1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* JS::Value implementation. */
#ifndef js_Value_h
#define js_Value_h
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/Likely.h"
#include "mozilla/Maybe.h"
#include <limits> /* for std::numeric_limits */
#include <type_traits>
#include "jstypes.h"
#include "js/HeapAPI.h"
#include "js/RootingAPI.h"
#include "js/TypeDecls.h"
namespace JS {
class JS_PUBLIC_API Value;
}
// [SMDOC] JS::Value Boxing Formats
//
// JS::Value is a 64-bit value, on all architectures. It is conceptually a
// discriminated union of all the types of values that can be represented in SM:
// - Object Pointers
// - 64 bit IEEE 754 floats
// - 32-bit integer values
// - and quite a few more (see JSValueType)
//
// The ECMAScript standard specifies that ECMAScript numbers are IEEE 64-bit
// floating-point values. A JS::Value can represent any JavaScript number
// value directly, without referring to additional storage, or represent an
// object, string, or other ECMAScript value, and remember which type it is.
//
// This may seem surprising: how can a 64-bit type hold all the 64-bit IEEE
// values, and still distinguish them from objects, strings, and so on,
// which have 64-bit addresses ?
//
// This is possible for two reasons:
//
// - First, ECMAScript implementations aren't required to distinguish all
// the values the IEEE 64-bit format can represent.
//
// The IEEE 754 format for floating point numbers specifies that every
// floating-point value whose 11-bit exponent field is all ones, and whose
// 52-bit fraction field is non-zero, has the value NaN. EMCAScript requires
// only one NaN value. This means we can use one IEEE NaN to represent
// ECMAScript's NaN, and use all the other 2^52-2 NaN bitstrings to
// represent the other ECMAScript values.
//
// - Second, on the 64 bit architectures we suppport, only the
// lower 48 bits of an address are currently significant. The upper sixteen
// bits are required to be the sign-extension of bit 48. Furthermore, user
// code always runs in "positive addresses": those in which bit 48 is zero. So
// we only actually need 47 bits to store all possible object or string
// addresses, even on 64-bit platforms.
//
// Our memory initialization system ensures that all pointers we will store in
// objects use only 47 bits. See js::gc::MapAlignedPagesRandom.
//
// The introduction of 5-level page tables, supporting 57-bit virtual
// addresses, is a potential complication. For now, large addresses are
// opt-in, and we simply don't use them.
//
// With a 52-bit fraction field, and 47 bits needed for the 'payload', we
// have up to five bits left to store a 'tag' value, to indicate which
// branch of our discriminated union is live. (In practice, one of those
// bits is used up to simplify NaN representation; see micro-optimization 5
// below.)
//
// Thus, we define JS::Value representations in terms of the IEEE 64-bit
// floating-point format:
//
// - Any bitstring that IEEE calls a number or an infinity represents that
// ECMAScript number.
//
// - Any bitstring that IEEE calls a NaN represents either an ECMAScript NaN
// or a non-number ECMAScript value, as determined by a tag field stored
// towards the most significant end of the fraction field (exactly where
// depends on the address size). If the tag field indicates that this
// JS::Value is an object, the fraction field's least significant end
// holds the address of a JSObject; if a string, the address of a
// JSString; and so on.
//
// To enforce this invariant, anywhere that may provide a numerical value
// which may have a non-canonical NaN value (NaN, but not the one we've chosen
// for ECMAScript) we must convert that to the canonical NaN. See
// JS::CanonicalizeNaN.
//
// We have two boxing modes defined: NUNBOX32 and PUNBOX64.The first is
// "NaN unboxed boxing" (or Nunboxing), as non-Number payload are stored
// unaltered in the lower bits. The second is "Packed NaN boxing" (or
// punboxing), which is 'logically like nunboxing, but with all the unused bits
// sucked out' [1], as we rely on unused bits of the payload to pack the
// payload in the lower bits using Nunboxing.
//
// - In NUNBOX32 the tag is stored in the least-significant bits of the high
// word of the NaN. Since it's used on 32-bit systems, this has the nice
// property that boxed values are simply stored in the low-word of the 8-byte
// NaN.
//
// - In PUNBOX64, since we need to store more pointer bits (47, see above), the
// tag is stored in the 5 most significant bits of the fraction adjacent to
// the exponent.
//
// Tag values are carefully ordered to support a set of micro-optimizations. In
// particular:
//
// 1. Object is the highest tag, to simplify isPrimitive checks. (See
// ValueUpperExclPrimitiveTag)
// 2. Numbers (Double and Int32) are the lowest tags, to simplify isNumber
// checks. (See ValueUpperInclNumberTag)
// 3. Non-GC tags are ordered before GC-tags, to simplify isGCThing checks. (See
// ValueLowerInclGCThingTag)
// 4. The tags for Object and Null differ by a single flipped bit, to simplify
// toObjectOrNull. (See ValueObjectOrNullBit)
// 5. In PUNBOX64, the most significant bit of every non-Double tag is always
// set. This is to simplify isDouble checks. Note that the highest bitstring
// that corresponds to a non-NaN double is -Infinity:
// 0xfff0_0000_0000_0000
// But the canonical hardware NaN (produced by, for example, 0/0) is:
// 0x?ff8_0000_0000_0000
// on all platforms with JIT support*. (The most significant bit is the sign
// bit; it is 1 on x86, but 0 on ARM.) The most significant bit of the
// fraction field is set, which corresponds to the most significant of the 5
// tag bits. Because we only use tags that have the high bit set, any Value
// represented by a bitstring less than or equal to 0xfff8_..._0000 is a
// Double. (If we wanted to use all five bits, we could define 0x10 as
// JSVAL_TYPE_NAN, and mask off the most significant bit of the tag for
// IsDouble checks. This is not yet necessary, because we still have room
// left to allocate new tags.)
//
// * But see JS_NONCANONICAL_HARDWARE_NAN below.
//
// [1]:
// https://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations#969f63bbe4eb912778c9da85feb0f5763e7a7862
/* JS::Value can store a full int32_t. */
#define JSVAL_INT_BITS 32
#define JSVAL_INT_MIN ((int32_t)0x80000000)
#define JSVAL_INT_MAX ((int32_t)0x7fffffff)
#if defined(JS_NUNBOX32)
# define JSVAL_TAG_SHIFT 32
#elif defined(JS_PUNBOX64)
# define JSVAL_TAG_SHIFT 47
#endif
// Use enums so that printing a JS::Value in the debugger shows nice
// symbolic type tags.
enum JSValueType : uint8_t {
JSVAL_TYPE_DOUBLE = 0x00,
JSVAL_TYPE_INT32 = 0x01,
JSVAL_TYPE_BOOLEAN = 0x02,
JSVAL_TYPE_UNDEFINED = 0x03,
JSVAL_TYPE_NULL = 0x04,
JSVAL_TYPE_MAGIC = 0x05,
JSVAL_TYPE_STRING = 0x06,
JSVAL_TYPE_SYMBOL = 0x07,
JSVAL_TYPE_PRIVATE_GCTHING = 0x08,
JSVAL_TYPE_BIGINT = 0x09,
#ifdef ENABLE_RECORD_TUPLE
JSVAL_TYPE_EXTENDED_PRIMITIVE = 0x0b,
#endif
JSVAL_TYPE_OBJECT = 0x0c,
// This type never appears in a Value; it's only an out-of-band value.
