_upload_buffers.entry(texture.get_format())
        .or_insert_with(|| (GuillotineAllocator::new(None), Vec::new()));

    let texture_alloc_time_start = precise_time_ns();
    let staging_texture = staging_texture_pool.get_texture(device, texture.get_format());
    stats.texture_alloc_time = precise_time_ns() - texture_alloc_time_start;

    let texture_index = batch_upload_textures.len();
    batch_upload_textures.push(staging_texture);

    buffers.push(BatchUploadBuffer {
        staging_buffer: StagingBufferKind::Image { bytes: data, stride },
        texture_index,
        upload_rect: DeviceIntRect::from_size(update_rect.size())
    });

    batch_upload_copies.push(BatchUploadCopy {
        src_texture_index: texture_index,
        src_offset: point2(0, 0),
        dest_texture_id,
        dest_offset: update_rect.min,
        size: update_rect.size(),
    });
}


/// Copy from the staging PBOs or textures to texture cache textures using blit commands.
///
/// Using blits instead of draw calls is supposedly more efficient but some drivers have
/// a very high per-command overhead so in some configurations we end up using
/// copy_from_staging_to_cache_using_draw_calls instead.
fn copy_from_staging_to_cache(
    renderer: &mut Renderer,
    batch_upload_textures: &[Texture],
    batch_upload_copies: Vec<BatchUploadCopy>,
) {
    for copy in batch_upload_copies {
        let dest_texture = &renderer.texture_resolver.texture_cache_map[&copy.dest_texture_id].texture;

        renderer.device.copy_texture_sub_region(
            &batch_upload_textures[copy.src_texture_index],
            copy.src_offset.x as _,
            copy.src_offset.y as _,
            dest_texture,
            copy.dest_offset.x as _,
            copy.dest_offset.y as _,
            copy.size.width as _,
            copy.size.height as _,
        );
    }
}

/// Generate and submit composite shader batches to copy from
/// the staging textures to the destination cache textures.
///
/// If this shows up in GPU time ptofiles we could replace it with
/// a simpler shader (composite.glsl is already quite simple).
fn copy_from_staging_to_cache_using_draw_calls(
    renderer: &mut Renderer,
    stats: &mut UploadStats,
    batch_upload_textures: &[Texture],
    batch_upload_copies: Vec<BatchUploadCopy>,
) {
    let mut copy_instances = Vec::new();
    let mut prev_src = None;
    let mut prev_dst = None;
    let mut dst_texture_size = DeviceSize::new(0.0, 0.0);

    for copy in batch_upload_copies {

        let src_changed = prev_src != Some(copy.src_texture_index);
        let dst_changed = prev_dst != Some(copy.dest_texture_id);

        if (src_changed || dst_changed) && !copy_instances.is_empty() {
            renderer.draw_instanced_batch(
                &copy_instances,
                VertexArrayKind::Copy,
                // We bind the staging texture manually because it isn't known
                // to the texture resolver.
                &BatchTextures::empty(),
                &mut RendererStats::default(),
            );

            stats.num_draw_calls += 1;
            copy_instances.clear();
        }

        if dst_changed {
            let dest_texture = &renderer.texture_resolver.texture_cache_map[&copy.dest_texture_id].texture;
            dst_texture_size = dest_texture.get_dimensions().to_f32();

            let draw_target = DrawTarget::from_texture(dest_texture, false);
            renderer.device.bind_draw_target(draw_target);

            renderer.shaders
                .borrow_mut()
                .ps_copy
                .bind(
                    &mut renderer.device,
                    &Transform3D::identity(),
                    None,
                    &mut renderer.renderer_errors,
                    &mut renderer.profile,
                );

            prev_dst = Some(copy.dest_texture_id);
        }

        if src_changed {
            renderer.device.bind_texture(
                TextureSampler::Color0,
                &batch_upload_textures[copy.src_texture_index],
                Swizzle::default(),
            );

            prev_src = Some(copy.src_texture_index)
        }

        let src_rect = DeviceRect::from_origin_and_size(
            copy.src_offset.to_f32(),
            copy.size.to_f32(),
        );

        let dst_rect = DeviceRect::from_origin_and_size(
            copy.dest_offset.to_f32(),
            copy.size.to_f32(),
        );

        copy_instances.push(CopyInstance {
            src_rect,
            dst_rect,
            dst_texture_size,
        });
    }

