1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef builtin_temporal_Int128_h
#define builtin_temporal_Int128_h
#include "mozilla/Assertions.h"
#include "mozilla/EndianUtils.h"
#include "mozilla/MathAlgorithms.h"
#include <climits>
#include <limits>
#include <stdint.h>
#include <utility>
namespace js::temporal {
class Int128;
class Uint128;
/**
* Unsigned 128-bit integer, implemented as a pair of unsigned 64-bit integers.
*
* Supports all basic arithmetic operators.
*/
class alignas(16) Uint128 final {
#if MOZ_LITTLE_ENDIAN()
uint64_t low = 0;
uint64_t high = 0;
#else
uint64_t high = 0;
uint64_t low = 0;
#endif
friend class Int128;
constexpr Uint128(uint64_t low, uint64_t high) : low(low), high(high) {}
/**
* Return the high double-word of the multiplication of `u * v`.
*
* Based on "Multiply high unsigned" from Hacker's Delight, 2nd edition,
* figure 8-2.
*/
static constexpr uint64_t mulhu(uint64_t u, uint64_t v) {
uint64_t u0 = u & 0xffff'ffff;
uint64_t u1 = u >> 32;
uint64_t v0 = v & 0xffff'ffff;
uint64_t v1 = v >> 32;
uint64_t w0 = u0 * v0;
uint64_t t = u1 * v0 + (w0 >> 32);
uint64_t w1 = t & 0xffff'ffff;
uint64_t w2 = t >> 32;
w1 = u0 * v1 + w1;
return u1 * v1 + w2 + (w1 >> 32);
}
/**
* Based on "Unsigned doubleword division from long division" from
* Hacker's Delight, 2nd edition, figure 9-5.
*/
static constexpr std::pair<Uint128, Uint128> udivdi(const Uint128& u,
const Uint128& v) {
MOZ_ASSERT(v != Uint128{});
// If v < 2**64
if (v.high == 0) {
// If u < 2**64
if (u.high == 0) {
// Prefer built-in division if possible.
return {Uint128{u.low / v.low, 0}, Uint128{u.low % v.low, 0}};
}
// If u/v cannot overflow, just do one division.
if (Uint128{u.high, 0} < v) {
auto [q, r] = divlu(u.high, u.low, v.low);
return {Uint128{q, 0}, Uint128{r, 0}};
}
// If u/v would overflow: Break u up into two halves.
// First quotient digit and first remainder, < v.
auto [q1, r1] = divlu(0, u.high, v.low);
// Second quotient digit.
auto [q0, r0] = divlu(r1, u.low, v.low);
// Return quotient and remainder.
return {Uint128{q0, q1}, Uint128{r0, 0}};
}
// Here v >= 2**64.
// 0 <= n <= 63
auto n = mozilla::CountLeadingZeroes64(v.high);
// Normalize the divisor so its MSB is 1.
auto v1 = (v << n).high;
// To ensure no overflow.
auto u1 = u >> 1;
// Get quotient from divide unsigned instruction.
auto [q1, r1] = divlu(u1.high, u1.low, v1);
// Undo normalization and division of u by 2.
auto q0 = (Uint128{q1, 0} << n) >> 63;
// Make q0 correct or too small by 1.
if (q0 != Uint128{0}) {
q0 -= Uint128{1};
}
// Now q0 is correct.
auto r0 = u - q0 * v;
if (r0 >= v) {
q0 += Uint128{1};
r0 -= v;
}
// Return quotient and remainder.
return {q0, r0};
}
/**
* Based on "Divide long unsigned, using fullword division instructions" from
* Hacker's Delight, 2nd edition, figure 9-3.
*/
static constexpr std::pair<uint64_t, uint64_t> divlu(uint64_t u1, uint64_t u0,
uint64_t v) {
// Number base (32 bits).
constexpr uint64_t base = 4294967296;
// If overflow, set the remainder to an impossible value and return the
// largest possible quotient.
if (u1 >= v) {
return {UINT64_MAX, UINT64_MAX};
}
// Shift amount for normalization. (0 <= s <= 63)
int64_t s = mozilla::CountLeadingZeroes64(v);
// Normalize the divisor.
v = v << s;
// Normalized divisor digits.