JSVAL_TYPE_UNKNOWN = 0x20
};
namespace JS {
enum class ValueType : uint8_t {
Double = JSVAL_TYPE_DOUBLE,
Int32 = JSVAL_TYPE_INT32,
Boolean = JSVAL_TYPE_BOOLEAN,
Undefined = JSVAL_TYPE_UNDEFINED,
Null = JSVAL_TYPE_NULL,
Magic = JSVAL_TYPE_MAGIC,
String = JSVAL_TYPE_STRING,
Symbol = JSVAL_TYPE_SYMBOL,
PrivateGCThing = JSVAL_TYPE_PRIVATE_GCTHING,
BigInt = JSVAL_TYPE_BIGINT,
#ifdef ENABLE_RECORD_TUPLE
ExtendedPrimitive = JSVAL_TYPE_EXTENDED_PRIMITIVE,
#endif
Object = JSVAL_TYPE_OBJECT,
};
} // namespace JS
static_assert(sizeof(JSValueType) == 1,
"compiler typed enum support is apparently buggy");
#if defined(JS_NUNBOX32)
enum JSValueTag : uint32_t {
JSVAL_TAG_CLEAR = 0xFFFFFF80,
JSVAL_TAG_INT32 = JSVAL_TAG_CLEAR | JSVAL_TYPE_INT32,
JSVAL_TAG_UNDEFINED = JSVAL_TAG_CLEAR | JSVAL_TYPE_UNDEFINED,
JSVAL_TAG_NULL = JSVAL_TAG_CLEAR | JSVAL_TYPE_NULL,
JSVAL_TAG_BOOLEAN = JSVAL_TAG_CLEAR | JSVAL_TYPE_BOOLEAN,
JSVAL_TAG_MAGIC = JSVAL_TAG_CLEAR | JSVAL_TYPE_MAGIC,
JSVAL_TAG_STRING = JSVAL_TAG_CLEAR | JSVAL_TYPE_STRING,
JSVAL_TAG_SYMBOL = JSVAL_TAG_CLEAR | JSVAL_TYPE_SYMBOL,
JSVAL_TAG_PRIVATE_GCTHING = JSVAL_TAG_CLEAR | JSVAL_TYPE_PRIVATE_GCTHING,
JSVAL_TAG_BIGINT = JSVAL_TAG_CLEAR | JSVAL_TYPE_BIGINT,
# ifdef ENABLE_RECORD_TUPLE
JSVAL_TAG_EXTENDED_PRIMITIVE =
JSVAL_TAG_CLEAR | JSVAL_TYPE_EXTENDED_PRIMITIVE,
# endif
JSVAL_TAG_OBJECT = JSVAL_TAG_CLEAR | JSVAL_TYPE_OBJECT
};
static_assert(sizeof(JSValueTag) == sizeof(uint32_t),
"compiler typed enum support is apparently buggy");
#elif defined(JS_PUNBOX64)
enum JSValueTag : uint32_t {
JSVAL_TAG_MAX_DOUBLE = 0x1FFF0,
JSVAL_TAG_INT32 = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_INT32,
JSVAL_TAG_UNDEFINED = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_UNDEFINED,
JSVAL_TAG_NULL = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_NULL,
JSVAL_TAG_BOOLEAN = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_BOOLEAN,
JSVAL_TAG_MAGIC = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_MAGIC,
JSVAL_TAG_STRING = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_STRING,
JSVAL_TAG_SYMBOL = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_SYMBOL,
JSVAL_TAG_PRIVATE_GCTHING = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_PRIVATE_GCTHING,
JSVAL_TAG_BIGINT = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_BIGINT,
# ifdef ENABLE_RECORD_TUPLE
JSVAL_TAG_EXTENDED_PRIMITIVE =
JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_EXTENDED_PRIMITIVE,
# endif
JSVAL_TAG_OBJECT = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_OBJECT
};
static_assert(sizeof(JSValueTag) == sizeof(uint32_t),
"compiler typed enum support is apparently buggy");
enum JSValueShiftedTag : uint64_t {
// See Bug 584653 for why we include 0xFFFFFFFF.
JSVAL_SHIFTED_TAG_MAX_DOUBLE =
((uint64_t(JSVAL_TAG_MAX_DOUBLE) << JSVAL_TAG_SHIFT) | 0xFFFFFFFF),
JSVAL_SHIFTED_TAG_INT32 = (uint64_t(JSVAL_TAG_INT32) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_UNDEFINED =
(uint64_t(JSVAL_TAG_UNDEFINED) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_NULL = (uint64_t(JSVAL_TAG_NULL) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_BOOLEAN = (uint64_t(JSVAL_TAG_BOOLEAN) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_MAGIC = (uint64_t(JSVAL_TAG_MAGIC) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_STRING = (uint64_t(JSVAL_TAG_STRING) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_SYMBOL = (uint64_t(JSVAL_TAG_SYMBOL) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_PRIVATE_GCTHING =
(uint64_t(JSVAL_TAG_PRIVATE_GCTHING) << JSVAL_TAG_SHIFT),
JSVAL_SHIFTED_TAG_BIGINT = (uint64_t(JSVAL_TAG_BIGINT) << JSVAL_TAG_SHIFT),
# ifdef ENABLE_RECORD_TUPLE
JSVAL_SHIFTED_TAG_EXTENDED_PRIMITIVE =
(uint64_t(JSVAL_TYPE_EXTENDED_PRIMITIVE) << JSVAL_TAG_SHIFT),
# endif
JSVAL_SHIFTED_TAG_OBJECT = (uint64_t(JSVAL_TAG_OBJECT) << JSVAL_TAG_SHIFT)
};
static_assert(sizeof(JSValueShiftedTag) == sizeof(uint64_t),
"compiler typed enum support is apparently buggy");
#endif
namespace JS {
namespace detail {
#if defined(JS_NUNBOX32)
constexpr JSValueTag ValueTypeToTag(JSValueType type) {
return static_cast<JSValueTag>(JSVAL_TAG_CLEAR |
std::underlying_type_t<JSValueType>(type));
}
constexpr bool ValueIsDouble(uint64_t bits) {
return uint32_t(bits >> JSVAL_TAG_SHIFT) <= uint32_t(JSVAL_TAG_CLEAR);
}
constexpr JSValueTag ValueUpperExclPrimitiveTag = JSVAL_TAG_OBJECT;
constexpr JSValueTag ValueUpperInclNumberTag = JSVAL_TAG_INT32;
constexpr JSValueTag ValueLowerInclGCThingTag = JSVAL_TAG_STRING;
#elif defined(JS_PUNBOX64)
constexpr JSValueTag ValueTypeToTag(JSValueType type) {
return static_cast<JSValueTag>(JSVAL_TAG_MAX_DOUBLE |
std::underlying_type_t<JSValueType>(type));
}
constexpr bool ValueIsDouble(uint64_t bits) {
return bits <= JSVAL_SHIFTED_TAG_MAX_DOUBLE;
}
constexpr uint64_t ValueTagMask = 0xFFFF'8000'0000'0000;
// This should only be used in toGCThing. See the 'Spectre mitigations' comment.
