summaryrefslogtreecommitdiffstats
path: root/js/src/gc/GC.cpp
blob: c01dfe366041f7ac8166a13544db5204c9db1838 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*
 * [SMDOC] Garbage Collector
 *
 * This code implements an incremental mark-and-sweep garbage collector, with
 * most sweeping carried out in the background on a parallel thread.
 *
 * Full vs. zone GC
 * ----------------
 *
 * The collector can collect all zones at once, or a subset. These types of
 * collection are referred to as a full GC and a zone GC respectively.
 *
 * It is possible for an incremental collection that started out as a full GC to
 * become a zone GC if new zones are created during the course of the
 * collection.
 *
 * Incremental collection
 * ----------------------
 *
 * For a collection to be carried out incrementally the following conditions
 * must be met:
 *  - the collection must be run by calling js::GCSlice() rather than js::GC()
 *  - the GC parameter JSGC_INCREMENTAL_GC_ENABLED must be true.
 *
 * The last condition is an engine-internal mechanism to ensure that incremental
 * collection is not carried out without the correct barriers being implemented.
 * For more information see 'Incremental marking' below.
 *
 * If the collection is not incremental, all foreground activity happens inside
 * a single call to GC() or GCSlice(). However the collection is not complete
 * until the background sweeping activity has finished.
 *
 * An incremental collection proceeds as a series of slices, interleaved with
 * mutator activity, i.e. running JavaScript code. Slices are limited by a time
 * budget. The slice finishes as soon as possible after the requested time has
 * passed.
 *
 * Collector states
 * ----------------
 *
 * The collector proceeds through the following states, the current state being
 * held in JSRuntime::gcIncrementalState:
 *
 *  - Prepare    - unmarks GC things, discards JIT code and other setup
 *  - MarkRoots  - marks the stack and other roots
 *  - Mark       - incrementally marks reachable things
 *  - Sweep      - sweeps zones in groups and continues marking unswept zones
 *  - Finalize   - performs background finalization, concurrent with mutator
 *  - Compact    - incrementally compacts by zone
 *  - Decommit   - performs background decommit and chunk removal
 *
 * Roots are marked in the first MarkRoots slice; this is the start of the GC
 * proper. The following states can take place over one or more slices.
 *
 * In other words an incremental collection proceeds like this:
 *
 * Slice 1:   Prepare:    Starts background task to unmark GC things
 *
 *          ... JS code runs, background unmarking finishes ...
 *
 * Slice 2:   MarkRoots:  Roots are pushed onto the mark stack.
 *            Mark:       The mark stack is processed by popping an element,
 *                        marking it, and pushing its children.
 *
 *          ... JS code runs ...
 *
 * Slice 3:   Mark:       More mark stack processing.
 *
 *          ... JS code runs ...
 *
 * Slice n-1: Mark:       More mark stack processing.
 *
 *          ... JS code runs ...
 *
 * Slice n:   Mark:       Mark stack is completely drained.
 *            Sweep:      Select first group of zones to sweep and sweep them.
 *
 *          ... JS code runs ...
 *
 * Slice n+1: Sweep:      Mark objects in unswept zones that were newly
 *                        identified as alive (see below). Then sweep more zone
 *                        sweep groups.
 *
 *          ... JS code runs ...
 *
 * Slice n+2: Sweep:      Mark objects in unswept zones that were newly
 *                        identified as alive. Then sweep more zones.
 *
 *          ... JS code runs ...
 *
 * Slice m:   Sweep:      Sweeping is finished, and background sweeping
 *                        started on the helper thread.
 *
 *          ... JS code runs, remaining sweeping done on background thread ...
 *
 * When background sweeping finishes the GC is complete.
 *
 * Incremental marking
 * -------------------
 *
 * Incremental collection requires close collaboration with the mutator (i.e.,
 * JS code) to guarantee correctness.
 *
 *  - During an incremental GC, if a memory location (except a root) is written
 *    to, then the value it previously held must be marked. Write barriers
 *    ensure this.
 *
 *  - Any object that is allocated during incremental GC must start out marked.
 *
 *  - Roots are marked in the first slice and hence don't need write barriers.
 *    Roots are things like the C stack and the VM stack.
 *
 * The problem that write barriers solve is that between slices the mutator can
 * change the object graph. We must ensure that it cannot do this in such a way
 * that makes us fail to mark a reachable object (marking an unreachable object
 * is tolerable).
 *
 * We use a snapshot-at-the-beginning algorithm to do this. This means that we
 * promise to mark at least everything that is reachable at the beginning of
 * collection. To implement it we mark the old contents of every non-root memory
 * location written to by the mutator while the collection is in progress, using
 * write barriers. This is described in gc/Barrier.h.
 *
 * Incremental sweeping
 * --------------------
 *
 * Sweeping is difficult to do incrementally because object finalizers must be
 * run at the start of sweeping, before any mutator code runs. The reason is
 * that some objects use their finalizers to remove themselves from caches. If
 * mutator code was allowed to run after the start of sweeping, it could observe
 * the state of the cache and create a new reference to an object that was just
 * about to be destroyed.
 *
 * Sweeping all finalizable objects in one go would introduce long pauses, so
 * instead sweeping broken up into groups of zones. Zones which are not yet
 * being swept are still marked, so the issue above does not apply.
 *
 * The order of sweeping is restricted by cross compartment pointers - for
 * example say that object |a| from zone A points to object |b| in zone B and
 * neither object was marked when we transitioned to the Sweep phase. Imagine we
 * sweep B first and then return to the mutator. It's possible that the mutator
 * could cause |a| to become alive through a read barrier (perhaps it was a
 * shape that was accessed via a shape table). Then we would need to mark |b|,
 * which |a| points to, but |b| has already been swept.
 *
 * So if there is such a pointer then marking of zone B must not finish before
 * marking of zone A.  Pointers which form a cycle between zones therefore
 * restrict those zones to being swept at the same time, and these are found
 * using Tarjan's algorithm for finding the strongly connected components of a
 * graph.
 *
 * GC things without finalizers, and things with finalizers that are able to run
 * in the background, are swept on the background thread. This accounts for most
 * of the sweeping work.
 *
 * Reset
 * -----
 *
 * During incremental collection it is possible, although unlikely, for
 * conditions to change such that incremental collection is no longer safe. In
 * this case, the collection is 'reset' by resetIncrementalGC(). If we are in
 * the mark state, this just stops marking, but if we have started sweeping
 * already, we continue non-incrementally until we have swept the current sweep
 * group. Following a reset, a new collection is started.
 *
 * Compacting GC
 * -------------
 *
 * Compacting GC happens at the end of a major GC as part of the last slice.
 * There are three parts:
 *
 *  - Arenas are selected for compaction.
 *  - The contents of those arenas are moved to new arenas.
 *  - All references to moved things are updated.
 *
 * Collecting Atoms
 * ----------------
 *
 * Atoms are collected differently from other GC things. They are contained in
 * a special zone and things in other zones may have pointers to them that are
 * not recorded in the cross compartment pointer map. Each zone holds a bitmap
 * with the atoms it might be keeping alive, and atoms are only collected if
 * they are not included in any zone's atom bitmap. See AtomMarking.cpp for how
 * this bitmap is managed.
 */

#include "gc/GC-inl.h"

#include "mozilla/Range.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/TextUtils.h"
#include "mozilla/TimeStamp.h"

#include <algorithm>
#include <initializer_list>
#include <iterator>
#include <stdlib.h>
#include <string.h>
#include <utility>

#include "jsapi.h"  // JS_AbortIfWrongThread
#include "jstypes.h"

#include "debugger/DebugAPI.h"
#include "gc/ClearEdgesTracer.h"
#include "gc/GCContext.h"
#include "gc/GCInternals.h"
#include "gc/GCLock.h"
#include "gc/GCProbes.h"
#include "gc/Memory.h"
#include "gc/ParallelMarking.h"
#include "gc/ParallelWork.h"
#include "gc/WeakMap.h"
#include "jit/ExecutableAllocator.h"
#include "jit/JitCode.h"
#include "jit/JitRuntime.h"
#include "jit/ProcessExecutableMemory.h"
#include "js/HeapAPI.h"  // JS::GCCellPtr
#include "js/Printer.h"
#include "js/SliceBudget.h"
#include "util/DifferentialTesting.h"
#include "vm/BigIntType.h"
#include "vm/EnvironmentObject.h"
#include "vm/GetterSetter.h"
#include "vm/HelperThreadState.h"
#include "vm/JitActivation.h"
#include "vm/JSObject.h"
#include "vm/JSScript.h"
#include "vm/PropMap.h"
#include "vm/Realm.h"
#include "vm/Shape.h"
#include "vm/StringType.h"
#include "vm/SymbolType.h"
#include "vm/Time.h"

#include "gc/Heap-inl.h"
#include "gc/Nursery-inl.h"
#include "gc/ObjectKind-inl.h"
#include "gc/PrivateIterators-inl.h"
#include "vm/GeckoProfiler-inl.h"
#include "vm/JSContext-inl.h"
#include "vm/Realm-inl.h"
#include "vm/Stack-inl.h"

using namespace js;
using namespace js::gc;

using mozilla::MakeScopeExit;
using mozilla::Maybe;
using mozilla::Nothing;
using mozilla::Some;
using mozilla::TimeDuration;
using mozilla::TimeStamp;

using JS::AutoGCRooter;

const AllocKind gc::slotsToThingKind[] = {
    // clang-format off
    /*  0 */ AllocKind::OBJECT0,  AllocKind::OBJECT2,  AllocKind::OBJECT2,  AllocKind::OBJECT4,
    /*  4 */ AllocKind::OBJECT4,  AllocKind::OBJECT8,  AllocKind::OBJECT8,  AllocKind::OBJECT8,
    /*  8 */ AllocKind::OBJECT8,  AllocKind::OBJECT12, AllocKind::OBJECT12, AllocKind::OBJECT12,
    /* 12 */ AllocKind::OBJECT12, AllocKind::OBJECT16, AllocKind::OBJECT16, AllocKind::OBJECT16,
    /* 16 */ AllocKind::OBJECT16
    // clang-format on
};

static_assert(std::size(slotsToThingKind) == SLOTS_TO_THING_KIND_LIMIT,
              "We have defined a slot count for each kind.");

// A table converting an object size in "slots" (increments of
// sizeof(js::Value)) to the total number of bytes in the corresponding
// AllocKind. See gc::slotsToThingKind. This primarily allows wasm jit code to
// remain compliant with the AllocKind system.
//
// To use this table, subtract sizeof(NativeObject) from your desired allocation
// size, divide by sizeof(js::Value) to get the number of "slots", and then
// index into this table. See gc::GetGCObjectKindForBytes.
const constexpr uint32_t gc::slotsToAllocKindBytes[] = {
    // These entries correspond exactly to gc::slotsToThingKind. The numeric
    // comments therefore indicate the number of slots that the "bytes" would
    // correspond to.
    // clang-format off
    /*  0 */ sizeof(JSObject_Slots0), sizeof(JSObject_Slots2), sizeof(JSObject_Slots2), sizeof(JSObject_Slots4),
    /*  4 */ sizeof(JSObject_Slots4), sizeof(JSObject_Slots8), sizeof(JSObject_Slots8), sizeof(JSObject_Slots8),
    /*  8 */ sizeof(JSObject_Slots8), sizeof(JSObject_Slots12), sizeof(JSObject_Slots12), sizeof(JSObject_Slots12),
    /* 12 */ sizeof(JSObject_Slots12), sizeof(JSObject_Slots16), sizeof(JSObject_Slots16), sizeof(JSObject_Slots16),
    /* 16 */ sizeof(JSObject_Slots16)
    // clang-format on
};

static_assert(std::size(slotsToAllocKindBytes) == SLOTS_TO_THING_KIND_LIMIT);