    if !copy_instances.is_empty() {
        renderer.draw_instanced_batch(
            &copy_instances,
            VertexArrayKind::Copy,
            &BatchTextures::empty(),
            &mut RendererStats::default(),
        );

        stats.num_draw_calls += 1;
    }
}

/// A very basic pool to avoid reallocating staging textures as well as staging
/// CPU side buffers.
pub struct UploadTexturePool {
    /// The textures in the pool associated with a last used frame index.
    ///
    /// The outer array corresponds to each of teh three supported texture formats.
    textures: [VecDeque<(Texture, u64)>; BATCH_UPLOAD_FORMAT_COUNT],
    // Frame at which to deallocate some textures if there are too many in the pool,
    // for each format.
    delay_texture_deallocation: [u64; BATCH_UPLOAD_FORMAT_COUNT],
    current_frame: u64,

    /// Temporary buffers that are used when using staging uploads + glTexImage2D.
    ///
    /// Temporary buffers aren't used asynchronously so they can be reused every frame.
    /// To keep things simple we always allocate enough memory for formats with four bytes
    /// per pixel (more than we need for alpha-only textures but it works just as well).
    temporary_buffers: Vec<Vec<mem::MaybeUninit<u8>>>,
    min_temporary_buffers: usize,
    delay_buffer_deallocation: u64,
}

impl UploadTexturePool {
    pub fn new() -> Self {
        UploadTexturePool {
            textures: [VecDeque::new(), VecDeque::new(), VecDeque::new(), VecDeque::new()],
            delay_texture_deallocation: [0; BATCH_UPLOAD_FORMAT_COUNT],
            current_frame: 0,
            temporary_buffers: Vec::new(),
            min_temporary_buffers: 0,
            delay_buffer_deallocation: 0,
        }
    }

    fn format_index(&self, format: ImageFormat) -> usize {
        match format {
            ImageFormat::RGBA8 => 0,
            ImageFormat::BGRA8 => 1,
            ImageFormat::R8 => 2,
            ImageFormat::R16 => 3,
            _ => { panic!("unexpected format {:?}", format); }
        }
    }

    pub fn begin_frame(&mut self) {
        self.current_frame += 1;
        self.min_temporary_buffers = self.temporary_buffers.len();
    }

    /// Create or reuse a staging texture.
    ///
    /// See also return_texture.
    pub fn get_texture(&mut self, device: &mut Device, format: ImageFormat) -> Texture {

        // First try to reuse a texture from the pool.
        // "available" here means hasn't been used for 2 frames to avoid stalls.
        // No need to scan the vector. Newer textures are always pushed at the back
        // of the vector so we know the first element is the least recently used.
        let format_idx = self.format_index(format);
        let can_reuse = self.textures[format_idx].get(0)
            .map(|tex| self.current_frame - tex.1 > 2)
            .unwrap_or(false);

        if can_reuse {
            return self.textures[format_idx].pop_front().unwrap().0;
        }

        // If we couldn't find an available texture, create a new one.

        device.create_texture(
            ImageBufferKind::Texture2D,
            format,
            BATCH_UPLOAD_TEXTURE_SIZE.width,
            BATCH_UPLOAD_TEXTURE_SIZE.height,
            TextureFilter::Nearest,
            // Currently we need render target support as we always use glBlitFramebuffer
            // to copy the texture data. Instead, we should use glCopyImageSubData on some
            // platforms, and avoid creating the FBOs in that case.
            Some(RenderTargetInfo { has_depth: false }),
        )
    }

    /// Hand the staging texture back to the pool after being done with uploads.
    ///
    /// The texture must have been obtained from this pool via get_texture.
    pub fn return_texture(&mut self, texture: Texture) {
        let format_idx = self.format_index(texture.get_format());
        self.textures[format_idx].push_back((texture, self.current_frame));
    }

    /// Create or reuse a temporary CPU buffer.
    ///
    /// These buffers are used in the batched upload path when PBOs are not supported.
    /// Content is first written to the temporary buffer and uploaded via a single
    /// glTexSubImage2D call.
    pub fn get_temporary_buffer(&mut self) -> Vec<mem::MaybeUninit<u8>> {
        let buffer = self.temporary_buffers.pop().unwrap_or_else(|| {
            vec![mem::MaybeUninit::new(0); BATCH_UPLOAD_TEXTURE_SIZE.area() as usize * 4]
        });
        self.min_temporary_buffers = self.min_temporary_buffers.min(self.temporary_buffers.len());
        buffer
    }