constexpr uint64_t ValueGCThingPayloadMask = 0x0000'7FFF'FFFF'FFFF;
// Mask used to combine an unbox operation with getting the chunk base.
constexpr uint64_t ValueGCThingPayloadChunkMask =
ValueGCThingPayloadMask & ~js::gc::ChunkMask;
constexpr uint64_t ValueTypeToShiftedTag(JSValueType type) {
return static_cast<uint64_t>(ValueTypeToTag(type)) << JSVAL_TAG_SHIFT;
}
# define JSVAL_TYPE_TO_SHIFTED_TAG(type) \
(JS::detail::ValueTypeToShiftedTag(type))
constexpr JSValueTag ValueUpperExclPrimitiveTag = JSVAL_TAG_OBJECT;
constexpr JSValueTag ValueUpperInclNumberTag = JSVAL_TAG_INT32;
constexpr JSValueTag ValueLowerInclGCThingTag = JSVAL_TAG_STRING;
constexpr uint64_t ValueUpperExclShiftedPrimitiveTag = JSVAL_SHIFTED_TAG_OBJECT;
constexpr uint64_t ValueUpperExclShiftedNumberTag = JSVAL_SHIFTED_TAG_BOOLEAN;
constexpr uint64_t ValueLowerInclShiftedGCThingTag = JSVAL_SHIFTED_TAG_STRING;
// JSVAL_TYPE_OBJECT and JSVAL_TYPE_NULL differ by one bit. We can use this to
// implement toObjectOrNull more efficiently.
constexpr uint64_t ValueObjectOrNullBit = 0x8ULL << JSVAL_TAG_SHIFT;
static_assert(
(JSVAL_SHIFTED_TAG_NULL ^ JSVAL_SHIFTED_TAG_OBJECT) == ValueObjectOrNullBit,
"ValueObjectOrNullBit must be consistent with object and null tags");
constexpr uint64_t IsValidUserModePointer(uint64_t bits) {
// All 64-bit platforms that we support actually have a 48-bit address space
// for user-mode pointers, with the top 16 bits all set to zero.
return (bits & 0xFFFF'0000'0000'0000) == 0;
}
#endif /* JS_PUNBOX64 */
} // namespace detail
} // namespace JS
#define JSVAL_TYPE_TO_TAG(type) (JS::detail::ValueTypeToTag(type))
enum JSWhyMagic {
/** a hole in a native object's elements */
JS_ELEMENTS_HOLE,
/** there is not a pending iterator value */
JS_NO_ITER_VALUE,
/** exception value thrown when closing a generator */
JS_GENERATOR_CLOSING,
/** used in debug builds to catch tracing errors */
JS_ARG_POISON,
/** an empty subnode in the AST serializer */
JS_SERIALIZE_NO_NODE,
/** magic value passed to natives to indicate construction */
JS_IS_CONSTRUCTING,
/** see class js::HashableValue */
JS_HASH_KEY_EMPTY,
/** error while running Ion code */
JS_ION_ERROR,
/** missing recover instruction result */
JS_ION_BAILOUT,
/** optimized out slot */
JS_OPTIMIZED_OUT,
/** uninitialized lexical bindings that produce ReferenceError on touch. */
JS_UNINITIALIZED_LEXICAL,
/** arguments object can't be created because environment is dead. */
JS_MISSING_ARGUMENTS,
/** for local use */
JS_GENERIC_MAGIC,
/**
* When an error object is created without the error cause argument, we set
* the error's cause slot to this magic value.
*/
JS_ERROR_WITHOUT_CAUSE,
JS_WHY_MAGIC_COUNT
};
namespace js {
class JS_PUBLIC_API GenericPrinter;
class JSONPrinter;
static inline JS::Value PoisonedObjectValue(uintptr_t poison);
#ifdef ENABLE_RECORD_TUPLE
// Re-defined in vm/RecordTupleBoxShared.h. We cannot include that
// file because it circularly includes this one.
bool IsExtendedPrimitive(const JSObject& obj);
namespace gc {
bool MaybeForwardedIsExtendedPrimitive(const JSObject& obj);
} // namespace gc
#endif
} // namespace js
namespace JS {
namespace detail {
// IEEE-754 bit pattern for double-precision positive infinity.
constexpr int InfinitySignBit = 0;
constexpr uint64_t InfinityBits =
mozilla::InfinityBits<double, detail::InfinitySignBit>::value;
// This is a quiet NaN on IEEE-754[2008] compatible platforms, including X86,
// ARM, SPARC, RISC-V and modern MIPS.
//
// Note: The default sign bit for a hardware synthesized NaN differs between X86
// and ARM. Both values are considered compatible values on both
// platforms.
constexpr int CanonicalizedNaNSignBit = 0;
constexpr uint64_t CanonicalizedNaNSignificand = 0x8000000000000;
#if defined(__sparc__)
// Some architectures (not to name names) generate NaNs with bit patterns that
// are incompatible with JS::Value's bit pattern restrictions. Instead we must
// canonicalize all hardware values before storing in JS::Value.
# define JS_NONCANONICAL_HARDWARE_NAN
#endif
#if defined(__mips__) && !defined(__mips_nan_2008)
// These builds may run on hardware that has differing polarity of the signaling
// NaN bit. While the kernel may handle the trap for us, it is a performance
// issue so instead we compute the NaN to use on startup. The runtime value must
// still meet `ValueIsDouble` requirements which are checked on startup.
// In particular, we expect one of the following values on MIPS:
// - 0x7FF7FFFFFFFFFFFF Legacy
// - 0x7FF8000000000000 IEEE-754[2008]
# define JS_RUNTIME_CANONICAL_NAN
#endif
#if defined(JS_RUNTIME_CANONICAL_NAN)
extern uint64_t CanonicalizedNaNBits;
#else
constexpr uint64_t CanonicalizedNaNBits =
mozilla::SpecificNaNBits<double, detail::CanonicalizedNaNSignBit,
detail::CanonicalizedNaNSignificand>::value;
#endif
} // namespace detail
// Return a quiet NaN that is compatible with JS::Value restrictions.
static MOZ_ALWAYS_INLINE double GenericNaN() {
#if !defined(JS_RUNTIME_CANONICAL_NAN)
static_assert(detail::ValueIsDouble(detail::CanonicalizedNaNBits),
"Canonical NaN must be compatible with JS::Value");
#endif
return mozilla::BitwiseCast<double>(detail::CanonicalizedNaNBits);
}
// Return the infinity the engine uses
static MOZ_ALWAYS_INLINE double Infinity() {
return mozilla::BitwiseCast<double>(detail::InfinityBits);
}
// Convert an arbitrary double to one compatible with JS::Value representation
// by replacing any NaN value with a canonical one.
static MOZ_ALWAYS_INLINE double CanonicalizeNaN(double d) {
if (MOZ_UNLIKELY(std::isnan(d))) {
return GenericNaN();
}
return d;
}
/**
* [SMDOC] JS::Value type
*
* JS::Value is the interface for a single JavaScript Engine value. A few
* general notes on JS::Value:
*
* - JS::Value has setX() and isX() members for X in
*
* { Int32, Double, String, Symbol, BigInt, Boolean, Undefined, Null,
* Object, Magic }
*
* JS::Value also contains toX() for each of the non-singleton types.