MOZ_THREAD_LOCAL(JS::GCContext*) js::TlsGCContext;

JS::GCContext::GCContext(JSRuntime* runtime) : runtime_(runtime) {}

JS::GCContext::~GCContext() {
  MOZ_ASSERT(!hasJitCodeToPoison());
  MOZ_ASSERT(!isCollecting());
  MOZ_ASSERT(gcUse() == GCUse::None);
  MOZ_ASSERT(!gcSweepZone());
  MOZ_ASSERT(!isTouchingGrayThings());
}

void JS::GCContext::poisonJitCode() {
  if (hasJitCodeToPoison()) {
    jit::ExecutableAllocator::poisonCode(runtime(), jitPoisonRanges);
    jitPoisonRanges.clearAndFree();
  }
}

#ifdef DEBUG
void GCRuntime::verifyAllChunks() {
  AutoLockGC lock(this);
  fullChunks(lock).verifyChunks();
  availableChunks(lock).verifyChunks();
  emptyChunks(lock).verifyChunks();
}
#endif

void GCRuntime::setMinEmptyChunkCount(uint32_t value, const AutoLockGC& lock) {
  minEmptyChunkCount_ = value;
  if (minEmptyChunkCount_ > maxEmptyChunkCount_) {
    maxEmptyChunkCount_ = minEmptyChunkCount_;
  }
  MOZ_ASSERT(maxEmptyChunkCount_ >= minEmptyChunkCount_);
}

void GCRuntime::setMaxEmptyChunkCount(uint32_t value, const AutoLockGC& lock) {
  maxEmptyChunkCount_ = value;
  if (minEmptyChunkCount_ > maxEmptyChunkCount_) {
    minEmptyChunkCount_ = maxEmptyChunkCount_;
  }
  MOZ_ASSERT(maxEmptyChunkCount_ >= minEmptyChunkCount_);
}

inline bool GCRuntime::tooManyEmptyChunks(const AutoLockGC& lock) {
  return emptyChunks(lock).count() > minEmptyChunkCount(lock);
}

ChunkPool GCRuntime::expireEmptyChunkPool(const AutoLockGC& lock) {
  MOZ_ASSERT(emptyChunks(lock).verify());
  MOZ_ASSERT(minEmptyChunkCount(lock) <= maxEmptyChunkCount(lock));

  ChunkPool expired;
  while (tooManyEmptyChunks(lock)) {
    TenuredChunk* chunk = emptyChunks(lock).pop();
    prepareToFreeChunk(chunk->info);
    expired.push(chunk);
  }

  MOZ_ASSERT(expired.verify());
  MOZ_ASSERT(emptyChunks(lock).verify());
  MOZ_ASSERT(emptyChunks(lock).count() <= maxEmptyChunkCount(lock));
  MOZ_ASSERT(emptyChunks(lock).count() <= minEmptyChunkCount(lock));
  return expired;
}

static void FreeChunkPool(ChunkPool& pool) {
  for (ChunkPool::Iter iter(pool); !iter.done();) {
    TenuredChunk* chunk = iter.get();
    iter.next();
    pool.remove(chunk);
    MOZ_ASSERT(chunk->unused());
    UnmapPages(static_cast<void*>(chunk), ChunkSize);
  }
  MOZ_ASSERT(pool.count() == 0);
}

void GCRuntime::freeEmptyChunks(const AutoLockGC& lock) {
  FreeChunkPool(emptyChunks(lock));
}

inline void GCRuntime::prepareToFreeChunk(TenuredChunkInfo& info) {
  MOZ_ASSERT(numArenasFreeCommitted >= info.numArenasFreeCommitted);
  numArenasFreeCommitted -= info.numArenasFreeCommitted;
  stats().count(gcstats::COUNT_DESTROY_CHUNK);
#ifdef DEBUG
  /*
   * Let FreeChunkPool detect a missing prepareToFreeChunk call before it
   * frees chunk.
   */
  info.numArenasFreeCommitted = 0;
#endif
}

void GCRuntime::releaseArena(Arena* arena, const AutoLockGC& lock) {
  MOZ_ASSERT(arena->allocated());
  MOZ_ASSERT(!arena->onDelayedMarkingList());
  MOZ_ASSERT(TlsGCContext.get()->isFinalizing());

  arena->zone->gcHeapSize.removeGCArena(heapSize);
  arena->release(lock);
  arena->chunk()->releaseArena(this, arena, lock);
}

GCRuntime::GCRuntime(JSRuntime* rt)
    : rt(rt),
      systemZone(nullptr),
      mainThreadContext(rt),
      heapState_(JS::HeapState::Idle),
      stats_(this),
      sweepingTracer(rt),
      fullGCRequested(false),
      helperThreadRatio(TuningDefaults::HelperThreadRatio),
      maxHelperThreads(TuningDefaults::MaxHelperThreads),
      helperThreadCount(1),
      createBudgetCallback(nullptr),
      minEmptyChunkCount_(TuningDefaults::MinEmptyChunkCount),
      maxEmptyChunkCount_(TuningDefaults::MaxEmptyChunkCount),
      rootsHash(256),
      nextCellUniqueId_(LargestTaggedNullCellPointer +
                        1),  // Ensure disjoint from null tagged pointers.
      numArenasFreeCommitted(0),
      verifyPreData(nullptr),
      lastGCStartTime_(TimeStamp::Now()),
      lastGCEndTime_(TimeStamp::Now()),
      incrementalGCEnabled(TuningDefaults::IncrementalGCEnabled),
      perZoneGCEnabled(TuningDefaults::PerZoneGCEnabled),
      numActiveZoneIters(0),
      cleanUpEverything(false),
      grayBitsValid(true),
      majorGCTriggerReason(JS::GCReason::NO_REASON),
      minorGCNumber(0),
      majorGCNumber(0),
      number(0),
      sliceNumber(0),
      isFull(false),
      incrementalState(gc::State::NotActive),
      initialState(gc::State::NotActive),
      useZeal(false),
      lastMarkSlice(false),
      safeToYield(true),
      markOnBackgroundThreadDuringSweeping(false),
      useBackgroundThreads(false),
#ifdef DEBUG
      hadShutdownGC(false),
#endif
      requestSliceAfterBackgroundTask(false),
      lifoBlocksToFree((size_t)JSContext::TEMP_LIFO_ALLOC_PRIMARY_CHUNK_SIZE),
      lifoBlocksToFreeAfterMinorGC(
          (size_t)JSContext::TEMP_LIFO_ALLOC_PRIMARY_CHUNK_SIZE),
      sweepGroupIndex(0),
      sweepGroups(nullptr),
      currentSweepGroup(nullptr),
      sweepZone(nullptr),
      abortSweepAfterCurrentGroup(false),
      sweepMarkResult(IncrementalProgress::NotFinished),
#ifdef DEBUG
      testMarkQueue(rt),
#endif
      startedCompacting(false),
      zonesCompacted(0),
#ifdef DEBUG
      relocatedArenasToRelease(nullptr),
#endif
#ifdef JS_GC_ZEAL
      markingValidator(nullptr),
#endif
      defaultTimeBudgetMS_(TuningDefaults::DefaultTimeBudgetMS),
      incrementalAllowed(true),
      compactingEnabled(TuningDefaults::CompactingEnabled),
      parallelMarkingEnabled(TuningDefaults::ParallelMarkingEnabled),
      rootsRemoved(false),
#ifdef JS_GC_ZEAL
      zealModeBits(0),
      zealFrequency(0),
      nextScheduled(0),
      deterministicOnly(false),
      zealSliceBudget(0),
      selectedForMarking(rt),
#endif
      fullCompartmentChecks(false),
      gcCallbackDepth(0),
      alwaysPreserveCode(false),
      lowMemoryState(false),
      lock(mutexid::GCLock),
      storeBufferLock(mutexid::StoreBuffer),
      delayedMarkingLock(mutexid::GCDelayedMarkingLock),
      allocTask(this, emptyChunks_.ref()),
      unmarkTask(this),
      markTask(this),
      sweepTask(this),
      freeTask(this),
      decommitTask(this),
      nursery_(this),
      storeBuffer_(rt),
      lastAllocRateUpdateTime(TimeStamp::Now()) {
}

using CharRange = mozilla::Range<const char>;
using CharRangeVector = Vector<CharRange, 0, SystemAllocPolicy>;

static bool SplitStringBy(const CharRange& text, char delimiter,
                          CharRangeVector* result) {
  auto start = text.begin();
  for (auto ptr = start; ptr != text.end(); ptr++) {
    if (*ptr == delimiter) {
      if (!result->emplaceBack(start, ptr)) {
        return false;
      }
      start = ptr + 1;
    }
  }

  return result->emplaceBack(start, text.end());
}

static bool ParseTimeDuration(const CharRange& text,
                              TimeDuration* durationOut) {
  const char* str = text.begin().get();
  char* end;
  long millis = strtol(str, &end, 10);
  *durationOut = TimeDuration::FromMilliseconds(double(millis));
  return str != end && end == text.end().get();
}

static void PrintProfileHelpAndExit(const char* envName, const char* helpText) {
  fprintf(stderr, "%s=N[,(main|all)]\n", envName);
  fprintf(stderr, "%s", helpText);
  exit(0);
}

void js::gc::ReadProfileEnv(const char* envName, const char* helpText,
                            bool* enableOut, bool* workersOut,
                            TimeDuration* thresholdOut) {
  *enableOut = false;
  *workersOut = false;
  *thresholdOut = TimeDuration::Zero();

  const char* env = getenv(envName);
  if (!env) {
    return;
  }

  if (strcmp(env, "help") == 0) {
    PrintProfileHelpAndExit(envName, helpText);
  }

  CharRangeVector parts;
  auto text = CharRange(env, strlen(env));
  if (!SplitStringBy(text, ',', &parts)) {
    MOZ_CRASH("OOM parsing environment variable");
  }

  if (parts.length() == 0 || parts.length() > 2) {
    PrintProfileHelpAndExit(envName, helpText);
  }

  *enableOut = true;

  if (!ParseTimeDuration(parts[0], thresholdOut)) {
    PrintProfileHelpAndExit(envName, helpText);
  }

  if (parts.length() == 2) {
    const char* threads = parts[1].begin().get();
    if (strcmp(threads, "all") == 0) {
      *workersOut = true;
    } else if (strcmp(threads, "main") != 0) {
      PrintProfileHelpAndExit(envName, helpText);
    }
  }
}

bool js::gc::ShouldPrintProfile(JSRuntime* runtime, bool enable,
                                bool profileWorkers, TimeDuration threshold,
                                TimeDuration duration) {
  return enable && (runtime->isMainRuntime() || profileWorkers) &&
         duration >= threshold;
}