//
// Break divisor up into two 32-bit digits.
uint64_t vn1 = v >> 32;
uint64_t vn0 = uint32_t(v);
// Dividend digit pairs.
//
// Shift dividend left.
uint64_t un32 = (u1 << s) | ((u0 >> ((64 - s) & 63)) & (-s >> 63));
uint64_t un10 = u0 << s;
// Normalized dividend least significant digits.
//
// Break right half of dividend into two digits.
uint64_t un1 = un10 >> 32;
uint64_t un0 = uint32_t(un10);
// Compute the first quotient digit and its remainder.
uint64_t q1 = un32 / vn1;
uint64_t rhat = un32 - q1 * vn1;
while (q1 >= base || q1 * vn0 > base * rhat + un1) {
q1 -= 1;
rhat += vn1;
if (rhat >= base) {
break;
}
}
// Multiply and subtract.
uint64_t un21 = un32 * base + un1 - q1 * v;
// Compute the second quotient digit and its remainder.
uint64_t q0 = un21 / vn1;
rhat = un21 - q0 * vn1;
while (q0 >= base || q0 * vn0 > base * rhat + un0) {
q0 -= 1;
rhat += vn1;
if (rhat >= base) {
break;
}
}
// Return the quotient and remainder.
uint64_t q = q1 * base + q0;
uint64_t r = (un21 * base + un0 - q0 * v) >> s;
return {q, r};
}
static double toDouble(const Uint128& x, bool negative);
public:
constexpr Uint128() = default;
constexpr Uint128(const Uint128&) = default;
explicit constexpr Uint128(uint64_t value)
: Uint128(uint64_t(value), uint64_t(0)) {}
constexpr bool operator==(const Uint128& other) const {
return low == other.low && high == other.high;
}
constexpr bool operator<(const Uint128& other) const {
if (high == other.high) {
return low < other.low;
}
return high < other.high;
}
// Other operators are implemented in terms of operator== and operator<.
constexpr bool operator!=(const Uint128& other) const {
return !(*this == other);
}
constexpr bool operator>(const Uint128& other) const { return other < *this; }
constexpr bool operator<=(const Uint128& other) const {
return !(other < *this);
}
constexpr bool operator>=(const Uint128& other) const {
return !(*this < other);
}
explicit constexpr operator bool() const { return !(*this == Uint128{}); }
explicit constexpr operator int8_t() const { return int8_t(low); }
explicit constexpr operator int16_t() const { return int16_t(low); }
explicit constexpr operator int32_t() const { return int32_t(low); }
explicit constexpr operator int64_t() const { return int64_t(low); }
explicit constexpr operator uint8_t() const { return uint8_t(low); }
explicit constexpr operator uint16_t() const { return uint16_t(low); }
explicit constexpr operator uint32_t() const { return uint32_t(low); }
explicit constexpr operator uint64_t() const { return uint64_t(low); }
explicit constexpr operator Int128() const;
explicit operator double() const { return toDouble(*this, false); }
constexpr Uint128 operator+(const Uint128& other) const {
// "§2-16 Double-Length Add/Subtract" from Hacker's Delight, 2nd edition.
Uint128 result;
result.low = low + other.low;
result.high = high + other.high + static_cast<uint64_t>(result.low < low);
return result;
}
constexpr Uint128 operator-(const Uint128& other) const {
// "§2-16 Double-Length Add/Subtract" from Hacker's Delight, 2nd edition.
Uint128 result;
result.low = low - other.low;
result.high = high - other.high - static_cast<uint64_t>(low < other.low);
return result;
}
constexpr Uint128 operator*(const Uint128& other) const {
uint64_t w01 = low * other.high;
uint64_t w10 = high * other.low;
uint64_t w00 = mulhu(low, other.low);
uint64_t w1 = w00 + w10 + w01;
uint64_t w0 = low * other.low;
return Uint128{w0, w1};
}
/**
* Return the quotient and remainder of the division.
