1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef builtin_temporal_TemporalRoundingMode_h
#define builtin_temporal_TemporalRoundingMode_h
#include "mozilla/Assertions.h"
#include <cmath>
#include <stdint.h>
namespace js::temporal {
// Overview of integer rounding modes is available at
// <https://en.wikipedia.org/wiki/Rounding#Rounding_to_integer>.
enum class TemporalRoundingMode {
// 1. Directed rounding to an integer.
// Round toward positive infinity.
Ceil,
// Round toward negative infinity.
Floor,
// Round toward infinity or round away from zero.
Expand,
// Round toward zero or round away from infinity.
Trunc,
// 2. Rounding to the nearest integer.
// Round half toward positive infinity.
HalfCeil,
// Round half toward negative infinity.
HalfFloor,
// Round half toward infinity or round half away from zero.
HalfExpand,
// Round half toward zero or round half away from infinity.
HalfTrunc,
// Round half to even.
HalfEven,
};
/**
* NegateTemporalRoundingMode ( roundingMode )
*/
constexpr auto NegateTemporalRoundingMode(TemporalRoundingMode roundingMode) {
// Steps 1-5.
switch (roundingMode) {
case TemporalRoundingMode::Ceil:
return TemporalRoundingMode::Floor;
case TemporalRoundingMode::Floor:
return TemporalRoundingMode::Ceil;
case TemporalRoundingMode::HalfCeil:
return TemporalRoundingMode::HalfFloor;
case TemporalRoundingMode::HalfFloor:
return TemporalRoundingMode::HalfCeil;
case TemporalRoundingMode::Expand:
case TemporalRoundingMode::Trunc:
case TemporalRoundingMode::HalfExpand:
case TemporalRoundingMode::HalfTrunc:
case TemporalRoundingMode::HalfEven:
return roundingMode;
}
MOZ_CRASH("invalid rounding mode");
}
/**
* Adjust the rounding mode to round negative values in the same direction as
* positive values.
*/
constexpr auto ToPositiveRoundingMode(TemporalRoundingMode roundingMode) {
switch (roundingMode) {
case TemporalRoundingMode::Ceil:
case TemporalRoundingMode::Floor:
case TemporalRoundingMode::HalfCeil:
case TemporalRoundingMode::HalfFloor:
case TemporalRoundingMode::HalfEven:
// (Half-)Ceil/Floor round toward the same infinity for negative and
// positive values, so the rounding mode doesn't need to be adjusted. The
// same applies for half-even rounding.
return roundingMode;
case TemporalRoundingMode::Expand:
// Expand rounds positive values toward +infinity, but negative values
// toward -infinity. Adjust the rounding mode to Ceil to round negative
// values in the same direction as positive values.
return TemporalRoundingMode::Ceil;
case TemporalRoundingMode::Trunc:
// Truncation rounds positive values down toward zero, but negative values
// up toward zero. Adjust the rounding mode to Floor to round negative
// values in the same direction as positive values.
return TemporalRoundingMode::Floor;
case TemporalRoundingMode::HalfExpand:
// Adjust the rounding mode to Half-Ceil, similar to the Expand case.
return TemporalRoundingMode::HalfCeil;
case TemporalRoundingMode::HalfTrunc:
// Adjust the rounding mode to Half-Floor, similar to the Trunc case.
return TemporalRoundingMode::HalfFloor;
}
MOZ_CRASH("unexpected rounding mode");
}
// Temporal performs division on "mathematical values" [1] with implies using
// infinite precision. This rules out using IEE-754 floating point types like
// `double`. It also means we can't implement the algorithms from the
// specification verbatim, but instead have to translate them into equivalent
// operations.
//
// Throughout the following division functions, the divisor is required to be
// positive. This allows to simplify the implementation, because it ensures
// non-zero quotient and remainder values have the same sign as the dividend.
//
// [1] https://tc39.es/ecma262/#mathematical-value
/**
* Compute ceiling division ⌈dividend / divisor⌉. The divisor must be a positive
* number.
*/
constexpr int64_t CeilDiv(int64_t dividend, int64_t divisor) {
MOZ_ASSERT(divisor > 0, "negative divisor not supported");
// NB: Division and modulo operation are fused into a single machine code
// instruction by the compiler.
int64_t quotient = dividend / divisor;
int64_t remainder = dividend % divisor;
// Ceiling division rounds the quotient toward positive infinity. When the
// quotient is negative, this is equivalent to rounding toward zero. See [1].
//
// int64_t division truncates, so rounding toward zero for negative quotients
// is already covered. When there is a non-zero positive remainder, the
// quotient is positive and we have to increment it by one to implement
// rounding toward positive infinity.
//
// [1]
// https://tc39.es/proposal-temporal/#table-temporal-unsigned-rounding-modes
if (remainder > 0) {
quotient += 1;
}
return quotient;
}
/**
* Compute floor division ⌊dividend / divisor⌋. The divisor must be a positive
* number.