#ifdef JS_GC_ZEAL

void GCRuntime::getZealBits(uint32_t* zealBits, uint32_t* frequency,
                            uint32_t* scheduled) {
  *zealBits = zealModeBits;
  *frequency = zealFrequency;
  *scheduled = nextScheduled;
}

const char gc::ZealModeHelpText[] =
    "  Specifies how zealous the garbage collector should be. Some of these "
    "modes can\n"
    "  be set simultaneously, by passing multiple level options, e.g. \"2;4\" "
    "will activate\n"
    "  both modes 2 and 4. Modes can be specified by name or number.\n"
    "  \n"
    "  Values:\n"
    "    0:  (None) Normal amount of collection (resets all modes)\n"
    "    1:  (RootsChange) Collect when roots are added or removed\n"
    "    2:  (Alloc) Collect when every N allocations (default: 100)\n"
    "    4:  (VerifierPre) Verify pre write barriers between instructions\n"
    "    6:  (YieldBeforeRootMarking) Incremental GC in two slices that yields "
    "before root marking\n"
    "    7:  (GenerationalGC) Collect the nursery every N nursery allocations\n"
    "    8:  (YieldBeforeMarking) Incremental GC in two slices that yields "
    "between\n"
    "        the root marking and marking phases\n"
    "    9:  (YieldBeforeSweeping) Incremental GC in two slices that yields "
    "between\n"
    "        the marking and sweeping phases\n"
    "    10: (IncrementalMultipleSlices) Incremental GC in many slices\n"
    "    11: (IncrementalMarkingValidator) Verify incremental marking\n"
    "    12: (ElementsBarrier) Use the individual element post-write barrier\n"
    "        regardless of elements size\n"
    "    13: (CheckHashTablesOnMinorGC) Check internal hashtables on minor GC\n"
    "    14: (Compact) Perform a shrinking collection every N allocations\n"
    "    15: (CheckHeapAfterGC) Walk the heap to check its integrity after "
    "every GC\n"
    "    17: (YieldBeforeSweepingAtoms) Incremental GC in two slices that "
    "yields\n"
    "        before sweeping the atoms table\n"
    "    18: (CheckGrayMarking) Check gray marking invariants after every GC\n"
    "    19: (YieldBeforeSweepingCaches) Incremental GC in two slices that "
    "yields\n"
    "        before sweeping weak caches\n"
    "    21: (YieldBeforeSweepingObjects) Incremental GC in two slices that "
    "yields\n"
    "        before sweeping foreground finalized objects\n"
    "    22: (YieldBeforeSweepingNonObjects) Incremental GC in two slices that "
    "yields\n"
    "        before sweeping non-object GC things\n"
    "    23: (YieldBeforeSweepingPropMapTrees) Incremental GC in two slices "
    "that "
    "yields\n"
    "        before sweeping shape trees\n"
    "    24: (CheckWeakMapMarking) Check weak map marking invariants after "
    "every GC\n"
    "    25: (YieldWhileGrayMarking) Incremental GC in two slices that yields\n"
    "        during gray marking\n";

// The set of zeal modes that control incremental slices. These modes are
// mutually exclusive.
static const mozilla::EnumSet<ZealMode> IncrementalSliceZealModes = {
    ZealMode::YieldBeforeRootMarking,
    ZealMode::YieldBeforeMarking,
    ZealMode::YieldBeforeSweeping,
    ZealMode::IncrementalMultipleSlices,
    ZealMode::YieldBeforeSweepingAtoms,
    ZealMode::YieldBeforeSweepingCaches,
    ZealMode::YieldBeforeSweepingObjects,
    ZealMode::YieldBeforeSweepingNonObjects,
    ZealMode::YieldBeforeSweepingPropMapTrees};

void GCRuntime::setZeal(uint8_t zeal, uint32_t frequency) {
  MOZ_ASSERT(zeal <= unsigned(ZealMode::Limit));

  if (verifyPreData) {
    VerifyBarriers(rt, PreBarrierVerifier);
  }

  if (zeal == 0) {
    if (hasZealMode(ZealMode::GenerationalGC)) {
      evictNursery(JS::GCReason::DEBUG_GC);
      nursery().leaveZealMode();
    }

    if (isIncrementalGCInProgress()) {
      finishGC(JS::GCReason::DEBUG_GC);
    }
  }

  ZealMode zealMode = ZealMode(zeal);
  if (zealMode == ZealMode::GenerationalGC) {
    evictNursery(JS::GCReason::DEBUG_GC);
    nursery().enterZealMode();
  }

  // Some modes are mutually exclusive. If we're setting one of those, we
  // first reset all of them.
  if (IncrementalSliceZealModes.contains(zealMode)) {
    for (auto mode : IncrementalSliceZealModes) {
      clearZealMode(mode);
    }
  }

  bool schedule = zealMode >= ZealMode::Alloc;
  if (zeal != 0) {
    zealModeBits |= 1 << unsigned(zeal);
  } else {
    zealModeBits = 0;
  }
  zealFrequency = frequency;
  nextScheduled = schedule ? frequency : 0;
}

void GCRuntime::unsetZeal(uint8_t zeal) {
  MOZ_ASSERT(zeal <= unsigned(ZealMode::Limit));
  ZealMode zealMode = ZealMode(zeal);

  if (!hasZealMode(zealMode)) {
    return;
  }

  if (verifyPreData) {
    VerifyBarriers(rt, PreBarrierVerifier);
  }

  if (zealMode == ZealMode::GenerationalGC) {
    evictNursery(JS::GCReason::DEBUG_GC);
    nursery().leaveZealMode();
  }

  clearZealMode(zealMode);

  if (zealModeBits == 0) {
    if (isIncrementalGCInProgress()) {
      finishGC(JS::GCReason::DEBUG_GC);
    }

    zealFrequency = 0;
    nextScheduled = 0;
  }
}

void GCRuntime::setNextScheduled(uint32_t count) { nextScheduled = count; }

static bool ParseZealModeName(const CharRange& text, uint32_t* modeOut) {
  struct ModeInfo {
    const char* name;
    size_t length;
    uint32_t value;
  };

  static const ModeInfo zealModes[] = {{"None", 0},
#  define ZEAL_MODE(name, value) {#name, strlen(#name), value},
                                       JS_FOR_EACH_ZEAL_MODE(ZEAL_MODE)
#  undef ZEAL_MODE
  };

  for (auto mode : zealModes) {
    if (text.length() == mode.length &&
        memcmp(text.begin().get(), mode.name, mode.length) == 0) {
      *modeOut = mode.value;
      return true;
    }
  }

  return false;
}

static bool ParseZealModeNumericParam(const CharRange& text,
                                      uint32_t* paramOut) {
  if (text.length() == 0) {
    return false;
  }

  for (auto c : text) {
    if (!mozilla::IsAsciiDigit(c)) {
      return false;
    }
  }

  *paramOut = atoi(text.begin().get());
  return true;
}

static bool PrintZealHelpAndFail() {
  fprintf(stderr, "Format: JS_GC_ZEAL=level(;level)*[,N]\n");
  fputs(ZealModeHelpText, stderr);
  return false;
}

bool GCRuntime::parseAndSetZeal(const char* str) {
  // Set the zeal mode from a string consisting of one or more mode specifiers
  // separated by ';', optionally followed by a ',' and the trigger frequency.
  // The mode specifiers can by a mode name or its number.

  auto text = CharRange(str, strlen(str));

  CharRangeVector parts;
  if (!SplitStringBy(text, ',', &parts)) {
    return false;
  }

  if (parts.length() == 0 || parts.length() > 2) {
    return PrintZealHelpAndFail();
  }

  uint32_t frequency = JS_DEFAULT_ZEAL_FREQ;
  if (parts.length() == 2 && !ParseZealModeNumericParam(parts[1], &frequency)) {
    return PrintZealHelpAndFail();
  }

  CharRangeVector modes;
  if (!SplitStringBy(parts[0], ';', &modes)) {
    return false;
  }

  for (const auto& descr : modes) {
    uint32_t mode;
    if (!ParseZealModeName(descr, &mode) &&
        !(ParseZealModeNumericParam(descr, &mode) &&
          mode <= unsigned(ZealMode::Limit))) {
      return PrintZealHelpAndFail();
    }

    setZeal(mode, frequency);
  }

  return true;
}

const char* js::gc::AllocKindName(AllocKind kind) {
  static const char* const names[] = {
#  define EXPAND_THING_NAME(allocKind, _1, _2, _3, _4, _5, _6) #allocKind,
      FOR_EACH_ALLOCKIND(EXPAND_THING_NAME)
#  undef EXPAND_THING_NAME
  };
  static_assert(std::size(names) == AllocKindCount,
                "names array should have an entry for every AllocKind");

  size_t i = size_t(kind);
  MOZ_ASSERT(i < std::size(names));
  return names[i];
}

void js::gc::DumpArenaInfo() {
  fprintf(stderr, "Arena header size: %zu\n\n", ArenaHeaderSize);

  fprintf(stderr, "GC thing kinds:\n");
  fprintf(stderr, "%25s %8s %8s %8s\n",
          "AllocKind:", "Size:", "Count:", "Padding:");
  for (auto kind : AllAllocKinds()) {
    fprintf(stderr, "%25s %8zu %8zu %8zu\n", AllocKindName(kind),
            Arena::thingSize(kind), Arena::thingsPerArena(kind),
            Arena::firstThingOffset(kind) - ArenaHeaderSize);
  }
}

#endif  // JS_GC_ZEAL

bool GCRuntime::init(uint32_t maxbytes) {
  MOZ_ASSERT(!wasInitialized());

  MOZ_ASSERT(SystemPageSize());
  Arena::checkLookupTables();

  if (!TlsGCContext.init()) {
    return false;
  }
  TlsGCContext.set(&mainThreadContext.ref());

  updateHelperThreadCount();

#ifdef JS_GC_ZEAL
  const char* size = getenv("JSGC_MARK_STACK_LIMIT");
  if (size) {
    maybeMarkStackLimit = atoi(size);
  }
#endif

  if (!updateMarkersVector()) {
    return false;
  }

  {
    AutoLockGCBgAlloc lock(this);

    MOZ_ALWAYS_TRUE(tunables.setParameter(JSGC_MAX_BYTES, maxbytes));

    if (!nursery().init(lock)) {
      return false;
    }
  }

#ifdef JS_GC_ZEAL
  const char* zealSpec = getenv("JS_GC_ZEAL");
  if (zealSpec && zealSpec[0] && !parseAndSetZeal(zealSpec)) {
    return false;
  }
#endif

  for (auto& marker : markers) {
    if (!marker->init()) {
      return false;
    }
  }

  if (!initSweepActions()) {
    return false;
  }

  UniquePtr<Zone> zone = MakeUnique<Zone>(rt, Zone::AtomsZone);
  if (!zone || !zone->init()) {
    return false;
  }

  // The atoms zone is stored as the first element of the zones vector.
  MOZ_ASSERT(zone->isAtomsZone());
  MOZ_ASSERT(zones().empty());
  MOZ_ALWAYS_TRUE(zones().reserve(1));  // ZonesVector has inline capacity 4.
  zones().infallibleAppend(zone.release());

  gcprobes::Init(this);

  initialized = true;
  return true;
}

void GCRuntime::finish() {
  MOZ_ASSERT(inPageLoadCount == 0);
  MOZ_ASSERT(!sharedAtomsZone_);