*/
constexpr std::pair<Uint128, Uint128> divrem(const Uint128& divisor) const {
return udivdi(*this, divisor);
}
constexpr Uint128 operator/(const Uint128& other) const {
auto [quot, rem] = divrem(other);
return quot;
}
constexpr Uint128 operator%(const Uint128& other) const {
auto [quot, rem] = divrem(other);
return rem;
}
constexpr Uint128 operator<<(int shift) const {
MOZ_ASSERT(0 <= shift && shift <= 127, "undefined shift amount");
// Ensure the shift amount is in range.
shift &= 127;
// "§2-17 Double-Length Shifts" from Hacker's Delight, 2nd edition.
if (shift >= 64) {
uint64_t y0 = 0;
uint64_t y1 = low << (shift - 64);
return Uint128{y0, y1};
}
uint64_t y0 = low << shift;
uint64_t y1 = (high << shift) | (low >> (64 - shift));
return Uint128{y0, y1};
}
constexpr Uint128 operator>>(int shift) const {
MOZ_ASSERT(0 <= shift && shift <= 127, "undefined shift amount");
// Ensure the shift amount is in range.
shift &= 127;
// "§2-17 Double-Length Shifts" from Hacker's Delight, 2nd edition.
if (shift >= 64) {
uint64_t y0 = high >> (shift - 64);
uint64_t y1 = 0;
return Uint128{y0, y1};
}
uint64_t y0 = low >> shift | high << (64 - shift);
uint64_t y1 = high >> shift;
return Uint128{y0, y1};
}
constexpr Uint128 operator&(const Uint128& other) const {
return Uint128{low & other.low, high & other.high};
}
constexpr Uint128 operator|(const Uint128& other) const {
return Uint128{low | other.low, high | other.high};
}
constexpr Uint128 operator^(const Uint128& other) const {
return Uint128{low ^ other.low, high ^ other.high};
}
constexpr Uint128 operator~() const { return Uint128{~low, ~high}; }
constexpr Uint128 operator-() const { return Uint128{} - *this; }
constexpr Uint128 operator+() const { return *this; }
constexpr Uint128& operator++() {
*this = *this + Uint128{1, 0};
return *this;
}
constexpr Uint128 operator++(int) {
auto result = *this;
++*this;
return result;
}
constexpr Uint128& operator--() {
*this = *this - Uint128{1, 0};
return *this;
}
constexpr Uint128 operator--(int) {
auto result = *this;
--*this;
return result;
}
constexpr Uint128 operator+=(const Uint128& other) {
*this = *this + other;
return *this;
}
constexpr Uint128 operator-=(const Uint128& other) {
*this = *this - other;
return *this;
}
constexpr Uint128 operator*=(const Uint128& other) {
*this = *this * other;
return *this;
}
constexpr Uint128 operator/=(const Uint128& other) {
*this = *this / other;
return *this;
}
constexpr Uint128 operator%=(const Uint128& other) {
*this = *this % other;
return *this;
}
constexpr Uint128 operator&=(const Uint128& other) {
*this = *this & other;
return *this;
}
constexpr Uint128 operator|=(const Uint128& other) {
*this = *this | other;
return *this;
}
constexpr Uint128 operator^=(const Uint128& other) {
*this = *this ^ other;
return *this;
}
constexpr Uint128 operator<<=(int shift) {
*this = *this << shift;
return *this;
}
constexpr Uint128 operator>>=(int shift) {
*this = *this >> shift;
return *this;
}
};
/**
* Signed 128-bit integer, implemented as a pair of unsigned 64-bit integers.
*
* Supports all basic arithmetic operators.
*/
class alignas(16) Int128 final {
#if MOZ_LITTLE_ENDIAN()
uint64_t low = 0;
uint64_t high = 0;
#else
uint64_t high = 0;
uint64_t low = 0;
#endif
friend class Uint128;
constexpr Int128(uint64_t low, uint64_t high) : low(low), high(high) {}
/**
* Based on "Signed doubleword division from unsigned doubleword division"
* from Hacker's Delight, 2nd edition, figure 9-6.
