1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "frontend/NameFunctions.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/Sprintf.h"
#include "frontend/ParseNode.h"
#include "frontend/ParseNodeVisitor.h"
#include "frontend/ParserAtom.h" // ParserAtomsTable
#include "frontend/SharedContext.h"
#include "util/Poison.h"
#include "util/StringBuffer.h"
using namespace js;
using namespace js::frontend;
namespace {
class NameResolver : public ParseNodeVisitor<NameResolver> {
using Base = ParseNodeVisitor;
static const size_t MaxParents = 100;
FrontendContext* fc_;
ParserAtomsTable& parserAtoms_;
TaggedParserAtomIndex prefix_;
// Number of nodes in the parents array.
size_t nparents_;
// Stack of ParseNodes from the root to the current node.
// Only elements 0..nparents_ are initialized.
MOZ_INIT_OUTSIDE_CTOR
ParseNode* parents_[MaxParents];
// When naming a function, the buffer where the name is built.
// When we are not under resolveFun, buf_ is empty.
StringBuffer buf_;
/* Test whether a ParseNode represents a function invocation */
bool isCall(ParseNode* pn) {
return pn && pn->isKind(ParseNodeKind::CallExpr);
}
/*
* Append a reference to a property named |name| to |buf_|. If |name| is
* a proper identifier name, then we append '.name'; otherwise, we
* append '["name"]'.
*
* Note that we need the IsIdentifier check for atoms from both
* ParseNodeKind::Name nodes and ParseNodeKind::String nodes:
* given code like a["b c"], the front end will produce a ParseNodeKind::Dot
* with a ParseNodeKind::Name child whose name contains spaces.
*/
bool appendPropertyReference(TaggedParserAtomIndex name) {
if (parserAtoms_.isIdentifier(name)) {
return buf_.append('.') && buf_.append(parserAtoms_, name);
}
/* Quote the string as needed. */
UniqueChars source = parserAtoms_.toQuotedString(name);
if (!source) {
ReportOutOfMemory(fc_);
return false;
}
return buf_.append('[') &&
buf_.append(source.get(), strlen(source.get())) && buf_.append(']');
}
/* Append a number to buf_. */
bool appendNumber(double n) {
char number[30];
int digits = SprintfLiteral(number, "%g", n);
return buf_.append(number, digits);
}
// Append "[<n>]" to buf_, referencing a property named by a numeric literal.
bool appendNumericPropertyReference(double n) {
return buf_.append("[") && appendNumber(n) && buf_.append(']');
}
/*
* Walk over the given ParseNode, attempting to convert it to a stringified
* name that represents where the function is being assigned to.
*
* |*foundName| is set to true if a name is found for the expression.
*/
bool nameExpression(ParseNode* n, bool* foundName) {
switch (n->getKind()) {
case ParseNodeKind::DotExpr: {
PropertyAccess* prop = &n->as<PropertyAccess>();
if (!nameExpression(&prop->expression(), foundName)) {
return false;
}
if (!*foundName) {
return true;
}
return appendPropertyReference(prop->right()->as<NameNode>().atom());
}
case ParseNodeKind::Name:
case ParseNodeKind::PrivateName: {
*foundName = true;
return buf_.append(parserAtoms_, n->as<NameNode>().atom());
}
case ParseNodeKind::ThisExpr:
*foundName = true;
return buf_.append("this");
case ParseNodeKind::ElemExpr: {
PropertyByValue* elem = &n->as<PropertyByValue>();
if (!nameExpression(&elem->expression(), foundName)) {
return false;
}
if (!*foundName) {
return true;
}
if (!buf_.append('[') || !nameExpression(elem->right(), foundName)) {
return false;
}
if (!*foundName) {
return true;
}
return buf_.append(']');
}
case ParseNodeKind::NumberExpr:
*foundName = true;
return appendNumber(n->as<NumericLiteral>().value());
default:
// We're confused as to what to call this function.
*foundName = false;
return true;
}
}
/*
* When naming an anonymous function, the process works loosely by walking
* up the AST and then translating that to a string. The stringification
* happens from some far-up assignment and then going back down the parse
* tree to the function definition point.
*
* This function will walk up the parse tree, gathering relevant nodes used
* for naming, and return the assignment node if there is one. The provided
* array and size will be filled in, and the returned node could be nullptr
* if no assignment is found. The first element of the array will be the
* innermost node relevant to naming, and the last element will be the
* outermost node.