  // Wait for nursery background free to end and disable it to release memory.
  if (nursery().isEnabled()) {
    nursery().disable();
  }

  // Wait until the background finalization and allocation stops and the
  // helper thread shuts down before we forcefully release any remaining GC
  // memory.
  sweepTask.join();
  markTask.join();
  freeTask.join();
  allocTask.cancelAndWait();
  decommitTask.cancelAndWait();
#ifdef DEBUG
  {
    MOZ_ASSERT(dispatchedParallelTasks == 0);
    AutoLockHelperThreadState lock;
    MOZ_ASSERT(queuedParallelTasks.ref().isEmpty(lock));
  }
#endif

  releaseMarkingThreads();

#ifdef JS_GC_ZEAL
  // Free memory associated with GC verification.
  finishVerifier();
#endif

  // Delete all remaining zones.
  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    AutoSetThreadIsSweeping threadIsSweeping(rt->gcContext(), zone);
    for (CompartmentsInZoneIter comp(zone); !comp.done(); comp.next()) {
      for (RealmsInCompartmentIter realm(comp); !realm.done(); realm.next()) {
        js_delete(realm.get());
      }
      comp->realms().clear();
      js_delete(comp.get());
    }
    zone->compartments().clear();
    js_delete(zone.get());
  }

  zones().clear();

  FreeChunkPool(fullChunks_.ref());
  FreeChunkPool(availableChunks_.ref());
  FreeChunkPool(emptyChunks_.ref());

  TlsGCContext.set(nullptr);

  gcprobes::Finish(this);

  nursery().printTotalProfileTimes();
  stats().printTotalProfileTimes();
}

bool GCRuntime::freezeSharedAtomsZone() {
  // This is called just after permanent atoms and well-known symbols have been
  // created. At this point all existing atoms and symbols are permanent.
  //
  // This method makes the current atoms zone into a shared atoms zone and
  // removes it from the zones list. Everything in it is marked black. A new
  // empty atoms zone is created, where all atoms local to this runtime will
  // live.
  //
  // The shared atoms zone will not be collected until shutdown when it is
  // returned to the zone list by restoreSharedAtomsZone().

  MOZ_ASSERT(rt->isMainRuntime());
  MOZ_ASSERT(!sharedAtomsZone_);
  MOZ_ASSERT(zones().length() == 1);
  MOZ_ASSERT(atomsZone());
  MOZ_ASSERT(!atomsZone()->wasGCStarted());
  MOZ_ASSERT(!atomsZone()->needsIncrementalBarrier());

  AutoAssertEmptyNursery nurseryIsEmpty(rt->mainContextFromOwnThread());

  atomsZone()->arenas.clearFreeLists();

  for (auto kind : AllAllocKinds()) {
    for (auto thing =
             atomsZone()->cellIterUnsafe<TenuredCell>(kind, nurseryIsEmpty);
         !thing.done(); thing.next()) {
      TenuredCell* cell = thing.getCell();
      MOZ_ASSERT((cell->is<JSString>() &&
                  cell->as<JSString>()->isPermanentAndMayBeShared()) ||
                 (cell->is<JS::Symbol>() &&
                  cell->as<JS::Symbol>()->isPermanentAndMayBeShared()));
      cell->markBlack();
    }
  }

  sharedAtomsZone_ = atomsZone();
  zones().clear();

  UniquePtr<Zone> zone = MakeUnique<Zone>(rt, Zone::AtomsZone);
  if (!zone || !zone->init()) {
    return false;
  }

  MOZ_ASSERT(zone->isAtomsZone());
  zones().infallibleAppend(zone.release());

  return true;
}

void GCRuntime::restoreSharedAtomsZone() {
  // Return the shared atoms zone to the zone list. This allows the contents of
  // the shared atoms zone to be collected when the parent runtime is shut down.

  if (!sharedAtomsZone_) {
    return;
  }

  MOZ_ASSERT(rt->isMainRuntime());
  MOZ_ASSERT(rt->childRuntimeCount == 0);

  AutoEnterOOMUnsafeRegion oomUnsafe;
  if (!zones().append(sharedAtomsZone_)) {
    oomUnsafe.crash("restoreSharedAtomsZone");
  }

  sharedAtomsZone_ = nullptr;
}

bool GCRuntime::setParameter(JSContext* cx, JSGCParamKey key, uint32_t value) {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));

  AutoStopVerifyingBarriers pauseVerification(rt, false);
  FinishGC(cx);
  waitBackgroundSweepEnd();

  AutoLockGC lock(this);
  return setParameter(key, value, lock);
}

static bool IsGCThreadParameter(JSGCParamKey key) {
  return key == JSGC_HELPER_THREAD_RATIO || key == JSGC_MAX_HELPER_THREADS ||
         key == JSGC_MARKING_THREAD_COUNT;
}

bool GCRuntime::setParameter(JSGCParamKey key, uint32_t value,
                             AutoLockGC& lock) {
  switch (key) {
    case JSGC_SLICE_TIME_BUDGET_MS:
      defaultTimeBudgetMS_ = value;
      break;
    case JSGC_INCREMENTAL_GC_ENABLED:
      setIncrementalGCEnabled(value != 0);
      break;
    case JSGC_PER_ZONE_GC_ENABLED:
      perZoneGCEnabled = value != 0;
      break;
    case JSGC_COMPACTING_ENABLED:
      compactingEnabled = value != 0;
      break;
    case JSGC_PARALLEL_MARKING_ENABLED:
      setParallelMarkingEnabled(value != 0);
      break;
    case JSGC_INCREMENTAL_WEAKMAP_ENABLED:
      for (auto& marker : markers) {
        marker->incrementalWeakMapMarkingEnabled = value != 0;
      }
      break;
    case JSGC_MIN_EMPTY_CHUNK_COUNT:
      setMinEmptyChunkCount(value, lock);
      break;
    case JSGC_MAX_EMPTY_CHUNK_COUNT:
      setMaxEmptyChunkCount(value, lock);
      break;
    default:
      if (IsGCThreadParameter(key)) {
        return setThreadParameter(key, value, lock);
      }

      if (!tunables.setParameter(key, value)) {
        return false;
      }
      updateAllGCStartThresholds();
  }

  return true;
}

bool GCRuntime::setThreadParameter(JSGCParamKey key, uint32_t value,
                                   AutoLockGC& lock) {
  if (rt->parentRuntime) {
    // Don't allow these to be set for worker runtimes.
    return false;
  }

  switch (key) {
    case JSGC_HELPER_THREAD_RATIO:
      if (value == 0) {
        return false;
      }
      helperThreadRatio = double(value) / 100.0;
      break;
    case JSGC_MAX_HELPER_THREADS:
      if (value == 0) {
        return false;
      }
      maxHelperThreads = value;
      break;
    case JSGC_MARKING_THREAD_COUNT:
      markingThreadCount = std::min(size_t(value), MaxParallelWorkers);
      break;
    default:
      MOZ_CRASH("Unexpected parameter key");
  }

  updateHelperThreadCount();
  initOrDisableParallelMarking();

  return true;
}

void GCRuntime::resetParameter(JSContext* cx, JSGCParamKey key) {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));

  AutoStopVerifyingBarriers pauseVerification(rt, false);
  FinishGC(cx);
  waitBackgroundSweepEnd();

  AutoLockGC lock(this);
  resetParameter(key, lock);
}

void GCRuntime::resetParameter(JSGCParamKey key, AutoLockGC& lock) {
  switch (key) {
    case JSGC_SLICE_TIME_BUDGET_MS:
      defaultTimeBudgetMS_ = TuningDefaults::DefaultTimeBudgetMS;
      break;
    case JSGC_INCREMENTAL_GC_ENABLED:
      setIncrementalGCEnabled(TuningDefaults::IncrementalGCEnabled);
      break;
    case JSGC_PER_ZONE_GC_ENABLED:
      perZoneGCEnabled = TuningDefaults::PerZoneGCEnabled;
      break;
    case JSGC_COMPACTING_ENABLED:
      compactingEnabled = TuningDefaults::CompactingEnabled;
      break;
    case JSGC_PARALLEL_MARKING_ENABLED:
      setParallelMarkingEnabled(TuningDefaults::ParallelMarkingEnabled);
      break;
    case JSGC_INCREMENTAL_WEAKMAP_ENABLED:
      for (auto& marker : markers) {
        marker->incrementalWeakMapMarkingEnabled =
            TuningDefaults::IncrementalWeakMapMarkingEnabled;
      }
      break;
    case JSGC_MIN_EMPTY_CHUNK_COUNT:
      setMinEmptyChunkCount(TuningDefaults::MinEmptyChunkCount, lock);
      break;
    case JSGC_MAX_EMPTY_CHUNK_COUNT:
      setMaxEmptyChunkCount(TuningDefaults::MaxEmptyChunkCount, lock);
      break;
    default:
      if (IsGCThreadParameter(key)) {
        resetThreadParameter(key, lock);
        return;
      }

      tunables.resetParameter(key);
      updateAllGCStartThresholds();
  }
}

void GCRuntime::resetThreadParameter(JSGCParamKey key, AutoLockGC& lock) {
  if (rt->parentRuntime) {
    return;
  }

  switch (key) {
    case JSGC_HELPER_THREAD_RATIO:
      helperThreadRatio = TuningDefaults::HelperThreadRatio;
      break;
    case JSGC_MAX_HELPER_THREADS:
      maxHelperThreads = TuningDefaults::MaxHelperThreads;
      break;
    case JSGC_MARKING_THREAD_COUNT:
      markingThreadCount = 0;
      break;
    default:
      MOZ_CRASH("Unexpected parameter key");
  }

  updateHelperThreadCount();
  initOrDisableParallelMarking();
}

uint32_t GCRuntime::getParameter(JSGCParamKey key) {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));
  AutoLockGC lock(this);
  return getParameter(key, lock);
}

uint32_t GCRuntime::getParameter(JSGCParamKey key, const AutoLockGC& lock) {
  switch (key) {
    case JSGC_BYTES:
      return uint32_t(heapSize.bytes());
    case JSGC_NURSERY_BYTES:
      return nursery().capacity();
    case JSGC_NUMBER:
      return uint32_t(number);
    case JSGC_MAJOR_GC_NUMBER:
      return uint32_t(majorGCNumber);
    case JSGC_MINOR_GC_NUMBER:
      return uint32_t(minorGCNumber);
    case JSGC_INCREMENTAL_GC_ENABLED:
      return incrementalGCEnabled;
    case JSGC_PER_ZONE_GC_ENABLED:
      return perZoneGCEnabled;
    case JSGC_UNUSED_CHUNKS:
      return uint32_t(emptyChunks(lock).count());
    case JSGC_TOTAL_CHUNKS:
      return uint32_t(fullChunks(lock).count() + availableChunks(lock).count() +
                      emptyChunks(lock).count());
    case JSGC_SLICE_TIME_BUDGET_MS:
      MOZ_RELEASE_ASSERT(defaultTimeBudgetMS_ >= 0);
      MOZ_RELEASE_ASSERT(defaultTimeBudgetMS_ <= UINT32_MAX);
      return uint32_t(defaultTimeBudgetMS_);
    case JSGC_MIN_EMPTY_CHUNK_COUNT:
      return minEmptyChunkCount(lock);
    case JSGC_MAX_EMPTY_CHUNK_COUNT:
      return maxEmptyChunkCount(lock);
    case JSGC_COMPACTING_ENABLED:
      return compactingEnabled;
    case JSGC_PARALLEL_MARKING_ENABLED:
      return parallelMarkingEnabled;
    case JSGC_INCREMENTAL_WEAKMAP_ENABLED:
      return marker().incrementalWeakMapMarkingEnabled;
    case JSGC_CHUNK_BYTES:
      return ChunkSize;
    case JSGC_HELPER_THREAD_RATIO:
      MOZ_ASSERT(helperThreadRatio > 0.0);
      return uint32_t(helperThreadRatio * 100.0);
    case JSGC_MAX_HELPER_THREADS:
      MOZ_ASSERT(maxHelperThreads <= UINT32_MAX);
      return maxHelperThreads;
    case JSGC_HELPER_THREAD_COUNT:
      return helperThreadCount;
    case JSGC_MARKING_THREAD_COUNT:
      return markingThreadCount;
    case JSGC_SYSTEM_PAGE_SIZE_KB:
      return SystemPageSize() / 1024;
    default:
      return tunables.getParameter(key);
  }
}