*
* - Magic is a singleton type whose payload contains either a JSWhyMagic
* "reason" for the magic value or a uint32_t value. By providing JSWhyMagic
* values when creating and checking for magic values, it is possible to
* assert, at runtime, that only magic values with the expected reason flow
* through a particular value. For example, if cx->exception has a magic
* value, the reason must be JS_GENERATOR_CLOSING.
*
* - The JS::Value operations are preferred. The JSVAL_* operations remain for
* compatibility; they may be removed at some point. These operations mostly
* provide similar functionality. But there are a few key differences. One
* is that JS::Value gives null a separate type.
* Also, to help prevent mistakenly boxing a nullable JSObject* as an object,
* Value::setObject takes a JSObject&. (Conversely, Value::toObject returns a
* JSObject&.) A convenience member Value::setObjectOrNull is provided.
*
* - Note that JS::Value is 8 bytes on 32 and 64-bit architectures. Thus, on
* 32-bit user code should avoid copying jsval/JS::Value as much as possible,
* preferring to pass by const Value&.
*
* Spectre mitigations
* ===================
* To mitigate Spectre attacks, we do the following:
*
* - On 64-bit platforms, when unboxing a Value, we XOR the bits with the
* expected type tag (instead of masking the payload bits). This guarantees
* that toString, toObject, toSymbol will return an invalid pointer (because
* some high bits will be set) when called on a Value with a different type
* tag.
*
* - On 32-bit platforms,when unboxing an object/string/symbol Value, we use a
* conditional move (not speculated) to zero the payload register if the type
* doesn't match.
*/
class alignas(8) Value {
private:
uint64_t asBits_;
public:
constexpr Value() : asBits_(bitsFromTagAndPayload(JSVAL_TAG_UNDEFINED, 0)) {}
private:
explicit constexpr Value(uint64_t asBits) : asBits_(asBits) {}
static uint64_t bitsFromDouble(double d) {
#if defined(JS_NONCANONICAL_HARDWARE_NAN)
d = CanonicalizeNaN(d);
#endif
return mozilla::BitwiseCast<uint64_t>(d);
}
static_assert(sizeof(JSValueType) == 1,
"type bits must fit in a single byte");
static_assert(sizeof(JSValueTag) == 4,
"32-bit Value's tag_ must have size 4 to complement the "
"payload union's size 4");
static_assert(sizeof(JSWhyMagic) <= 4,
"32-bit Value's JSWhyMagic payload field must not inflate "
"the payload beyond 4 bytes");
public:
#if defined(JS_NUNBOX32)
using PayloadType = uint32_t;
#elif defined(JS_PUNBOX64)
using PayloadType = uint64_t;
#endif
static constexpr uint64_t bitsFromTagAndPayload(JSValueTag tag,
PayloadType payload) {
return (uint64_t(tag) << JSVAL_TAG_SHIFT) | payload;
}
static constexpr Value fromTagAndPayload(JSValueTag tag,
PayloadType payload) {
return fromRawBits(bitsFromTagAndPayload(tag, payload));
}
static constexpr Value fromRawBits(uint64_t asBits) { return Value(asBits); }
static constexpr Value fromInt32(int32_t i) {
return fromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i));
}
static Value fromDouble(double d) { return fromRawBits(bitsFromDouble(d)); }
/**
* Returns false if creating a NumberValue containing the given type would
* be lossy, true otherwise.
*/
template <typename T>
static bool isNumberRepresentable(const T t) {
return T(double(t)) == t;
}
/*** Mutators ***/
void setNull() {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_NULL, 0);
MOZ_ASSERT(isNull());
}
void setUndefined() {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_UNDEFINED, 0);
MOZ_ASSERT(isUndefined());
}
void setInt32(int32_t i) {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i));
MOZ_ASSERT(toInt32() == i);
}
void setDouble(double d) {
asBits_ = bitsFromDouble(d);
MOZ_ASSERT(isDouble());
}
void setString(JSString* str) {
MOZ_ASSERT(js::gc::IsCellPointerValid(str));
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_STRING, PayloadType(str));
MOZ_ASSERT(toString() == str);
}
void setSymbol(JS::Symbol* sym) {
MOZ_ASSERT(js::gc::IsCellPointerValid(sym));
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_SYMBOL, PayloadType(sym));
MOZ_ASSERT(toSymbol() == sym);
}
void setBigInt(JS::BigInt* bi) {
MOZ_ASSERT(js::gc::IsCellPointerValid(bi));
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_BIGINT, PayloadType(bi));
MOZ_ASSERT(toBigInt() == bi);
}
void setObject(JSObject& obj) {
MOZ_ASSERT(js::gc::IsCellPointerValid(&obj));
#ifdef ENABLE_RECORD_TUPLE
MOZ_ASSERT(!js::gc::MaybeForwardedIsExtendedPrimitive(obj));
#endif
setObjectNoCheck(&obj);
MOZ_ASSERT(&toObject() == &obj);
}
#ifdef ENABLE_RECORD_TUPLE
void setExtendedPrimitive(JSObject& obj) {
MOZ_ASSERT(js::gc::IsCellPointerValid(&obj));
MOZ_ASSERT(js::gc::MaybeForwardedIsExtendedPrimitive(obj));
asBits_ =
bitsFromTagAndPayload(JSVAL_TAG_EXTENDED_PRIMITIVE, PayloadType(&obj));
MOZ_ASSERT(&toExtendedPrimitive() == &obj);
}
#endif
private:
void setObjectNoCheck(JSObject* obj) {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_OBJECT, PayloadType(obj));
}
friend inline Value js::PoisonedObjectValue(uintptr_t poison);
public:
void setBoolean(bool b) {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(b));
MOZ_ASSERT(toBoolean() == b);
}
void setMagic(JSWhyMagic why) {
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_MAGIC, uint32_t(why));
MOZ_ASSERT(whyMagic() == why);
}
void setMagicUint32(uint32_t payload) {
MOZ_ASSERT(payload >= JS_WHY_MAGIC_COUNT,
"This should only be used for non-standard magic values");
asBits_ = bitsFromTagAndPayload(JSVAL_TAG_MAGIC, payload);
MOZ_ASSERT(magicUint32() == payload);
}
void setNumber(float f) {
int32_t i;
if (mozilla::NumberIsInt32(f, &i)) {
setInt32(i);
return;
}
setDouble(double(f));
}
void setNumber(double d) {
int32_t i;
if (mozilla::NumberIsInt32(d, &i)) {
setInt32(i);
return;
}
setDouble(d);
}
template <typename T>
void setNumber(const T t) {
static_assert(std::is_integral<T>::value, "must be integral type");
MOZ_ASSERT(isNumberRepresentable(t), "value creation would be lossy");
if constexpr (std::numeric_limits<T>::is_signed) {
if constexpr (sizeof(t) <= sizeof(int32_t)) {
setInt32(int32_t(t));
} else {
if (JSVAL_INT_MIN <= t && t <= JSVAL_INT_MAX) {
setInt32(int32_t(t));
} else {
setDouble(double(t));
}
}
} else {
if constexpr (sizeof(t) <= sizeof(uint16_t)) {
setInt32(int32_t(t));
} else {
if (t <= JSVAL_INT_MAX) {
setInt32(int32_t(t));
} else {
setDouble(double(t));
}
}
}
}
void setObjectOrNull(JSObject* arg) {
if (arg) {
setObject(*arg);
} else {
setNull();
}
}
void swap(Value& rhs) {
uint64_t tmp = rhs.asBits_;
rhs.asBits_ = asBits_;
asBits_ = tmp;
}
private:
JSValueTag toTag() const { return JSValueTag(asBits_ >> JSVAL_TAG_SHIFT); }
template <typename T, JSValueTag Tag>
T* unboxGCPointer() const {
MOZ_ASSERT((asBits_ & js::gc::CellAlignMask) == 0,
"GC pointer is not aligned. Is this memory corruption?");
#if defined(JS_NUNBOX32)
uintptr_t payload = uint32_t(asBits_);
return reinterpret_cast<T*>(payload);
#elif defined(JS_PUNBOX64)
// Note: the 'Spectre mitigations' comment at the top of this class
// explains why we use XOR here.