    /// Return memory that was obtained from this pool via get_temporary_buffer.
    pub fn return_temporary_buffer(&mut self, buffer: Vec<mem::MaybeUninit<u8>>) {
        assert_eq!(buffer.len(), BATCH_UPLOAD_TEXTURE_SIZE.area() as usize * 4);
        self.temporary_buffers.push(buffer);
    }

    /// Deallocate this pool's CPU and GPU memory.
    pub fn delete_textures(&mut self, device: &mut Device) {
        for format in &mut self.textures {
            while let Some(texture) = format.pop_back() {
                device.delete_texture(texture.0)
            }
        }
        self.temporary_buffers.clear();
    }

    /// Deallocate some textures if there are too many for a long time.
    pub fn end_frame(&mut self, device: &mut Device) {
        for format_idx in 0..self.textures.len() {
            // Count the number of reusable staging textures.
            // if it stays high for a large number of frames, truncate it back to 8-ish
            // over multiple frames.

            let mut num_reusable_textures = 0;
            for texture in &self.textures[format_idx] {
                if self.current_frame - texture.1 > 2 {
                    num_reusable_textures += 1;
                }
            }

            if num_reusable_textures < 8 {
                // Don't deallocate textures for another 120 frames.
                self.delay_texture_deallocation[format_idx] = self.current_frame + 120;
            }

            // Deallocate up to 4 staging textures every frame.
            let to_remove = if self.current_frame > self.delay_texture_deallocation[format_idx] {
                num_reusable_textures.min(4)
            } else {
                0
            };

            for _ in 0..to_remove {
                let texture = self.textures[format_idx].pop_front().unwrap().0;
                device.delete_texture(texture);
            }
        }

        // Similar logic for temporary CPU buffers. Our calls to get and return
        // temporary buffers should have been balanced for this frame, but the call
        // get_temporary_buffer will allocate a buffer if the vec is empty. Since we
        // carry these buffers from frame to frame, we keep track of the smallest
        // length of the temporary_buffers vec that we encountered this frame. Those
        // buffers were not touched and we deallocate some if there are a lot of them.
        let unused_buffers = self.min_temporary_buffers;
        if unused_buffers < 8 {
            self.delay_buffer_deallocation = self.current_frame + 120;
        }
        let to_remove = if self.current_frame > self.delay_buffer_deallocation  {
            unused_buffers.min(4)
        } else {
            0
        };
        for _ in 0..to_remove {
            // Unlike textures it doesn't matter whether we pop from the front or back
            // of the vector.
            self.temporary_buffers.pop();
        }
    }

    pub fn report_memory_to(&self, report: &mut MemoryReport, size_op_funs: &MallocSizeOfOps) {
        for buf in &self.temporary_buffers {
            report.upload_staging_memory += unsafe { (size_op_funs.size_of_op)(buf.as_ptr() as *const _) };
        }

        for format in &self.textures {
            for texture in format {
                report.upload_staging_textures += texture.0.size_in_bytes();
            }
        }
    }
}

struct UploadStats {
    num_draw_calls: u32,
    upload_time: u64,
    cpu_buffer_alloc_time: u64,
    texture_alloc_time: u64,
    cpu_copy_time: u64,
    gpu_copy_commands_time: u64,
    bytes_uploaded: usize,
    items_uploaded: usize,
}

#[derive(Debug)]
enum StagingBufferKind<'a> {
    Pbo(UploadStagingBuffer<'a>),
    CpuBuffer { bytes: Vec<mem::MaybeUninit<u8>> },
    Image { bytes: Arc<Vec<u8>>, stride: Option<i32> },
}
#[derive(Debug)]
struct BatchUploadBuffer<'a> {
    staging_buffer: StagingBufferKind<'a>,
    texture_index: usize,
    // A rectangle containing all items going into this staging texture, so
    // that we can avoid uploading the entire area if we are using glTexSubImage2d.
    upload_rect: DeviceIntRect,
}

// On some devices performing many small texture uploads is slow, so instead we batch
// updates in to a small number of uploads to temporary textures, then copy from those
// textures to the correct place in the texture cache.
// A list of temporary textures that batches of updates are uploaded to.
#[derive(Debug)]
struct BatchUploadCopy {
    // Index within batch_upload_textures
    src_texture_index: usize,
    src_offset: DeviceIntPoint,
    dest_texture_id: CacheTextureId,
    dest_offset: DeviceIntPoint,
    size: DeviceIntSize,
}