*/
static constexpr std::pair<Int128, Int128> divdi(const Int128& u,
const Int128& v) {
auto [q, r] = Uint128::udivdi(u.abs(), v.abs());
// If u and v have different signs, negate q.
// If is negative, negate r.
auto t = static_cast<Uint128>((u ^ v) >> 127);
auto s = static_cast<Uint128>(u >> 127);
return {static_cast<Int128>((q ^ t) - t), static_cast<Int128>((r ^ s) - s)};
}
public:
constexpr Int128() = default;
constexpr Int128(const Int128&) = default;
explicit constexpr Int128(int64_t value)
: Int128(uint64_t(value), uint64_t(value >> 63)) {}
/**
* Return the quotient and remainder of the division.
*/
constexpr std::pair<Int128, Int128> divrem(const Int128& divisor) const {
return divdi(*this, divisor);
}
/**
* Return the absolute value of this integer.
*/
constexpr Uint128 abs() const {
if (*this >= Int128{}) {
return Uint128{low, high};
}
auto neg = -*this;
return Uint128{neg.low, neg.high};
}
constexpr bool operator==(const Int128& other) const {
return low == other.low && high == other.high;
}
constexpr bool operator<(const Int128& other) const {
if (high == other.high) {
return low < other.low;
}
return int64_t(high) < int64_t(other.high);
}
// Other operators are implemented in terms of operator== and operator<.
constexpr bool operator!=(const Int128& other) const {
return !(*this == other);
}
constexpr bool operator>(const Int128& other) const { return other < *this; }
constexpr bool operator<=(const Int128& other) const {
return !(other < *this);
}
constexpr bool operator>=(const Int128& other) const {
return !(*this < other);
}
explicit constexpr operator bool() const { return !(*this == Int128{}); }
explicit constexpr operator int8_t() const { return int8_t(low); }
explicit constexpr operator int16_t() const { return int16_t(low); }
explicit constexpr operator int32_t() const { return int32_t(low); }
explicit constexpr operator int64_t() const { return int64_t(low); }
explicit constexpr operator uint8_t() const { return uint8_t(low); }
explicit constexpr operator uint16_t() const { return uint16_t(low); }
explicit constexpr operator uint32_t() const { return uint32_t(low); }
explicit constexpr operator uint64_t() const { return uint64_t(low); }
explicit constexpr operator Uint128() const { return Uint128{low, high}; }
explicit operator double() const {
return Uint128::toDouble(abs(), *this < Int128{0});
}
constexpr Int128 operator+(const Int128& other) const {
return Int128{Uint128{*this} + Uint128{other}};
}
constexpr Int128 operator-(const Int128& other) const {
return Int128{Uint128{*this} - Uint128{other}};
}
constexpr Int128 operator*(const Int128& other) const {
return Int128{Uint128{*this} * Uint128{other}};
}
constexpr Int128 operator/(const Int128& other) const {
auto [quot, rem] = divrem(other);
return quot;
}
constexpr Int128 operator%(const Int128& other) const {
auto [quot, rem] = divrem(other);
return rem;
}
constexpr Int128 operator<<(int shift) const {
return Int128{Uint128{*this} << shift};
}
constexpr Int128 operator>>(int shift) const {
MOZ_ASSERT(0 <= shift && shift <= 127, "undefined shift amount");
// Ensure the shift amount is in range.
shift &= 127;
// "§2-17 Double-Length Shifts" from Hacker's Delight, 2nd edition.