constexpr uint64_t shiftedTag = uint64_t(Tag) << JSVAL_TAG_SHIFT;
return reinterpret_cast<T*>(uintptr_t(asBits_ ^ shiftedTag));
#endif
}
public:
/*** JIT-only interfaces to interact with and create raw Values ***/
#if defined(JS_NUNBOX32)
PayloadType toNunboxPayload() const { return uint32_t(asBits_); }
JSValueTag toNunboxTag() const { return toTag(); }
#elif defined(JS_PUNBOX64)
const void* bitsAsPunboxPointer() const {
return reinterpret_cast<void*>(asBits_);
}
#endif
/*** Value type queries ***/
/*
* N.B. GCC, in some but not all cases, chooses to emit signed comparison
* of JSValueTag even though its underlying type has been forced to be
* uint32_t. Thus, all comparisons should explicitly cast operands to
* uint32_t.
*/
bool isUndefined() const {
#if defined(JS_NUNBOX32)
return toTag() == JSVAL_TAG_UNDEFINED;
#elif defined(JS_PUNBOX64)
return asBits_ == JSVAL_SHIFTED_TAG_UNDEFINED;
#endif
}
bool isNull() const {
#if defined(JS_NUNBOX32)
return toTag() == JSVAL_TAG_NULL;
#elif defined(JS_PUNBOX64)
return asBits_ == JSVAL_SHIFTED_TAG_NULL;
#endif
}
bool isNullOrUndefined() const { return isNull() || isUndefined(); }
bool isInt32() const { return toTag() == JSVAL_TAG_INT32; }
bool isInt32(int32_t i32) const {
return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i32));
}
bool isDouble() const { return detail::ValueIsDouble(asBits_); }
bool isNumber() const {
#if defined(JS_NUNBOX32)
MOZ_ASSERT(toTag() != JSVAL_TAG_CLEAR);
return uint32_t(toTag()) <= uint32_t(detail::ValueUpperInclNumberTag);
#elif defined(JS_PUNBOX64)
return asBits_ < detail::ValueUpperExclShiftedNumberTag;
#endif
}
bool isString() const { return toTag() == JSVAL_TAG_STRING; }
bool isSymbol() const { return toTag() == JSVAL_TAG_SYMBOL; }
bool isBigInt() const { return toTag() == JSVAL_TAG_BIGINT; }
bool isObject() const {
#if defined(JS_NUNBOX32)
return toTag() == JSVAL_TAG_OBJECT;
#elif defined(JS_PUNBOX64)
MOZ_ASSERT((asBits_ >> JSVAL_TAG_SHIFT) <= JSVAL_TAG_OBJECT);
return asBits_ >= JSVAL_SHIFTED_TAG_OBJECT;
#endif
}
#ifdef ENABLE_RECORD_TUPLE
bool isExtendedPrimitive() const {
return toTag() == JSVAL_TAG_EXTENDED_PRIMITIVE;
}
#endif
bool hasObjectPayload() const {
return isObject() || IF_RECORD_TUPLE(isExtendedPrimitive(), false);
}
bool isPrimitive() const {
#if defined(JS_NUNBOX32)
return uint32_t(toTag()) < uint32_t(detail::ValueUpperExclPrimitiveTag);
#elif defined(JS_PUNBOX64)
return asBits_ < detail::ValueUpperExclShiftedPrimitiveTag;
#endif
}
bool isObjectOrNull() const { return isObject() || isNull(); }
bool isNumeric() const { return isNumber() || isBigInt(); }
bool isGCThing() const {
#if defined(JS_NUNBOX32)
/* gcc sometimes generates signed < without explicit casts. */
return uint32_t(toTag()) >= uint32_t(detail::ValueLowerInclGCThingTag);
#elif defined(JS_PUNBOX64)
return asBits_ >= detail::ValueLowerInclShiftedGCThingTag;
#endif
}
bool isBoolean() const { return toTag() == JSVAL_TAG_BOOLEAN; }
bool isTrue() const {
return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(true));
}
bool isFalse() const {
return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(false));
}
bool isMagic() const { return toTag() == JSVAL_TAG_MAGIC; }
bool isMagic(JSWhyMagic why) const {
if (!isMagic()) {
return false;
}
MOZ_RELEASE_ASSERT(whyMagic() == why);
return true;
}
// Like isMagic, but without the release assertion.
bool isMagicNoReleaseCheck(JSWhyMagic why) const {
if (!isMagic()) {
return false;
}
MOZ_ASSERT(whyMagic() == why);
return true;
}
JS::TraceKind traceKind() const {
MOZ_ASSERT(isGCThing());
static_assert((JSVAL_TAG_STRING & 0x03) == size_t(JS::TraceKind::String),
"Value type tags must correspond with JS::TraceKinds.");
static_assert((JSVAL_TAG_SYMBOL & 0x03) == size_t(JS::TraceKind::Symbol),
"Value type tags must correspond with JS::TraceKinds.");
static_assert((JSVAL_TAG_OBJECT & 0x03) == size_t(JS::TraceKind::Object),
"Value type tags must correspond with JS::TraceKinds.");
static_assert((JSVAL_TAG_BIGINT & 0x03) == size_t(JS::TraceKind::BigInt),
"Value type tags must correspond with JS::TraceKinds.");
if (MOZ_UNLIKELY(isPrivateGCThing())) {
return JS::GCThingTraceKind(toGCThing());
}
#ifdef ENABLE_RECORD_TUPLE
if (isExtendedPrimitive()) {
return JS::TraceKind::Object;
}
#endif
return JS::TraceKind(toTag() & 0x03);
}
JSWhyMagic whyMagic() const {
MOZ_ASSERT(magicUint32() < JS_WHY_MAGIC_COUNT);
return static_cast<JSWhyMagic>(magicUint32());
}
uint32_t magicUint32() const {
MOZ_ASSERT(isMagic());
return uint32_t(asBits_);
}
/*** Comparison ***/
bool operator==(const Value& rhs) const { return asBits_ == rhs.asBits_; }
bool operator!=(const Value& rhs) const { return asBits_ != rhs.asBits_; }
friend inline bool SameType(const Value& lhs, const Value& rhs);
/*** Extract the value's typed payload ***/
int32_t toInt32() const {
MOZ_ASSERT(isInt32());
return int32_t(asBits_);
}
double toDouble() const {
MOZ_ASSERT(isDouble());
return mozilla::BitwiseCast<double>(asBits_);
}
double toNumber() const {
MOZ_ASSERT(isNumber());
return isDouble() ? toDouble() : double(toInt32());
}
JSString* toString() const {
MOZ_ASSERT(isString());
return unboxGCPointer<JSString, JSVAL_TAG_STRING>();
}
JS::Symbol* toSymbol() const {
MOZ_ASSERT(isSymbol());
return unboxGCPointer<JS::Symbol, JSVAL_TAG_SYMBOL>();
}
JS::BigInt* toBigInt() const {
MOZ_ASSERT(isBigInt());
return unboxGCPointer<JS::BigInt, JSVAL_TAG_BIGINT>();
}
JSObject& toObject() const {
MOZ_ASSERT(isObject());
#if defined(JS_PUNBOX64)
MOZ_ASSERT((asBits_ & detail::ValueGCThingPayloadMask) != 0);
#endif
return *unboxGCPointer<JSObject, JSVAL_TAG_OBJECT>();
}
JSObject* toObjectOrNull() const {
MOZ_ASSERT(isObjectOrNull());
#if defined(JS_NUNBOX32)
return reinterpret_cast<JSObject*>(uintptr_t(asBits_));
#elif defined(JS_PUNBOX64)
// Note: the 'Spectre mitigations' comment at the top of this class
// explains why we use XOR here and in other to* methods.