#ifdef JS_GC_ZEAL
void GCRuntime::setMarkStackLimit(size_t limit, AutoLockGC& lock) {
  MOZ_ASSERT(!JS::RuntimeHeapIsBusy());

  maybeMarkStackLimit = limit;

  AutoUnlockGC unlock(lock);
  AutoStopVerifyingBarriers pauseVerification(rt, false);
  for (auto& marker : markers) {
    marker->setMaxCapacity(limit);
  }
}
#endif

void GCRuntime::setIncrementalGCEnabled(bool enabled) {
  incrementalGCEnabled = enabled;
}

void GCRuntime::updateHelperThreadCount() {
  if (!CanUseExtraThreads()) {
    // startTask will run the work on the main thread if the count is 1.
    MOZ_ASSERT(helperThreadCount == 1);
    markingThreadCount = 1;

    AutoLockHelperThreadState lock;
    maxParallelThreads = 1;
    return;
  }

  // Number of extra threads required during parallel marking to ensure we can
  // start the necessary marking tasks. Background free and background
  // allocation may already be running and we want to avoid these tasks blocking
  // marking. In real configurations there will be enough threads that this
  // won't affect anything.
  static constexpr size_t SpareThreadsDuringParallelMarking = 2;

  // Calculate the target thread count for GC parallel tasks.
  size_t cpuCount = GetHelperThreadCPUCount();
  helperThreadCount =
      std::clamp(size_t(double(cpuCount) * helperThreadRatio.ref()), size_t(1),
                 maxHelperThreads.ref());

  // Calculate the overall target thread count taking into account the separate
  // parameter for parallel marking threads. Add spare threads to avoid blocking
  // parallel marking when there is other GC work happening.
  size_t targetCount =
      std::max(helperThreadCount.ref(),
               markingThreadCount.ref() + SpareThreadsDuringParallelMarking);

  // Attempt to create extra threads if possible. This is not supported when
  // using an external thread pool.
  AutoLockHelperThreadState lock;
  (void)HelperThreadState().ensureThreadCount(targetCount, lock);

  // Limit all thread counts based on the number of threads available, which may
  // be fewer than requested.
  size_t availableThreadCount = GetHelperThreadCount();
  MOZ_ASSERT(availableThreadCount != 0);
  targetCount = std::min(targetCount, availableThreadCount);
  helperThreadCount = std::min(helperThreadCount.ref(), availableThreadCount);
  markingThreadCount =
      std::min(markingThreadCount.ref(),
               availableThreadCount - SpareThreadsDuringParallelMarking);

  // Update the maximum number of threads that will be used for GC work.
  maxParallelThreads = targetCount;
}

size_t GCRuntime::markingWorkerCount() const {
  if (!CanUseExtraThreads() || !parallelMarkingEnabled) {
    return 1;
  }

  if (markingThreadCount) {
    return markingThreadCount;
  }

  // Limit parallel marking to use at most two threads initially.
  return 2;
}

#ifdef DEBUG
void GCRuntime::assertNoMarkingWork() const {
  for (const auto& marker : markers) {
    MOZ_ASSERT(marker->isDrained());
  }
  MOZ_ASSERT(!hasDelayedMarking());
}
#endif

bool GCRuntime::setParallelMarkingEnabled(bool enabled) {
  if (enabled == parallelMarkingEnabled) {
    return true;
  }

  parallelMarkingEnabled = enabled;
  return initOrDisableParallelMarking();
}

bool GCRuntime::initOrDisableParallelMarking() {
  // Attempt to initialize parallel marking state or disable it on failure. This
  // is called when parallel marking is enabled or disabled.

  MOZ_ASSERT(markers.length() != 0);

  if (updateMarkersVector()) {
    return true;
  }

  // Failed to initialize parallel marking so disable it instead.
  MOZ_ASSERT(parallelMarkingEnabled);
  parallelMarkingEnabled = false;
  MOZ_ALWAYS_TRUE(updateMarkersVector());
  return false;
}

void GCRuntime::releaseMarkingThreads() {
  MOZ_ALWAYS_TRUE(reserveMarkingThreads(0));
}

bool GCRuntime::reserveMarkingThreads(size_t newCount) {
  if (reservedMarkingThreads == newCount) {
    return true;
  }

  // Update the helper thread system's global count by subtracting this
  // runtime's current contribution |reservedMarkingThreads| and adding the new
  // contribution |newCount|.

  AutoLockHelperThreadState lock;
  auto& globalCount = HelperThreadState().gcParallelMarkingThreads;
  MOZ_ASSERT(globalCount >= reservedMarkingThreads);
  size_t newGlobalCount = globalCount - reservedMarkingThreads + newCount;
  if (newGlobalCount > HelperThreadState().threadCount) {
    // Not enough total threads.
    return false;
  }

  globalCount = newGlobalCount;
  reservedMarkingThreads = newCount;
  return true;
}

size_t GCRuntime::getMaxParallelThreads() const {
  AutoLockHelperThreadState lock;
  return maxParallelThreads.ref();
}

bool GCRuntime::updateMarkersVector() {
  MOZ_ASSERT(helperThreadCount >= 1,
             "There must always be at least one mark task");
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));
  assertNoMarkingWork();

  // Limit worker count to number of GC parallel tasks that can run
  // concurrently, otherwise one thread can deadlock waiting on another.
  size_t targetCount = std::min(markingWorkerCount(), getMaxParallelThreads());

  if (rt->isMainRuntime()) {
    // For the main runtime, reserve helper threads as long as parallel marking
    // is enabled. Worker runtimes may not mark in parallel if there are
    // insufficient threads available at the time.
    size_t threadsToReserve = targetCount > 1 ? targetCount : 0;
    if (!reserveMarkingThreads(threadsToReserve)) {
      return false;
    }
  }

  if (markers.length() > targetCount) {
    return markers.resize(targetCount);
  }

  while (markers.length() < targetCount) {
    auto marker = MakeUnique<GCMarker>(rt);
    if (!marker) {
      return false;
    }

#ifdef JS_GC_ZEAL
    if (maybeMarkStackLimit) {
      marker->setMaxCapacity(maybeMarkStackLimit);
    }
#endif

    if (!marker->init()) {
      return false;
    }

    if (!markers.emplaceBack(std::move(marker))) {
      return false;
    }
  }

  return true;
}

template <typename F>
static bool EraseCallback(CallbackVector<F>& vector, F callback) {
  for (Callback<F>* p = vector.begin(); p != vector.end(); p++) {
    if (p->op == callback) {
      vector.erase(p);
      return true;
    }
  }

  return false;
}

template <typename F>
static bool EraseCallback(CallbackVector<F>& vector, F callback, void* data) {
  for (Callback<F>* p = vector.begin(); p != vector.end(); p++) {
    if (p->op == callback && p->data == data) {
      vector.erase(p);
      return true;
    }
  }

  return false;
}

bool GCRuntime::addBlackRootsTracer(JSTraceDataOp traceOp, void* data) {
  AssertHeapIsIdle();
  return blackRootTracers.ref().append(Callback<JSTraceDataOp>(traceOp, data));
}

void GCRuntime::removeBlackRootsTracer(JSTraceDataOp traceOp, void* data) {
  // Can be called from finalizers
  MOZ_ALWAYS_TRUE(EraseCallback(blackRootTracers.ref(), traceOp));
}

void GCRuntime::setGrayRootsTracer(JSGrayRootsTracer traceOp, void* data) {
  AssertHeapIsIdle();
  grayRootTracer.ref() = {traceOp, data};
}

void GCRuntime::clearBlackAndGrayRootTracers() {
  MOZ_ASSERT(rt->isBeingDestroyed());
  blackRootTracers.ref().clear();
  setGrayRootsTracer(nullptr, nullptr);
}

void GCRuntime::setGCCallback(JSGCCallback callback, void* data) {
  gcCallback.ref() = {callback, data};
}

void GCRuntime::callGCCallback(JSGCStatus status, JS::GCReason reason) const {
  const auto& callback = gcCallback.ref();
  MOZ_ASSERT(callback.op);
  callback.op(rt->mainContextFromOwnThread(), status, reason, callback.data);
}

void GCRuntime::setObjectsTenuredCallback(JSObjectsTenuredCallback callback,
                                          void* data) {
  tenuredCallback.ref() = {callback, data};
}

void GCRuntime::callObjectsTenuredCallback() {
  JS::AutoSuppressGCAnalysis nogc;
  const auto& callback = tenuredCallback.ref();
  if (callback.op) {
    callback.op(rt->mainContextFromOwnThread(), callback.data);
  }
}

bool GCRuntime::addFinalizeCallback(JSFinalizeCallback callback, void* data) {
  return finalizeCallbacks.ref().append(
      Callback<JSFinalizeCallback>(callback, data));
}

void GCRuntime::removeFinalizeCallback(JSFinalizeCallback callback) {
  MOZ_ALWAYS_TRUE(EraseCallback(finalizeCallbacks.ref(), callback));
}

void GCRuntime::callFinalizeCallbacks(JS::GCContext* gcx,
                                      JSFinalizeStatus status) const {
  for (const auto& p : finalizeCallbacks.ref()) {
    p.op(gcx, status, p.data);
  }
}

void GCRuntime::setHostCleanupFinalizationRegistryCallback(
    JSHostCleanupFinalizationRegistryCallback callback, void* data) {
  hostCleanupFinalizationRegistryCallback.ref() = {callback, data};
}

void GCRuntime::callHostCleanupFinalizationRegistryCallback(
    JSFunction* doCleanup, GlobalObject* incumbentGlobal) {
  JS::AutoSuppressGCAnalysis nogc;
  const auto& callback = hostCleanupFinalizationRegistryCallback.ref();
  if (callback.op) {
    callback.op(doCleanup, incumbentGlobal, callback.data);
  }
}

bool GCRuntime::addWeakPointerZonesCallback(JSWeakPointerZonesCallback callback,
                                            void* data) {
  return updateWeakPointerZonesCallbacks.ref().append(
      Callback<JSWeakPointerZonesCallback>(callback, data));
}

void GCRuntime::removeWeakPointerZonesCallback(
    JSWeakPointerZonesCallback callback) {
  MOZ_ALWAYS_TRUE(
      EraseCallback(updateWeakPointerZonesCallbacks.ref(), callback));
}

void GCRuntime::callWeakPointerZonesCallbacks(JSTracer* trc) const {
  for (auto const& p : updateWeakPointerZonesCallbacks.ref()) {
    p.op(trc, p.data);
  }
}

bool GCRuntime::addWeakPointerCompartmentCallback(
    JSWeakPointerCompartmentCallback callback, void* data) {
  return updateWeakPointerCompartmentCallbacks.ref().append(
      Callback<JSWeakPointerCompartmentCallback>(callback, data));
}

void GCRuntime::removeWeakPointerCompartmentCallback(
    JSWeakPointerCompartmentCallback callback) {
  MOZ_ALWAYS_TRUE(
      EraseCallback(updateWeakPointerCompartmentCallbacks.ref(), callback));
}

void GCRuntime::callWeakPointerCompartmentCallbacks(
    JSTracer* trc, JS::Compartment* comp) const {
  for (auto const& p : updateWeakPointerCompartmentCallbacks.ref()) {
    p.op(trc, comp, p.data);
  }
}