if (shift >= 64) {
uint64_t y0 = uint64_t(int64_t(high) >> (shift - 64));
uint64_t y1 = uint64_t(int64_t(high) >> 63);
return Int128{y0, y1};
}
uint64_t y0 = low >> shift | high << (64 - shift);
uint64_t y1 = uint64_t(int64_t(high) >> shift);
return Int128{y0, y1};
}
constexpr Int128 operator&(const Int128& other) const {
return Int128{low & other.low, high & other.high};
}
constexpr Int128 operator|(const Int128& other) const {
return Int128{low | other.low, high | other.high};
}
constexpr Int128 operator^(const Int128& other) const {
return Int128{low ^ other.low, high ^ other.high};
}
constexpr Int128 operator~() const { return Int128{~low, ~high}; }
constexpr Int128 operator-() const { return Int128{} - *this; }
constexpr Int128 operator+() const { return *this; }
constexpr Int128& operator++() {
*this = *this + Int128{1, 0};
return *this;
}
constexpr Int128 operator++(int) {
auto result = *this;
++*this;
return result;
}
constexpr Int128& operator--() {
*this = *this - Int128{1, 0};
return *this;
}
constexpr Int128 operator--(int) {
auto result = *this;
--*this;
return result;
}
constexpr Int128 operator+=(const Int128& other) {
*this = *this + other;
return *this;
}
constexpr Int128 operator-=(const Int128& other) {
*this = *this - other;
return *this;
}
constexpr Int128 operator*=(const Int128& other) {
*this = *this * other;
return *this;
}
constexpr Int128 operator/=(const Int128& other) {
*this = *this / other;
return *this;
}
constexpr Int128 operator%=(const Int128& other) {
*this = *this % other;
return *this;
}
constexpr Int128 operator&=(const Int128& other) {
*this = *this & other;
return *this;
}
constexpr Int128 operator|=(const Int128& other) {
*this = *this | other;
return *this;
}
constexpr Int128 operator^=(const Int128& other) {
*this = *this ^ other;
return *this;
}
constexpr Int128 operator<<=(int shift) {
*this = *this << shift;
return *this;
}
constexpr Int128 operator>>=(int shift) {
*this = *this >> shift;
return *this;
}
};
constexpr Uint128::operator Int128() const { return Int128{low, high}; }
} /* namespace js::temporal */
template <>
class std::numeric_limits<js::temporal::Int128> {
public:
static constexpr bool is_specialized = true;
static constexpr bool is_signed = true;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr std::float_denorm_style has_denorm = std::denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr std::float_round_style round_style = std::round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = CHAR_BIT * sizeof(js::temporal::Int128) - 1;
static constexpr int digits10 = int(digits * /* std::log10(2) */ 0.30102999);
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = true;
static constexpr bool tinyness_before = false;
static constexpr auto min() noexcept {
return js::temporal::Int128{1} << 127;
}
static constexpr auto lowest() noexcept { return min(); }
static constexpr auto max() noexcept { return ~min(); }
static constexpr auto epsilon() noexcept { return js::temporal::Int128{}; }
static constexpr auto round_error() noexcept {
return js::temporal::Int128{};
}
static constexpr auto infinity() noexcept { return js::temporal::Int128{}; }
static constexpr auto quiet_NaN() noexcept { return js::temporal::Int128{}; }
static constexpr auto signaling_NaN() noexcept {
return js::temporal::Int128{};
}
static constexpr auto denorm_min() noexcept { return js::temporal::Int128{}; }
};
template <>
class std::numeric_limits<js::temporal::Uint128> {
public:
static constexpr bool is_specialized = true;
static constexpr bool is_signed = false;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr std::float_denorm_style has_denorm = std::denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr std::float_round_style round_style = std::round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = CHAR_BIT * sizeof(js::temporal::Uint128);
static constexpr int digits10 = int(digits * /* std::log10(2) */ 0.30102999);
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool traps = true;
static constexpr bool tinyness_before = false;
static constexpr auto min() noexcept { return js::temporal::Uint128{}; }
static constexpr auto lowest() noexcept { return min(); }
static constexpr auto max() noexcept { return ~js::temporal::Uint128{}; }
static constexpr auto epsilon() noexcept { return js::temporal::Uint128{}; }
static constexpr auto round_error() noexcept {
return js::temporal::Uint128{};
}
static constexpr auto infinity() noexcept { return js::temporal::Uint128{}; }
static constexpr auto quiet_NaN() noexcept { return js::temporal::Uint128{}; }
static constexpr auto signaling_NaN() noexcept {
return js::temporal::Uint128{};
}
static constexpr auto denorm_min() noexcept {
return js::temporal::Uint128{};
}
};
#endif /* builtin_temporal_Int128_h */
|