*/
constexpr int64_t FloorDiv(int64_t dividend, int64_t divisor) {
MOZ_ASSERT(divisor > 0, "negative divisor not supported");
// NB: Division and modulo operation are fused into a single machine code
// instruction by the compiler.
int64_t quotient = dividend / divisor;
int64_t remainder = dividend % divisor;
// Floor division rounds the quotient toward negative infinity. When the
// quotient is positive, this is equivalent to rounding toward zero. See [1].
//
// int64_t division truncates, so rounding toward zero for positive quotients
// is already covered. When there is a non-zero negative remainder, the
// quotient is negative and we have to decrement it by one to implement
// rounding toward negative infinity.
//
// [1]
// https://tc39.es/proposal-temporal/#table-temporal-unsigned-rounding-modes
if (remainder < 0) {
quotient -= 1;
}
return quotient;
}
/**
* Compute "round toward infinity" division `dividend / divisor`. The divisor
* must be a positive number.
*/
constexpr int64_t ExpandDiv(int64_t dividend, int64_t divisor) {
MOZ_ASSERT(divisor > 0, "negative divisor not supported");
// NB: Division and modulo operation are fused into a single machine code
// instruction by the compiler.
int64_t quotient = dividend / divisor;
int64_t remainder = dividend % divisor;
// "Round toward infinity" division rounds positive quotients toward positive
// infinity and negative quotients toward negative infinity. See [1].
//
// When there is a non-zero positive remainder, the quotient is positive and
// we have to increment it by one to implement rounding toward positive
// infinity. When there is a non-zero negative remainder, the quotient is
// negative and we have to decrement it by one to implement rounding toward
// negative infinity.
//
// [1]
// https://tc39.es/proposal-temporal/#table-temporal-unsigned-rounding-modes
if (remainder > 0) {
quotient += 1;
}
if (remainder < 0) {
quotient -= 1;
}
return quotient;
}
/**
* Compute truncating division `dividend / divisor`. The divisor must be a
* positive number.
*/
constexpr int64_t TruncDiv(int64_t dividend, int64_t divisor) {
MOZ_ASSERT(divisor > 0, "negative divisor not supported");
// Truncating division rounds both positive and negative quotients toward
// zero, cf. [1].
//
// int64_t division truncates, so rounding toward zero implicitly happens.
//
// [1]
// https://tc39.es/proposal-temporal/#table-temporal-unsigned-rounding-modes
return dividend / divisor;
}
/**
* Compute "round half toward positive infinity" division `dividend / divisor`.
* The divisor must be a positive number.
*/
inline int64_t HalfCeilDiv(int64_t dividend, int64_t divisor) {
MOZ_ASSERT(divisor > 0, "negative divisor not supported");
// NB: Division and modulo operation are fused into a single machine code
// instruction by the compiler.
int64_t quotient = dividend / divisor;
int64_t remainder = dividend % divisor;
// "Round half toward positive infinity" division rounds the quotient toward
// positive infinity when the fractional part of the remainder is ≥0.5. When
// the quotient is negative, this is equivalent to rounding toward zero
// instead of toward positive infinity. See [1].
//
// When the remainder is a non-zero positive value, the quotient is positive,
// too. When additionally the fractional part of the remainder is ≥0.5, we
// have to increment the quotient by one to implement rounding toward positive
// infinity.
//
// int64_t division truncates, so we implicitly round toward zero for negative
// quotients. When the absolute value of the fractional part of the remainder
// is >0.5, we should instead have rounded toward negative infinity, so we
// need to decrement the quotient by one.
//
// [1]
// https://tc39.es/proposal-temporal/#table-temporal-unsigned-rounding-modes
if (remainder > 0 && uint64_t(std::abs(remainder)) * 2 >= uint64_t(divisor)) {
quotient += 1;
}
if (remainder < 0 && uint64_t(std::abs(remainder)) * 2 > uint64_t(divisor)) {
quotient -= 1;
}
return quotient;
}
/**
* Compute "round half toward negative infinity" division `dividend / divisor`.
* The divisor must be a positive number.
*/
inline int64_t HalfFloorDiv(int64_t dividend, int64_t divisor) {
MOZ_ASSERT(divisor > 0, "negative divisor not supported");
// NB: Division and modulo operation are fused into a single machine code
// instruction by the compiler.
int64_t quotient = dividend / divisor;
int64_t remainder = dividend % divisor;
// "Round half toward negative infinity" division rounds the quotient toward
// negative infinity when the fractional part of the remainder is ≥0.5. When
// the quotient is positive, this is equivalent to rounding toward zero
// instead of toward negative infinity. See [1].
//
// When the remainder is a non-zero negative value, the quotient is negative,
// too. When additionally the fractional part of the remainder is ≥0.5, we
// have to decrement the quotient by one to implement rounding toward negative
// infinity.
//
// int64_t division truncates, so we implicitly round toward zero for positive
// quotients. When the absolute value of the fractional part of the remainder
// is >0.5, we should instead have rounded toward positive infinity, so we
// need to increment the quotient by one.