*/
ParseNode* gatherNameable(ParseNode** nameable, size_t* size) {
MOZ_ASSERT(nparents_ > 0);
MOZ_ASSERT(parents_[nparents_ - 1]->is<FunctionNode>());
*size = 0;
for (int pos = nparents_ - 2; pos >= 0; pos--) {
ParseNode* cur = parents_[pos];
if (cur->is<AssignmentNode>()) {
return cur;
}
switch (cur->getKind()) {
case ParseNodeKind::PrivateName:
case ParseNodeKind::Name:
return cur; // found the initialized declaration
case ParseNodeKind::ThisExpr:
return cur; // setting a property of 'this'
case ParseNodeKind::Function:
return nullptr; // won't find an assignment or declaration
case ParseNodeKind::ReturnStmt:
// Normally the relevant parent of a node is its direct parent, but
// sometimes with code like:
//
// var foo = (function() { return function() {}; })();
//
// the outer function is just a helper to create a scope for the
// returned function. Hence the name of the returned function should
// actually be 'foo'. This loop sees if the current node is a
// ParseNodeKind::Return, and if there is a direct function
// call we skip to that.
for (int tmp = pos - 1; tmp > 0; tmp--) {
if (isDirectCall(tmp, cur)) {
pos = tmp;
break;
}
if (isCall(cur)) {
// Don't skip too high in the tree.
break;
}
cur = parents_[tmp];
}
break;
case ParseNodeKind::PropertyDefinition:
case ParseNodeKind::Shorthand:
// Record the ParseNodeKind::PropertyDefinition/Shorthand but skip the
// ParseNodeKind::Object so we're not flagged as a contributor.
pos--;
[[fallthrough]];
default:
// Save any other nodes we encounter on the way up.
MOZ_ASSERT(*size < MaxParents);
nameable[(*size)++] = cur;
break;
}
}
return nullptr;
}
/*
* Resolve the name of a function. If the function already has a name
* listed, then it is skipped. Otherwise an intelligent name is guessed to
* assign to the function's displayAtom field.
*/
[[nodiscard]] bool resolveFun(FunctionNode* funNode,
TaggedParserAtomIndex* retId) {
MOZ_ASSERT(funNode != nullptr);
FunctionBox* funbox = funNode->funbox();
MOZ_ASSERT(buf_.empty());
auto resetBuf = mozilla::MakeScopeExit([&] { buf_.clear(); });
*retId = TaggedParserAtomIndex::null();
// If the function already has a name, use that.
if (funbox->displayAtom()) {
if (!prefix_) {
*retId = funbox->displayAtom();
return true;
}
if (!buf_.append(parserAtoms_, prefix_) || !buf_.append('/') ||
!buf_.append(parserAtoms_, funbox->displayAtom())) {
return false;
}
*retId = buf_.finishParserAtom(parserAtoms_, fc_);
return !!*retId;
}
// If a prefix is specified, then it is a form of namespace.
if (prefix_) {
if (!buf_.append(parserAtoms_, prefix_) || !buf_.append('/')) {
return false;
}
}
// Gather all nodes relevant to naming.
ParseNode* toName[MaxParents];
size_t size;
ParseNode* assignment = gatherNameable(toName, &size);
// If the function is assigned to something, then that is very relevant.
if (assignment) {
// e.g, foo = function() {}
if (assignment->is<AssignmentNode>()) {
assignment = assignment->as<AssignmentNode>().left();
}
bool foundName = false;
if (!nameExpression(assignment, &foundName)) {
return false;
}
if (!foundName) {
return true;
}
}
// Other than the actual assignment, other relevant nodes to naming are
// those in object initializers and then particular nodes marking a
// contribution.
for (int pos = size - 1; pos >= 0; pos--) {
ParseNode* node = toName[pos];
if (node->isKind(ParseNodeKind::PropertyDefinition) ||
node->isKind(ParseNodeKind::Shorthand)) {
ParseNode* left = node->as<BinaryNode>().left();
if (left->isKind(ParseNodeKind::ObjectPropertyName) ||
left->isKind(ParseNodeKind::StringExpr)) {
// Here we handle two cases:
// 1) ObjectPropertyName category, e.g `foo: function() {}`
// 2) StringExpr category, e.g `"foo": function() {}`
if (!appendPropertyReference(left->as<NameNode>().atom())) {
return false;
}
} else if (left->isKind(ParseNodeKind::NumberExpr)) {
// This case handles Number expression Anonymous Functions
// for example: `{ 10: function() {} }`.