uint64_t ptrBits =
(asBits_ ^ JSVAL_SHIFTED_TAG_OBJECT) & ~detail::ValueObjectOrNullBit;
MOZ_ASSERT((ptrBits & 0x7) == 0);
return reinterpret_cast<JSObject*>(ptrBits);
#endif
}
#ifdef ENABLE_RECORD_TUPLE
JSObject& toExtendedPrimitive() const {
MOZ_ASSERT(isExtendedPrimitive());
# if defined(JS_PUNBOX64)
MOZ_ASSERT((asBits_ & detail::ValueGCThingPayloadMask) != 0);
# endif
return *unboxGCPointer<JSObject, JSVAL_TAG_EXTENDED_PRIMITIVE>();
}
#endif
JSObject& getObjectPayload() const {
#ifdef ENABLE_RECORD_TUPLE
return isExtendedPrimitive() ? toExtendedPrimitive() : toObject();
#else
return toObject();
#endif
}
js::gc::Cell* toGCThing() const {
MOZ_ASSERT(isGCThing());
#if defined(JS_NUNBOX32)
return reinterpret_cast<js::gc::Cell*>(uintptr_t(asBits_));
#elif defined(JS_PUNBOX64)
uint64_t ptrBits = asBits_ & detail::ValueGCThingPayloadMask;
MOZ_ASSERT((ptrBits & 0x7) == 0);
return reinterpret_cast<js::gc::Cell*>(ptrBits);
#endif
}
GCCellPtr toGCCellPtr() const { return GCCellPtr(toGCThing(), traceKind()); }
bool toBoolean() const {
MOZ_ASSERT(isBoolean());
#if defined(JS_NUNBOX32)
return bool(toNunboxPayload());
#elif defined(JS_PUNBOX64)
return bool(asBits_ & 0x1);
#endif
}
constexpr uint64_t asRawBits() const { return asBits_; }
JSValueType extractNonDoubleType() const {
uint32_t type = toTag() & 0xF;
MOZ_ASSERT(type > JSVAL_TYPE_DOUBLE);
return JSValueType(type);
}
JS::ValueType type() const {
if (isDouble()) {
return JS::ValueType::Double;
}
JSValueType type = extractNonDoubleType();
MOZ_ASSERT(type <= JSVAL_TYPE_OBJECT);
return JS::ValueType(type);
}
/*
* Private API
*
* Private setters/getters allow the caller to read/write arbitrary
* word-size pointers or uint32s. After storing to a value with
* setPrivateX, it is the caller's responsibility to only read using
* toPrivateX. Private values are given a type which ensures they
* aren't marked by the GC.
*/
void setPrivate(void* ptr) {
#if defined(JS_PUNBOX64)
MOZ_ASSERT(detail::IsValidUserModePointer(uintptr_t(ptr)));
#endif
asBits_ = uintptr_t(ptr);
MOZ_ASSERT(isDouble());
}
void* toPrivate() const {
MOZ_ASSERT(isDouble());
#if defined(JS_PUNBOX64)
MOZ_ASSERT(detail::IsValidUserModePointer(asBits_));
#endif
return reinterpret_cast<void*>(uintptr_t(asBits_));
}
void* toPrivateUnchecked() const {
return reinterpret_cast<void*>(uintptr_t(asBits_));
}
void setPrivateUint32(uint32_t ui) {
MOZ_ASSERT(uint32_t(int32_t(ui)) == ui);
setInt32(int32_t(ui));
}
uint32_t toPrivateUint32() const { return uint32_t(toInt32()); }
/*
* Private GC Thing API
*
* Non-JSObject, JSString, and JS::Symbol cells may be put into the 64-bit
* payload as private GC things. Such Values are considered isGCThing(), and
* as such, automatically marked. Their traceKind() is gotten via their
* cells.
*/
void setPrivateGCThing(js::gc::Cell* cell) {
MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::String,
"Private GC thing Values must not be strings. Make a "
"StringValue instead.");
MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::Symbol,
"Private GC thing Values must not be symbols. Make a "
"SymbolValue instead.");
MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::BigInt,
"Private GC thing Values must not be BigInts. Make a "
"BigIntValue instead.");
MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::Object,
"Private GC thing Values must not be objects. Make an "
"ObjectValue instead.");
MOZ_ASSERT(js::gc::IsCellPointerValid(cell));
#if defined(JS_PUNBOX64)
// VisualStudio cannot contain parenthesized C++ style cast and shift
// inside decltype in template parameter:
// AssertionConditionType<decltype((uintptr_t(x) >> 1))>
// It throws syntax error.