//
// [1]
// https://tc39.es/proposal-temporal/#table-temporal-unsigned-rounding-modes
if (remainder < 0 && uint64_t(std::abs(remainder)) * 2 >= uint64_t(divisor)) {
quotient -= 1;
}
if (remainder > 0 && uint64_t(std::abs(remainder)) * 2 > uint64_t(divisor)) {
quotient += 1;
}
return quotient;
}
/**
* Compute "round half toward infinity" division `dividend / divisor`. The
* divisor must be a positive number.
*/
inline int64_t HalfExpandDiv(int64_t dividend, int64_t divisor) {
MOZ_ASSERT(divisor > 0, "negative divisor not supported");
// NB: Division and modulo operation are fused into a single machine code
// instruction by the compiler.
int64_t quotient = dividend / divisor;
int64_t remainder = dividend % divisor;
// "Round half toward infinity" division rounds positive quotients whose
// remainder has a fractional part ≥0.5 toward positive infinity. And negative
// quotients whose remainder has a fractional part ≥0.5 toward negative
// infinity. See [1].
//
// int64_t division truncates, which means it rounds toward zero, so we have
// to increment resp. decrement the quotient when the fractional part of the
// remainder is ≥0.5 to round toward ±infinity.
//
// [1]
// https://tc39.es/proposal-temporal/#table-temporal-unsigned-rounding-modes
if (uint64_t(std::abs(remainder)) * 2 >= uint64_t(divisor)) {
quotient += (dividend > 0) ? 1 : -1;
}
return quotient;
}
/**
* Compute "round half toward zero" division `dividend / divisor`. The divisor
* must be a positive number.
*/
inline int64_t HalfTruncDiv(int64_t dividend, int64_t divisor) {
MOZ_ASSERT(divisor > 0, "negative divisor not supported");
// NB: Division and modulo operation are fused into a single machine code
// instruction by the compiler.
int64_t quotient = dividend / divisor;
int64_t remainder = dividend % divisor;
// "Round half toward zero" division rounds both positive and negative
// quotients whose remainder has a fractional part ≤0.5 toward zero. See [1].
//
// int64_t division truncates, so we implicitly round toward zero. When the
// fractional part of the remainder is >0.5, we should instead have rounded
// toward ±infinity, so we need to increment resp. decrement the quotient by
// one.
//
// [1]
// https://tc39.es/proposal-temporal/#table-temporal-unsigned-rounding-modes
if (uint64_t(std::abs(remainder)) * 2 > uint64_t(divisor)) {
quotient += (dividend > 0) ? 1 : -1;
}
return quotient;
}
/**
* Compute "round half to even" division `dividend / divisor`. The divisor must
* be a positive number.
*/
inline int64_t HalfEvenDiv(int64_t dividend, int64_t divisor) {
MOZ_ASSERT(divisor > 0, "negative divisor not supported");
// NB: Division and modulo operation are fused into a single machine code
// instruction by the compiler.
int64_t quotient = dividend / divisor;
int64_t remainder = dividend % divisor;
// "Round half to even" division rounds both positive and negative quotients
// to the nearest even integer. See [1].
//
// int64_t division truncates, so we implicitly round toward zero. When the
// fractional part of the remainder is 0.5 and the quotient is odd or when the
// fractional part of the remainder is >0.5, we should instead have rounded
// toward ±infinity, so we need to increment resp. decrement the quotient by
// one.
//
// [1]
// https://tc39.es/proposal-temporal/#table-temporal-unsigned-rounding-modes
if ((quotient & 1) == 1 &&
uint64_t(std::abs(remainder)) * 2 == uint64_t(divisor)) {
quotient += (dividend > 0) ? 1 : -1;
}
if (uint64_t(std::abs(remainder)) * 2 > uint64_t(divisor)) {
quotient += (dividend > 0) ? 1 : -1;
}
return quotient;
}
/**
* Perform `dividend / divisor` and round the result according to the given
* rounding mode.
*/
inline int64_t Divide(int64_t dividend, int64_t divisor,
TemporalRoundingMode roundingMode) {
switch (roundingMode) {
case TemporalRoundingMode::Ceil:
return CeilDiv(dividend, divisor);
case TemporalRoundingMode::Floor:
return FloorDiv(dividend, divisor);
case TemporalRoundingMode::Expand:
return ExpandDiv(dividend, divisor);
case TemporalRoundingMode::Trunc:
return TruncDiv(dividend, divisor);
case TemporalRoundingMode::HalfCeil:
return HalfCeilDiv(dividend, divisor);
case TemporalRoundingMode::HalfFloor:
return HalfFloorDiv(dividend, divisor);
case TemporalRoundingMode::HalfExpand:
return HalfExpandDiv(dividend, divisor);
case TemporalRoundingMode::HalfTrunc:
return HalfTruncDiv(dividend, divisor);
case TemporalRoundingMode::HalfEven:
return HalfEvenDiv(dividend, divisor);
}
MOZ_CRASH("invalid rounding mode");
}
} /* namespace js::temporal */
#endif /* builtin_temporal_TemporalRoundingMode_h */
|