if (!appendNumericPropertyReference(
left->as<NumericLiteral>().value())) {
return false;
}
} else if (left->isKind(ParseNodeKind::ComputedName) &&
(left->as<UnaryNode>().kid()->isKind(
ParseNodeKind::StringExpr) ||
left->as<UnaryNode>().kid()->isKind(
ParseNodeKind::NumberExpr)) &&
node->as<PropertyDefinition>().accessorType() ==
AccessorType::None) {
// In this branch we handle computed property with string
// or numeric literal:
// e.g, `{ ["foo"]: function(){} }`, and `{ [10]: function() {} }`.
//
// Note we only handle the names that are known at compile time,
// so if we have `var x = "foo"; ({ [x]: function(){} })`, we don't
// handle that here, it's handled at runtime by JSOp::SetFunName.
// The accessor type of the property must be AccessorType::None,
// given getters and setters need prefix and we cannot handle it here.
ParseNode* kid = left->as<UnaryNode>().kid();
if (kid->isKind(ParseNodeKind::StringExpr)) {
if (!appendPropertyReference(kid->as<NameNode>().atom())) {
return false;
}
} else {
MOZ_ASSERT(kid->isKind(ParseNodeKind::NumberExpr));
if (!appendNumericPropertyReference(
kid->as<NumericLiteral>().value())) {
return false;
}
}
} else {
MOZ_ASSERT(left->isKind(ParseNodeKind::ComputedName) ||
left->isKind(ParseNodeKind::BigIntExpr));
}
} else {
// Don't have consecutive '<' characters, and also don't start
// with a '<' character.
if (!buf_.empty() && buf_.getChar(buf_.length() - 1) != '<' &&
!buf_.append('<')) {
return false;
}
}
}
// functions which are "genuinely anonymous" but are contained in some
// other namespace are rather considered as "contributing" to the outer
// function, so give them a contribution symbol here.
if (!buf_.empty() && buf_.getChar(buf_.length() - 1) == '/' &&
!buf_.append('<')) {
return false;
}
if (buf_.empty()) {
return true;
}
*retId = buf_.finishParserAtom(parserAtoms_, fc_);
if (!*retId) {
return false;
}
// Skip assigning the guessed name if the function has a (dynamically)
// computed inferred name.
if (!funNode->isDirectRHSAnonFunction()) {
funbox->setGuessedAtom(*retId);
}
return true;
}
/*
* Tests whether parents_[pos] is a function call whose callee is cur.
* This is the case for functions which do things like simply create a scope
* for new variables and then return an anonymous function using this scope.
*/
bool isDirectCall(int pos, ParseNode* cur) {
return pos >= 0 && isCall(parents_[pos]) &&
parents_[pos]->as<BinaryNode>().left() == cur;
}
public:
[[nodiscard]] bool visitFunction(FunctionNode* pn) {
TaggedParserAtomIndex savedPrefix = prefix_;
TaggedParserAtomIndex newPrefix;
if (!resolveFun(pn, &newPrefix)) {
return false;
}
// If a function looks like (function(){})() where the parent node
// of the definition of the function is a call, then it shouldn't
// contribute anything to the namespace, so don't bother updating
// the prefix to whatever was returned.
if (!isDirectCall(nparents_ - 2, pn)) {
prefix_ = newPrefix;
}
bool ok = Base::visitFunction(pn);
prefix_ = savedPrefix;
return ok;
}
// Skip this type of node. It never contains functions.
[[nodiscard]] bool visitCallSiteObj(CallSiteNode* callSite) {
// This node only contains internal strings or undefined and an array -- no
// user-controlled expressions.
return true;
}
// Skip walking the list of string parts, which never contains functions.
[[nodiscard]] bool visitTaggedTemplateExpr(BinaryNode* taggedTemplate) {
ParseNode* tag = taggedTemplate->left();
// The leading expression, e.g. |tag| in |tag`foo`|,
// that might contain functions.
if (!visit(tag)) {
return false;
}
// The callsite object node is first. This node only contains
// internal strings or undefined and an array -- no user-controlled
// expressions.