JS::GCSliceCallback GCRuntime::setSliceCallback(JS::GCSliceCallback callback) {
  return stats().setSliceCallback(callback);
}

bool GCRuntime::addNurseryCollectionCallback(
    JS::GCNurseryCollectionCallback callback, void* data) {
  return nurseryCollectionCallbacks.ref().append(
      Callback<JS::GCNurseryCollectionCallback>(callback, data));
}

void GCRuntime::removeNurseryCollectionCallback(
    JS::GCNurseryCollectionCallback callback, void* data) {
  MOZ_ALWAYS_TRUE(
      EraseCallback(nurseryCollectionCallbacks.ref(), callback, data));
}

void GCRuntime::callNurseryCollectionCallbacks(JS::GCNurseryProgress progress,
                                               JS::GCReason reason) {
  for (auto const& p : nurseryCollectionCallbacks.ref()) {
    p.op(rt->mainContextFromOwnThread(), progress, reason, p.data);
  }
}

JS::DoCycleCollectionCallback GCRuntime::setDoCycleCollectionCallback(
    JS::DoCycleCollectionCallback callback) {
  const auto prior = gcDoCycleCollectionCallback.ref();
  gcDoCycleCollectionCallback.ref() = {callback, nullptr};
  return prior.op;
}

void GCRuntime::callDoCycleCollectionCallback(JSContext* cx) {
  const auto& callback = gcDoCycleCollectionCallback.ref();
  if (callback.op) {
    callback.op(cx);
  }
}

bool GCRuntime::addRoot(Value* vp, const char* name) {
  /*
   * Sometimes Firefox will hold weak references to objects and then convert
   * them to strong references by calling AddRoot (e.g., via PreserveWrapper,
   * or ModifyBusyCount in workers). We need a read barrier to cover these
   * cases.
   */
  MOZ_ASSERT(vp);
  Value value = *vp;
  if (value.isGCThing()) {
    ValuePreWriteBarrier(value);
  }

  return rootsHash.ref().put(vp, name);
}

void GCRuntime::removeRoot(Value* vp) {
  rootsHash.ref().remove(vp);
  notifyRootsRemoved();
}

/* Compacting GC */

bool js::gc::IsCurrentlyAnimating(const TimeStamp& lastAnimationTime,
                                  const TimeStamp& currentTime) {
  // Assume that we're currently animating if js::NotifyAnimationActivity has
  // been called in the last second.
  static const auto oneSecond = TimeDuration::FromSeconds(1);
  return !lastAnimationTime.IsNull() &&
         currentTime < (lastAnimationTime + oneSecond);
}

static bool DiscardedCodeRecently(Zone* zone, const TimeStamp& currentTime) {
  static const auto thirtySeconds = TimeDuration::FromSeconds(30);
  return !zone->lastDiscardedCodeTime().IsNull() &&
         currentTime < (zone->lastDiscardedCodeTime() + thirtySeconds);
}

bool GCRuntime::shouldCompact() {
  // Compact on shrinking GC if enabled.  Skip compacting in incremental GCs
  // if we are currently animating, unless the user is inactive or we're
  // responding to memory pressure.

  if (!isShrinkingGC() || !isCompactingGCEnabled()) {
    return false;
  }

  if (initialReason == JS::GCReason::USER_INACTIVE ||
      initialReason == JS::GCReason::MEM_PRESSURE) {
    return true;
  }

  return !isIncremental ||
         !IsCurrentlyAnimating(rt->lastAnimationTime, TimeStamp::Now());
}

bool GCRuntime::isCompactingGCEnabled() const {
  return compactingEnabled &&
         rt->mainContextFromOwnThread()->compactingDisabledCount == 0;
}

JS_PUBLIC_API void JS::SetCreateGCSliceBudgetCallback(
    JSContext* cx, JS::CreateSliceBudgetCallback cb) {
  cx->runtime()->gc.createBudgetCallback = cb;
}

void TimeBudget::setDeadlineFromNow() { deadline = TimeStamp::Now() + budget; }

SliceBudget::SliceBudget(TimeBudget time, InterruptRequestFlag* interrupt)
    : counter(StepsPerExpensiveCheck),
      interruptRequested(interrupt),
      budget(TimeBudget(time)) {
  budget.as<TimeBudget>().setDeadlineFromNow();
}

SliceBudget::SliceBudget(WorkBudget work)
    : counter(work.budget), interruptRequested(nullptr), budget(work) {}

int SliceBudget::describe(char* buffer, size_t maxlen) const {
  if (isUnlimited()) {
    return snprintf(buffer, maxlen, "unlimited");
  }

  if (isWorkBudget()) {
    return snprintf(buffer, maxlen, "work(%" PRId64 ")", workBudget());
  }

  const char* interruptStr = "";
  if (interruptRequested) {
    interruptStr = interrupted ? "INTERRUPTED " : "interruptible ";
  }
  const char* extra = "";
  if (idle) {
    extra = extended ? " (started idle but extended)" : " (idle)";
  }
  return snprintf(buffer, maxlen, "%s%" PRId64 "ms%s", interruptStr,
                  timeBudget(), extra);
}

bool SliceBudget::checkOverBudget() {
  MOZ_ASSERT(counter <= 0);
  MOZ_ASSERT(!isUnlimited());

  if (isWorkBudget()) {
    return true;
  }

  if (interruptRequested && *interruptRequested) {
    interrupted = true;
  }

  if (interrupted) {
    return true;
  }

  if (TimeStamp::Now() >= budget.as<TimeBudget>().deadline) {
    return true;
  }

  counter = StepsPerExpensiveCheck;
  return false;
}

void GCRuntime::requestMajorGC(JS::GCReason reason) {
  MOZ_ASSERT_IF(reason != JS::GCReason::BG_TASK_FINISHED,
                !CurrentThreadIsPerformingGC());

  if (majorGCRequested()) {
    return;
  }

  majorGCTriggerReason = reason;
  rt->mainContextFromAnyThread()->requestInterrupt(InterruptReason::MajorGC);
}

bool GCRuntime::triggerGC(JS::GCReason reason) {
  /*
   * Don't trigger GCs if this is being called off the main thread from
   * onTooMuchMalloc().
   */
  if (!CurrentThreadCanAccessRuntime(rt)) {
    return false;
  }

  /* GC is already running. */
  if (JS::RuntimeHeapIsCollecting()) {
    return false;
  }

  JS::PrepareForFullGC(rt->mainContextFromOwnThread());
  requestMajorGC(reason);
  return true;
}

void GCRuntime::maybeTriggerGCAfterAlloc(Zone* zone) {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));
  MOZ_ASSERT(!JS::RuntimeHeapIsCollecting());

  TriggerResult trigger =
      checkHeapThreshold(zone, zone->gcHeapSize, zone->gcHeapThreshold);

  if (trigger.shouldTrigger) {
    // Start or continue an in progress incremental GC. We do this to try to
    // avoid performing non-incremental GCs on zones which allocate a lot of
    // data, even when incremental slices can't be triggered via scheduling in
    // the event loop.
    triggerZoneGC(zone, JS::GCReason::ALLOC_TRIGGER, trigger.usedBytes,
                  trigger.thresholdBytes);
  }
}

void js::gc::MaybeMallocTriggerZoneGC(JSRuntime* rt, ZoneAllocator* zoneAlloc,
                                      const HeapSize& heap,
                                      const HeapThreshold& threshold,
                                      JS::GCReason reason) {
  rt->gc.maybeTriggerGCAfterMalloc(Zone::from(zoneAlloc), heap, threshold,
                                   reason);
}

void GCRuntime::maybeTriggerGCAfterMalloc(Zone* zone) {
  if (maybeTriggerGCAfterMalloc(zone, zone->mallocHeapSize,
                                zone->mallocHeapThreshold,
                                JS::GCReason::TOO_MUCH_MALLOC)) {
    return;
  }

  maybeTriggerGCAfterMalloc(zone, zone->jitHeapSize, zone->jitHeapThreshold,
                            JS::GCReason::TOO_MUCH_JIT_CODE);
}

bool GCRuntime::maybeTriggerGCAfterMalloc(Zone* zone, const HeapSize& heap,
                                          const HeapThreshold& threshold,
                                          JS::GCReason reason) {
  // Ignore malloc during sweeping, for example when we resize hash tables.
  if (heapState() != JS::HeapState::Idle) {
    return false;
  }

  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));

  TriggerResult trigger = checkHeapThreshold(zone, heap, threshold);
  if (!trigger.shouldTrigger) {
    return false;
  }

  // Trigger a zone GC. budgetIncrementalGC() will work out whether to do an
  // incremental or non-incremental collection.
  triggerZoneGC(zone, reason, trigger.usedBytes, trigger.thresholdBytes);
  return true;
}

TriggerResult GCRuntime::checkHeapThreshold(
    Zone* zone, const HeapSize& heapSize, const HeapThreshold& heapThreshold) {
  MOZ_ASSERT_IF(heapThreshold.hasSliceThreshold(), zone->wasGCStarted());

  size_t usedBytes = heapSize.bytes();
  size_t thresholdBytes = heapThreshold.hasSliceThreshold()
                              ? heapThreshold.sliceBytes()
                              : heapThreshold.startBytes();

  // The incremental limit will be checked if we trigger a GC slice.
  MOZ_ASSERT(thresholdBytes <= heapThreshold.incrementalLimitBytes());

  return TriggerResult{usedBytes >= thresholdBytes, usedBytes, thresholdBytes};
}

bool GCRuntime::triggerZoneGC(Zone* zone, JS::GCReason reason, size_t used,
                              size_t threshold) {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));

  /* GC is already running. */
  if (JS::RuntimeHeapIsBusy()) {
    return false;
  }