MOZ_ASSERT((((uintptr_t)cell) >> JSVAL_TAG_SHIFT) == 0);
#endif
asBits_ =
bitsFromTagAndPayload(JSVAL_TAG_PRIVATE_GCTHING, PayloadType(cell));
}
bool isPrivateGCThing() const { return toTag() == JSVAL_TAG_PRIVATE_GCTHING; }
#if defined(DEBUG) || defined(JS_JITSPEW)
void dump() const;
void dump(js::GenericPrinter& out) const;
void dump(js::JSONPrinter& json) const;
void dumpFields(js::JSONPrinter& json) const;
void dumpStringContent(js::GenericPrinter& out) const;
#endif
} JS_HAZ_GC_POINTER MOZ_NON_PARAM;
static_assert(sizeof(Value) == 8,
"Value size must leave three tag bits, be a binary power, and "
"is ubiquitously depended upon everywhere");
static MOZ_ALWAYS_INLINE void ExposeValueToActiveJS(const Value& v) {
#ifdef DEBUG
Value tmp = v;
MOZ_ASSERT(!js::gc::EdgeNeedsSweepUnbarrieredSlow(&tmp));
#endif
if (v.isGCThing()) {
js::gc::ExposeGCThingToActiveJS(v.toGCCellPtr());
}
}
/************************************************************************/
static inline MOZ_MAY_CALL_AFTER_MUST_RETURN Value NullValue() {
Value v;
v.setNull();
return v;
}
static constexpr Value UndefinedValue() { return Value(); }
static constexpr Value Int32Value(int32_t i32) { return Value::fromInt32(i32); }
static inline Value DoubleValue(double dbl) {
Value v;
v.setDouble(dbl);
return v;
}
static inline Value CanonicalizedDoubleValue(double d) {
return Value::fromDouble(CanonicalizeNaN(d));
}
static inline Value NaNValue() {
return Value::fromRawBits(detail::CanonicalizedNaNBits);
}
static inline Value InfinityValue() {
return Value::fromRawBits(detail::InfinityBits);
}
static inline Value Float32Value(float f) {
Value v;
v.setDouble(f);
return v;
}
static inline Value StringValue(JSString* str) {
Value v;
v.setString(str);
return v;
}
static inline Value SymbolValue(JS::Symbol* sym) {
Value v;
v.setSymbol(sym);
return v;
}
static inline Value BigIntValue(JS::BigInt* bi) {
Value v;
v.setBigInt(bi);
return v;
}
static inline Value BooleanValue(bool boo) {
Value v;
v.setBoolean(boo);
return v;
}
static inline Value TrueValue() {
Value v;
v.setBoolean(true);
return v;
}
static inline Value FalseValue() {
Value v;
v.setBoolean(false);
return v;
}
static inline Value ObjectValue(JSObject& obj) {
Value v;
v.setObject(obj);
return v;
}
#ifdef ENABLE_RECORD_TUPLE
static inline Value ExtendedPrimitiveValue(JSObject& obj) {
Value v;
v.setExtendedPrimitive(obj);
return v;
}
#endif
static inline Value MagicValue(JSWhyMagic why) {
Value v;
v.setMagic(why);
return v;
}
static inline Value MagicValueUint32(uint32_t payload) {
Value v;
v.setMagicUint32(payload);
return v;
}
static constexpr Value NumberValue(uint32_t i) {
return i <= JSVAL_INT_MAX ? Int32Value(int32_t(i))
: Value::fromDouble(double(i));
}
template <typename T>
static inline Value NumberValue(const T t) {
Value v;
v.setNumber(t);
return v;
}
static inline Value ObjectOrNullValue(JSObject* obj) {
Value v;
v.setObjectOrNull(obj);
return v;
}
static inline Value PrivateValue(void* ptr) {
Value v;
v.setPrivate(ptr);
return v;
}
static inline Value PrivateValue(uintptr_t ptr) {
return PrivateValue(reinterpret_cast<void*>(ptr));
}
static inline Value PrivateUint32Value(uint32_t ui) {
Value v;
v.setPrivateUint32(ui);
return v;
}
static inline Value PrivateGCThingValue(js::gc::Cell* cell) {
Value v;
v.setPrivateGCThing(cell);
return v;
}
inline bool SameType(const Value& lhs, const Value& rhs) {
#if defined(JS_NUNBOX32)
JSValueTag ltag = lhs.toTag(), rtag = rhs.toTag();
return ltag == rtag || (ltag < JSVAL_TAG_CLEAR && rtag < JSVAL_TAG_CLEAR);
#elif defined(JS_PUNBOX64)
return (lhs.isDouble() && rhs.isDouble()) ||
(((lhs.asBits_ ^ rhs.asBits_) & 0xFFFF800000000000ULL) == 0);
#endif
}
} // namespace JS
/************************************************************************/
namespace JS {
JS_PUBLIC_API void HeapValuePostWriteBarrier(Value* valuep, const Value& prev,
const Value& next);
JS_PUBLIC_API void HeapValueWriteBarriers(Value* valuep, const Value& prev,
const Value& next);
template <>
struct GCPolicy<JS::Value> {
static void trace(JSTracer* trc, Value* v, const char* name) {
// This should only be called as part of root marking since that's the only
// time we should trace unbarriered GC thing pointers. This will assert if
// called at other times.
TraceRoot(trc, v, name);
}
static bool isTenured(const Value& thing) {
return !thing.isGCThing() || !IsInsideNursery(thing.toGCThing());
}
static bool isValid(const Value& value) {
return !value.isGCThing() || js::gc::IsCellPointerValid(value.toGCThing());
}
};
} // namespace JS
namespace js {
template <>
struct BarrierMethods<JS::Value> {
static gc::Cell* asGCThingOrNull(const JS::Value& v) {
return v.isGCThing() ? v.toGCThing() : nullptr;
}
static void postWriteBarrier(JS::Value* v, const JS::Value& prev,
const JS::Value& next) {
JS::HeapValuePostWriteBarrier(v, prev, next);
}
static void exposeToJS(const JS::Value& v) { JS::ExposeValueToActiveJS(v); }
static void readBarrier(const JS::Value& v) {
if (v.isGCThing()) {
js::gc::IncrementalReadBarrier(v.toGCCellPtr());
}
}
};
template <class Wrapper>
class MutableValueOperations;
/**
* A class designed for CRTP use in implementing the non-mutating parts of the
* Value interface in Value-like classes. Wrapper must be a class inheriting
* ValueOperations<Wrapper> with a visible get() method returning a const
* reference to the Value abstracted by Wrapper.