CallSiteNode* element =
&taggedTemplate->right()->as<ListNode>().head()->as<CallSiteNode>();
#ifdef DEBUG
{
ListNode* rawNodes = &element->head()->as<ListNode>();
MOZ_ASSERT(rawNodes->isKind(ParseNodeKind::ArrayExpr));
for (ParseNode* raw : rawNodes->contents()) {
MOZ_ASSERT(raw->isKind(ParseNodeKind::TemplateStringExpr));
}
for (ParseNode* cooked : element->contentsFrom(rawNodes->pn_next)) {
MOZ_ASSERT(cooked->isKind(ParseNodeKind::TemplateStringExpr) ||
cooked->isKind(ParseNodeKind::RawUndefinedExpr));
}
}
#endif
// Next come any interpolated expressions in the tagged template.
ParseNode* interpolated = element->pn_next;
for (; interpolated; interpolated = interpolated->pn_next) {
if (!visit(interpolated)) {
return false;
}
}
return true;
}
private:
// Speed hack: this type of node can't contain functions, so skip walking it.
[[nodiscard]] bool internalVisitSpecList(ListNode* pn) {
// Import/export spec lists contain import/export specs containing only
// pairs of names or strings. Alternatively, an export spec list may
// contain a single export batch specifier.
#ifdef DEBUG
bool isImport = pn->isKind(ParseNodeKind::ImportSpecList);
ParseNode* item = pn->head();
if (!isImport && item && item->isKind(ParseNodeKind::ExportBatchSpecStmt)) {
MOZ_ASSERT(item->is<NullaryNode>());
} else {
for (ParseNode* item : pn->contents()) {
if (item->is<UnaryNode>()) {
auto* spec = &item->as<UnaryNode>();
MOZ_ASSERT(spec->isKind(isImport
? ParseNodeKind::ImportNamespaceSpec
: ParseNodeKind::ExportNamespaceSpec));
MOZ_ASSERT(spec->kid()->isKind(ParseNodeKind::Name) ||
spec->kid()->isKind(ParseNodeKind::StringExpr));
} else {
auto* spec = &item->as<BinaryNode>();
MOZ_ASSERT(spec->isKind(isImport ? ParseNodeKind::ImportSpec
: ParseNodeKind::ExportSpec));
MOZ_ASSERT(spec->left()->isKind(ParseNodeKind::Name) ||
spec->left()->isKind(ParseNodeKind::StringExpr));
MOZ_ASSERT(spec->right()->isKind(ParseNodeKind::Name) ||
spec->right()->isKind(ParseNodeKind::StringExpr));
}
}
}
#endif
return true;
}
public:
[[nodiscard]] bool visitImportSpecList(ListNode* pn) {
return internalVisitSpecList(pn);
}
[[nodiscard]] bool visitExportSpecList(ListNode* pn) {
return internalVisitSpecList(pn);
}
NameResolver(FrontendContext* fc, ParserAtomsTable& parserAtoms)
: ParseNodeVisitor(fc),
fc_(fc),
parserAtoms_(parserAtoms),
nparents_(0),
buf_(fc) {}
/*
* Resolve names for all anonymous functions in the given ParseNode tree.
*/
[[nodiscard]] bool visit(ParseNode* pn) {
// Push pn to the parse node stack.
if (nparents_ >= MaxParents) {
// Silently skip very deeply nested functions.
return true;
}
auto initialParents = nparents_;
parents_[initialParents] = pn;
nparents_++;
bool ok = Base::visit(pn);
// Pop pn from the parse node stack.
nparents_--;
MOZ_ASSERT(initialParents == nparents_, "nparents imbalance detected");
MOZ_ASSERT(parents_[initialParents] == pn,
"pushed child shouldn't change underneath us");
AlwaysPoison(&parents_[initialParents], JS_OOB_PARSE_NODE_PATTERN,
sizeof(parents_[initialParents]), MemCheckKind::MakeUndefined);
return ok;
}
};
} /* anonymous namespace */
bool frontend::NameFunctions(FrontendContext* fc, ParserAtomsTable& parserAtoms,
ParseNode* pn) {
NameResolver nr(fc, parserAtoms);
return nr.visit(pn);
}
|