#ifdef JS_GC_ZEAL
  if (hasZealMode(ZealMode::Alloc)) {
    MOZ_RELEASE_ASSERT(triggerGC(reason));
    return true;
  }
#endif

  if (zone->isAtomsZone()) {
    stats().recordTrigger(used, threshold);
    MOZ_RELEASE_ASSERT(triggerGC(reason));
    return true;
  }

  stats().recordTrigger(used, threshold);
  zone->scheduleGC();
  requestMajorGC(reason);
  return true;
}

void GCRuntime::maybeGC() {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));

#ifdef JS_GC_ZEAL
  if (hasZealMode(ZealMode::Alloc) || hasZealMode(ZealMode::RootsChange)) {
    JS::PrepareForFullGC(rt->mainContextFromOwnThread());
    gc(JS::GCOptions::Normal, JS::GCReason::DEBUG_GC);
    return;
  }
#endif

  (void)gcIfRequestedImpl(/* eagerOk = */ true);
}

JS::GCReason GCRuntime::wantMajorGC(bool eagerOk) {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));

  if (majorGCRequested()) {
    return majorGCTriggerReason;
  }

  if (isIncrementalGCInProgress() || !eagerOk) {
    return JS::GCReason::NO_REASON;
  }

  JS::GCReason reason = JS::GCReason::NO_REASON;
  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    if (checkEagerAllocTrigger(zone->gcHeapSize, zone->gcHeapThreshold) ||
        checkEagerAllocTrigger(zone->mallocHeapSize,
                               zone->mallocHeapThreshold)) {
      zone->scheduleGC();
      reason = JS::GCReason::EAGER_ALLOC_TRIGGER;
    }
  }

  return reason;
}

bool GCRuntime::checkEagerAllocTrigger(const HeapSize& size,
                                       const HeapThreshold& threshold) {
  size_t thresholdBytes =
      threshold.eagerAllocTrigger(schedulingState.inHighFrequencyGCMode());
  size_t usedBytes = size.bytes();
  if (usedBytes <= 1024 * 1024 || usedBytes < thresholdBytes) {
    return false;
  }

  stats().recordTrigger(usedBytes, thresholdBytes);
  return true;
}

bool GCRuntime::shouldDecommit() const {
  // If we're doing a shrinking GC we always decommit to release as much memory
  // as possible.
  if (cleanUpEverything) {
    return true;
  }

  // If we are allocating heavily enough to trigger "high frequency" GC then
  // skip decommit so that we do not compete with the mutator.
  return !schedulingState.inHighFrequencyGCMode();
}

void GCRuntime::startDecommit() {
  gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::DECOMMIT);

#ifdef DEBUG
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));
  MOZ_ASSERT(decommitTask.isIdle());

  {
    AutoLockGC lock(this);
    MOZ_ASSERT(fullChunks(lock).verify());
    MOZ_ASSERT(availableChunks(lock).verify());
    MOZ_ASSERT(emptyChunks(lock).verify());

    // Verify that all entries in the empty chunks pool are unused.
    for (ChunkPool::Iter chunk(emptyChunks(lock)); !chunk.done();
         chunk.next()) {
      MOZ_ASSERT(chunk->unused());
    }
  }
#endif

  if (!shouldDecommit()) {
    return;
  }

  {
    AutoLockGC lock(this);
    if (availableChunks(lock).empty() && !tooManyEmptyChunks(lock) &&
        emptyChunks(lock).empty()) {
      return;  // Nothing to do.
    }
  }

#ifdef DEBUG
  {
    AutoLockHelperThreadState lock;
    MOZ_ASSERT(!requestSliceAfterBackgroundTask);
  }
#endif

  if (useBackgroundThreads) {
    decommitTask.start();
    return;
  }

  decommitTask.runFromMainThread();
}

BackgroundDecommitTask::BackgroundDecommitTask(GCRuntime* gc)
    : GCParallelTask(gc, gcstats::PhaseKind::DECOMMIT) {}

void js::gc::BackgroundDecommitTask::run(AutoLockHelperThreadState& lock) {
  {
    AutoUnlockHelperThreadState unlock(lock);

    ChunkPool emptyChunksToFree;
    {
      AutoLockGC gcLock(gc);
      emptyChunksToFree = gc->expireEmptyChunkPool(gcLock);
    }

    FreeChunkPool(emptyChunksToFree);

    {
      AutoLockGC gcLock(gc);

      // To help minimize the total number of chunks needed over time, sort the
      // available chunks list so that we allocate into more-used chunks first.
      gc->availableChunks(gcLock).sort();

      if (DecommitEnabled()) {
        gc->decommitEmptyChunks(cancel_, gcLock);
        gc->decommitFreeArenas(cancel_, gcLock);
      }
    }
  }

  gc->maybeRequestGCAfterBackgroundTask(lock);
}

static inline bool CanDecommitWholeChunk(TenuredChunk* chunk) {
  return chunk->unused() && chunk->info.numArenasFreeCommitted != 0;
}

// Called from a background thread to decommit free arenas. Releases the GC
// lock.
void GCRuntime::decommitEmptyChunks(const bool& cancel, AutoLockGC& lock) {
  Vector<TenuredChunk*, 0, SystemAllocPolicy> chunksToDecommit;
  for (ChunkPool::Iter chunk(emptyChunks(lock)); !chunk.done(); chunk.next()) {
    if (CanDecommitWholeChunk(chunk) && !chunksToDecommit.append(chunk)) {
      onOutOfMallocMemory(lock);
      return;
    }
  }

  for (TenuredChunk* chunk : chunksToDecommit) {
    if (cancel) {
      break;
    }

    // Check whether something used the chunk while lock was released.
    if (!CanDecommitWholeChunk(chunk)) {
      continue;
    }

    // Temporarily remove the chunk while decommitting its memory so that the
    // mutator doesn't start allocating from it when we drop the lock.
    emptyChunks(lock).remove(chunk);

    {
      AutoUnlockGC unlock(lock);
      chunk->decommitAllArenas();
      MOZ_ASSERT(chunk->info.numArenasFreeCommitted == 0);
    }

    emptyChunks(lock).push(chunk);
  }
}

// Called from a background thread to decommit free arenas. Releases the GC
// lock.
void GCRuntime::decommitFreeArenas(const bool& cancel, AutoLockGC& lock) {
  MOZ_ASSERT(DecommitEnabled());

  // Since we release the GC lock while doing the decommit syscall below,
  // it is dangerous to iterate the available list directly, as the active
  // thread could modify it concurrently. Instead, we build and pass an
  // explicit Vector containing the Chunks we want to visit.
  Vector<TenuredChunk*, 0, SystemAllocPolicy> chunksToDecommit;
  for (ChunkPool::Iter chunk(availableChunks(lock)); !chunk.done();
       chunk.next()) {
    if (chunk->info.numArenasFreeCommitted != 0 &&
        !chunksToDecommit.append(chunk)) {
      onOutOfMallocMemory(lock);
      return;
    }
  }

  for (TenuredChunk* chunk : chunksToDecommit) {
    chunk->decommitFreeArenas(this, cancel, lock);
  }
}

// Do all possible decommit immediately from the current thread without
// releasing the GC lock or allocating any memory.
void GCRuntime::decommitFreeArenasWithoutUnlocking(const AutoLockGC& lock) {
  MOZ_ASSERT(DecommitEnabled());
  for (ChunkPool::Iter chunk(availableChunks(lock)); !chunk.done();
       chunk.next()) {
    chunk->decommitFreeArenasWithoutUnlocking(lock);
  }
  MOZ_ASSERT(availableChunks(lock).verify());
}

void GCRuntime::maybeRequestGCAfterBackgroundTask(
    const AutoLockHelperThreadState& lock) {
  if (requestSliceAfterBackgroundTask) {
    // Trigger a slice so the main thread can continue the collection
    // immediately.
    requestSliceAfterBackgroundTask = false;
    requestMajorGC(JS::GCReason::BG_TASK_FINISHED);
  }
}

void GCRuntime::cancelRequestedGCAfterBackgroundTask() {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(rt));

#ifdef DEBUG
  {
    AutoLockHelperThreadState lock;
    MOZ_ASSERT(!requestSliceAfterBackgroundTask);
  }
#endif

  majorGCTriggerReason.compareExchange(JS::GCReason::BG_TASK_FINISHED,
                                       JS::GCReason::NO_REASON);
}

bool GCRuntime::isWaitingOnBackgroundTask() const {
  AutoLockHelperThreadState lock;
  return requestSliceAfterBackgroundTask;
}

void GCRuntime::queueUnusedLifoBlocksForFree(LifoAlloc* lifo) {
  MOZ_ASSERT(JS::RuntimeHeapIsBusy());
  AutoLockHelperThreadState lock;
  lifoBlocksToFree.ref().transferUnusedFrom(lifo);
}

void GCRuntime::queueAllLifoBlocksForFreeAfterMinorGC(LifoAlloc* lifo) {
  lifoBlocksToFreeAfterMinorGC.ref().transferFrom(lifo);
}

void GCRuntime::queueBuffersForFreeAfterMinorGC(Nursery::BufferSet& buffers) {
  AutoLockHelperThreadState lock;

  if (!buffersToFreeAfterMinorGC.ref().empty()) {
    // In the rare case that this hasn't processed the buffers from a previous
    // minor GC we have to wait here.
    MOZ_ASSERT(!freeTask.isIdle(lock));
    freeTask.joinWithLockHeld(lock);
  }

  MOZ_ASSERT(buffersToFreeAfterMinorGC.ref().empty());
  std::swap(buffersToFreeAfterMinorGC.ref(), buffers);
}

void Realm::destroy(JS::GCContext* gcx) {
  JSRuntime* rt = gcx->runtime();
  if (auto callback = rt->destroyRealmCallback) {
    callback(gcx, this);
  }
  if (principals()) {
    JS_DropPrincipals(rt->mainContextFromOwnThread(), principals());
  }
  // Bug 1560019: Malloc memory associated with a zone but not with a specific
  // GC thing is not currently tracked.
  gcx->deleteUntracked(this);
}

void Compartment::destroy(JS::GCContext* gcx) {
  JSRuntime* rt = gcx->runtime();
  if (auto callback = rt->destroyCompartmentCallback) {
    callback(gcx, this);
  }
  // Bug 1560019: Malloc memory associated with a zone but not with a specific
  // GC thing is not currently tracked.
  gcx->deleteUntracked(this);
  rt->gc.stats().sweptCompartment();
}

void Zone::destroy(JS::GCContext* gcx) {
  MOZ_ASSERT(compartments().empty());
  JSRuntime* rt = gcx->runtime();
  if (auto callback = rt->destroyZoneCallback) {
    callback(gcx, this);
  }
  // Bug 1560019: Malloc memory associated with a zone but not with a specific
  // GC thing is not currently tracked.
  gcx->deleteUntracked(this);
  gcx->runtime()->gc.stats().sweptZone();
}

/*
 * It's simpler if we preserve the invariant that every zone (except atoms
 * zones) has at least one compartment, and every compartment has at least one
 * realm. If we know we're deleting the entire zone, then sweepCompartments is
 * allowed to delete all compartments. In this case, |keepAtleastOne| is false.
 * If any cells remain alive in the zone, set |keepAtleastOne| true to prohibit
 * sweepCompartments from deleting every compartment. Instead, it preserves an
 * arbitrary compartment in the zone.
 */
void Zone::sweepCompartments(JS::GCContext* gcx, bool keepAtleastOne,
                             bool destroyingRuntime) {
  MOZ_ASSERT_IF(!isAtomsZone(), !compartments().empty());
  MOZ_ASSERT_IF(destroyingRuntime, !keepAtleastOne);