*/
template <class Wrapper>
class WrappedPtrOperations<JS::Value, Wrapper> {
const JS::Value& value() const {
return static_cast<const Wrapper*>(this)->get();
}
public:
bool isUndefined() const { return value().isUndefined(); }
bool isNull() const { return value().isNull(); }
bool isBoolean() const { return value().isBoolean(); }
bool isTrue() const { return value().isTrue(); }
bool isFalse() const { return value().isFalse(); }
bool isNumber() const { return value().isNumber(); }
bool isInt32() const { return value().isInt32(); }
bool isInt32(int32_t i32) const { return value().isInt32(i32); }
bool isDouble() const { return value().isDouble(); }
bool isString() const { return value().isString(); }
bool isSymbol() const { return value().isSymbol(); }
bool isBigInt() const { return value().isBigInt(); }
bool isObject() const { return value().isObject(); }
#ifdef ENABLE_RECORD_TUPLE
bool isExtendedPrimitive() const { return value().isExtendedPrimitive(); }
#endif
bool hasObjectPayload() const { return value().hasObjectPayload(); }
bool isMagic() const { return value().isMagic(); }
bool isMagic(JSWhyMagic why) const { return value().isMagic(why); }
bool isGCThing() const { return value().isGCThing(); }
bool isPrivateGCThing() const { return value().isPrivateGCThing(); }
bool isPrimitive() const { return value().isPrimitive(); }
bool isNullOrUndefined() const { return value().isNullOrUndefined(); }
bool isObjectOrNull() const { return value().isObjectOrNull(); }
bool isNumeric() const { return value().isNumeric(); }
bool toBoolean() const { return value().toBoolean(); }
double toNumber() const { return value().toNumber(); }
int32_t toInt32() const { return value().toInt32(); }
double toDouble() const { return value().toDouble(); }
JSString* toString() const { return value().toString(); }
JS::Symbol* toSymbol() const { return value().toSymbol(); }
JS::BigInt* toBigInt() const { return value().toBigInt(); }
JSObject& toObject() const { return value().toObject(); }
JSObject* toObjectOrNull() const { return value().toObjectOrNull(); }
#ifdef ENABLE_RECORD_TUPLE
JSObject& toExtendedPrimitive() const {
return value().toExtendedPrimitive();
}
#endif
JSObject& getObjectPayload() const { return value().getObjectPayload(); }
JS::GCCellPtr toGCCellPtr() const { return value().toGCCellPtr(); }
gc::Cell* toGCThing() const { return value().toGCThing(); }
JS::TraceKind traceKind() const { return value().traceKind(); }
void* toPrivate() const { return value().toPrivate(); }
uint32_t toPrivateUint32() const { return value().toPrivateUint32(); }
uint64_t asRawBits() const { return value().asRawBits(); }
JSValueType extractNonDoubleType() const {
return value().extractNonDoubleType();
}
JS::ValueType type() const { return value().type(); }
JSWhyMagic whyMagic() const { return value().whyMagic(); }
uint32_t magicUint32() const { return value().magicUint32(); }
};
/**
* A class designed for CRTP use in implementing all the mutating parts of the
* Value interface in Value-like classes. Wrapper must be a class inheriting
* MutableWrappedPtrOperations<Wrapper> with visible get() methods returning
* const and non-const references to the Value abstracted by Wrapper.
*/
template <class Wrapper>
class MutableWrappedPtrOperations<JS::Value, Wrapper>
: public WrappedPtrOperations<JS::Value, Wrapper> {
protected:
void set(const JS::Value& v) {
// Call Wrapper::set to trigger any barriers.
static_cast<Wrapper*>(this)->set(v);
}
public:
void setNull() { set(JS::NullValue()); }
void setUndefined() { set(JS::UndefinedValue()); }
void setInt32(int32_t i) { set(JS::Int32Value(i)); }
void setDouble(double d) { set(JS::DoubleValue(d)); }
void setNaN() { set(JS::NaNValue()); }
void setInfinity() { set(JS::InfinityValue()); }
void setBoolean(bool b) { set(JS::BooleanValue(b)); }
void setMagic(JSWhyMagic why) { set(JS::MagicValue(why)); }
template <typename T>
void setNumber(T t) {
set(JS::NumberValue(t));
}
void setString(JSString* str) { set(JS::StringValue(str)); }
void setSymbol(JS::Symbol* sym) { set(JS::SymbolValue(sym)); }
void setBigInt(JS::BigInt* bi) { set(JS::BigIntValue(bi)); }
void setObject(JSObject& obj) { set(JS::ObjectValue(obj)); }
void setObjectOrNull(JSObject* arg) { set(JS::ObjectOrNullValue(arg)); }
#ifdef ENABLE_RECORD_TUPLE
void setExtendedPrimitive(JSObject& obj) {
return set(JS::ExtendedPrimitiveValue(obj));
}
#endif
void setPrivate(void* ptr) { set(JS::PrivateValue(ptr)); }
void setPrivateUint32(uint32_t ui) { set(JS::PrivateUint32Value(ui)); }
void setPrivateGCThing(js::gc::Cell* cell) {
set(JS::PrivateGCThingValue(cell));
}
};
/*
* Augment the generic Heap<T> interface when T = Value with
* type-querying, value-extracting, and mutating operations.
*/
template <typename Wrapper>
class HeapOperations<JS::Value, Wrapper>
: public MutableWrappedPtrOperations<JS::Value, Wrapper> {};
MOZ_HAVE_NORETURN MOZ_COLD MOZ_NEVER_INLINE void ReportBadValueTypeAndCrash(
const JS::Value& val);
// If the Value is a GC pointer type, call |f| with the pointer cast to that
// type and return the result wrapped in a Maybe, otherwise return None().
template <typename F>
auto MapGCThingTyped(const JS::Value& val, F&& f) {
switch (val.type()) {
case JS::ValueType::String: {
JSString* str = val.toString();
MOZ_ASSERT(gc::IsCellPointerValid(str));
return mozilla::Some(f(str));
}
#ifdef ENABLE_RECORD_TUPLE
case JS::ValueType::ExtendedPrimitive:
#endif
case JS::ValueType::Object: {
JSObject* obj = &val.getObjectPayload();
MOZ_ASSERT(gc::IsCellPointerValid(obj));
return mozilla::Some(f(obj));
}
case JS::ValueType::Symbol: {
JS::Symbol* sym = val.toSymbol();
MOZ_ASSERT(gc::IsCellPointerValid(sym));
return mozilla::Some(f(sym));
}
case JS::ValueType::BigInt: {
JS::BigInt* bi = val.toBigInt();
MOZ_ASSERT(gc::IsCellPointerValid(bi));
return mozilla::Some(f(bi));
}
case JS::ValueType::PrivateGCThing: {
MOZ_ASSERT(gc::IsCellPointerValid(val.toGCThing()));
return mozilla::Some(MapGCThingTyped(val.toGCCellPtr(), std::move(f)));
}
case JS::ValueType::Double:
case JS::ValueType::Int32:
case JS::ValueType::Boolean:
case JS::ValueType::Undefined:
case JS::ValueType::Null:
case JS::ValueType::Magic: {
MOZ_ASSERT(!val.isGCThing());
using ReturnType = decltype(f(static_cast<JSObject*>(nullptr)));
return mozilla::Maybe<ReturnType>();
}
}
ReportBadValueTypeAndCrash(val);
}
// If the Value is a GC pointer type, call |f| with the pointer cast to that
// type. Return whether this happened.
template <typename F>
bool ApplyGCThingTyped(const JS::Value& val, F&& f) {
return MapGCThingTyped(val,
[&f](auto t) {
f(t);
return true;
})
.isSome();
}
static inline JS::Value PoisonedObjectValue(uintptr_t poison) {
JS::Value v;
v.setObjectNoCheck(reinterpret_cast<JSObject*>(poison));
return v;
}
} // namespace js
#ifdef DEBUG
namespace JS {
MOZ_ALWAYS_INLINE void AssertValueIsNotGray(const Value& value) {
if (value.isGCThing()) {
AssertCellIsNotGray(value.toGCThing());
}
}
MOZ_ALWAYS_INLINE void AssertValueIsNotGray(const Heap<Value>& value) {
AssertValueIsNotGray(value.unbarrieredGet());
}
} // namespace JS
#endif
/************************************************************************/
namespace JS {
extern JS_PUBLIC_DATA const HandleValue NullHandleValue;
extern JS_PUBLIC_DATA const HandleValue UndefinedHandleValue;
extern JS_PUBLIC_DATA const HandleValue TrueHandleValue;
extern JS_PUBLIC_DATA const HandleValue FalseHandleValue;
extern JS_PUBLIC_DATA const Handle<mozilla::Maybe<Value>> NothingHandleValue;
} // namespace JS
#endif /* js_Value_h */
|