  Compartment** read = compartments().begin();
  Compartment** end = compartments().end();
  Compartment** write = read;
  while (read < end) {
    Compartment* comp = *read++;

    /*
     * Don't delete the last compartment and realm if keepAtleastOne is
     * still true, meaning all the other compartments were deleted.
     */
    bool keepAtleastOneRealm = read == end && keepAtleastOne;
    comp->sweepRealms(gcx, keepAtleastOneRealm, destroyingRuntime);

    if (!comp->realms().empty()) {
      *write++ = comp;
      keepAtleastOne = false;
    } else {
      comp->destroy(gcx);
    }
  }
  compartments().shrinkTo(write - compartments().begin());
  MOZ_ASSERT_IF(keepAtleastOne, !compartments().empty());
  MOZ_ASSERT_IF(destroyingRuntime, compartments().empty());
}

void Compartment::sweepRealms(JS::GCContext* gcx, bool keepAtleastOne,
                              bool destroyingRuntime) {
  MOZ_ASSERT(!realms().empty());
  MOZ_ASSERT_IF(destroyingRuntime, !keepAtleastOne);

  Realm** read = realms().begin();
  Realm** end = realms().end();
  Realm** write = read;
  while (read < end) {
    Realm* realm = *read++;

    /*
     * Don't delete the last realm if keepAtleastOne is still true, meaning
     * all the other realms were deleted.
     */
    bool dontDelete = read == end && keepAtleastOne;
    if ((realm->marked() || dontDelete) && !destroyingRuntime) {
      *write++ = realm;
      keepAtleastOne = false;
    } else {
      realm->destroy(gcx);
    }
  }
  realms().shrinkTo(write - realms().begin());
  MOZ_ASSERT_IF(keepAtleastOne, !realms().empty());
  MOZ_ASSERT_IF(destroyingRuntime, realms().empty());
}

void GCRuntime::sweepZones(JS::GCContext* gcx, bool destroyingRuntime) {
  MOZ_ASSERT_IF(destroyingRuntime, numActiveZoneIters == 0);
  MOZ_ASSERT(foregroundFinalizedArenas.ref().isNothing());

  if (numActiveZoneIters) {
    return;
  }

  assertBackgroundSweepingFinished();

  // Sweep zones following the atoms zone.
  MOZ_ASSERT(zones()[0]->isAtomsZone());
  Zone** read = zones().begin() + 1;
  Zone** end = zones().end();
  Zone** write = read;

  while (read < end) {
    Zone* zone = *read++;

    if (zone->wasGCStarted()) {
      MOZ_ASSERT(!zone->isQueuedForBackgroundSweep());
      AutoSetThreadIsSweeping threadIsSweeping(zone);
      const bool zoneIsDead =
          zone->arenas.arenaListsAreEmpty() && !zone->hasMarkedRealms();
      MOZ_ASSERT_IF(destroyingRuntime, zoneIsDead);
      if (zoneIsDead) {
        zone->arenas.checkEmptyFreeLists();
        zone->sweepCompartments(gcx, false, destroyingRuntime);
        MOZ_ASSERT(zone->compartments().empty());
        zone->destroy(gcx);
        continue;
      }
      zone->sweepCompartments(gcx, true, destroyingRuntime);
    }
    *write++ = zone;
  }
  zones().shrinkTo(write - zones().begin());
}

void ArenaLists::checkEmptyArenaList(AllocKind kind) {
  MOZ_ASSERT(arenaList(kind).isEmpty());
}

void GCRuntime::purgeRuntimeForMinorGC() {
  for (ZonesIter zone(this, SkipAtoms); !zone.done(); zone.next()) {
    zone->externalStringCache().purge();
    zone->functionToStringCache().purge();
  }
}

void GCRuntime::purgeRuntime() {
  gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::PURGE);

  for (GCRealmsIter realm(rt); !realm.done(); realm.next()) {
    realm->purge();
  }

  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    zone->purgeAtomCache();
    zone->externalStringCache().purge();
    zone->functionToStringCache().purge();
    zone->boundPrefixCache().clearAndCompact();
    zone->shapeZone().purgeShapeCaches(rt->gcContext());
  }

  JSContext* cx = rt->mainContextFromOwnThread();
  queueUnusedLifoBlocksForFree(&cx->tempLifoAlloc());
  cx->interpreterStack().purge(rt);
  cx->frontendCollectionPool().purge();

  rt->caches().purge();

  if (rt->isMainRuntime()) {
    SharedImmutableStringsCache::getSingleton().purge();
  }

  MOZ_ASSERT(marker().unmarkGrayStack.empty());
  marker().unmarkGrayStack.clearAndFree();
}

bool GCRuntime::shouldPreserveJITCode(Realm* realm,
                                      const TimeStamp& currentTime,
                                      JS::GCReason reason,
                                      bool canAllocateMoreCode,
                                      bool isActiveCompartment) {
  if (cleanUpEverything) {
    return false;
  }
  if (!canAllocateMoreCode) {
    return false;
  }

  if (isActiveCompartment) {
    return true;
  }
  if (alwaysPreserveCode) {
    return true;
  }
  if (realm->preserveJitCode()) {
    return true;
  }
  if (IsCurrentlyAnimating(realm->lastAnimationTime, currentTime) &&
      DiscardedCodeRecently(realm->zone(), currentTime)) {
    return true;
  }
  if (reason == JS::GCReason::DEBUG_GC) {
    return true;
  }

  return false;
}

#ifdef DEBUG
class CompartmentCheckTracer final : public JS::CallbackTracer {
  void onChild(JS::GCCellPtr thing, const char* name) override;
  bool edgeIsInCrossCompartmentMap(JS::GCCellPtr dst);

 public:
  explicit CompartmentCheckTracer(JSRuntime* rt)
      : JS::CallbackTracer(rt, JS::TracerKind::CompartmentCheck,
                           JS::WeakEdgeTraceAction::Skip) {}

  Cell* src = nullptr;
  JS::TraceKind srcKind = JS::TraceKind::Null;
  Zone* zone = nullptr;
  Compartment* compartment = nullptr;
};

static bool InCrossCompartmentMap(JSRuntime* rt, JSObject* src,
                                  JS::GCCellPtr dst) {
  // Cross compartment edges are either in the cross compartment map or in a
  // debugger weakmap.

  Compartment* srccomp = src->compartment();

  if (dst.is<JSObject>()) {
    if (ObjectWrapperMap::Ptr p = srccomp->lookupWrapper(&dst.as<JSObject>())) {
      if (*p->value().unsafeGet() == src) {
        return true;
      }
    }
  }

  if (DebugAPI::edgeIsInDebuggerWeakmap(rt, src, dst)) {
    return true;
  }

  return false;
}

void CompartmentCheckTracer::onChild(JS::GCCellPtr thing, const char* name) {
  Compartment* comp =
      MapGCThingTyped(thing, [](auto t) { return t->maybeCompartment(); });
  if (comp && compartment) {
    MOZ_ASSERT(comp == compartment || edgeIsInCrossCompartmentMap(thing));
  } else {
    TenuredCell* tenured = &thing.asCell()->asTenured();
    Zone* thingZone = tenured->zoneFromAnyThread();
    MOZ_ASSERT(thingZone == zone || thingZone->isAtomsZone());
  }
}

bool CompartmentCheckTracer::edgeIsInCrossCompartmentMap(JS::GCCellPtr dst) {
  return srcKind == JS::TraceKind::Object &&
         InCrossCompartmentMap(runtime(), static_cast<JSObject*>(src), dst);
}

void GCRuntime::checkForCompartmentMismatches() {
  JSContext* cx = rt->mainContextFromOwnThread();
  if (cx->disableStrictProxyCheckingCount) {
    return;
  }

  CompartmentCheckTracer trc(rt);
  AutoAssertEmptyNursery empty(cx);
  for (ZonesIter zone(this, SkipAtoms); !zone.done(); zone.next()) {
    trc.zone = zone;
    for (auto thingKind : AllAllocKinds()) {
      for (auto i = zone->cellIterUnsafe<TenuredCell>(thingKind, empty);
           !i.done(); i.next()) {
        trc.src = i.getCell();
        trc.srcKind = MapAllocToTraceKind(thingKind);
        trc.compartment = MapGCThingTyped(
            trc.src, trc.srcKind, [](auto t) { return t->maybeCompartment(); });
        JS::TraceChildren(&trc, JS::GCCellPtr(trc.src, trc.srcKind));
      }
    }
  }
}
#endif

static bool ShouldCleanUpEverything(JS::GCOptions options) {
  // During shutdown, we must clean everything up, for the sake of leak
  // detection. When a runtime has no contexts, or we're doing a GC before a
  // shutdown CC, those are strong indications that we're shutting down.
  return options == JS::GCOptions::Shutdown || options == JS::GCOptions::Shrink;
}

static bool ShouldUseBackgroundThreads(bool isIncremental,
                                       JS::GCReason reason) {
  bool shouldUse = isIncremental && CanUseExtraThreads();
  MOZ_ASSERT_IF(reason == JS::GCReason::DESTROY_RUNTIME, !shouldUse);
  return shouldUse;
}

void GCRuntime::startCollection(JS::GCReason reason) {
  checkGCStateNotInUse();
  MOZ_ASSERT_IF(
      isShuttingDown(),
      isShutdownGC() ||
          reason == JS::GCReason::XPCONNECT_SHUTDOWN /* Bug 1650075 */);

  initialReason = reason;
  cleanUpEverything = ShouldCleanUpEverything(gcOptions());
  isCompacting = shouldCompact();
  rootsRemoved = false;
  sweepGroupIndex = 0;
  lastGCStartTime_ = TimeStamp::Now();

#ifdef DEBUG
  if (isShutdownGC()) {
    hadShutdownGC = true;
  }

  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    zone->gcSweepGroupIndex = 0;
  }
#endif
}

static void RelazifyFunctions(Zone* zone, AllocKind kind) {
  MOZ_ASSERT(kind == AllocKind::FUNCTION ||
             kind == AllocKind::FUNCTION_EXTENDED);

  JSRuntime* rt = zone->runtimeFromMainThread();
  AutoAssertEmptyNursery empty(rt->mainContextFromOwnThread());

  for (auto i = zone->cellIterUnsafe<JSObject>(kind, empty); !i.done();
       i.next()) {
    JSFunction* fun = &i->as<JSFunction>();
    // When iterating over the GC-heap, we may encounter function objects that
    // are incomplete (missing a BaseScript when we expect one). We must check
    // for this case before we can call JSFunction::hasBytecode().
    if (fun->isIncomplete()) {
      continue;
    }
    if (fun->hasBytecode()) {
      fun->maybeRelazify(rt);
    }
  }
}

static bool ShouldCollectZone(Zone* zone, JS::GCReason reason) {
  // If we are repeating a GC because we noticed dead compartments haven't
  // been collected, then only collect zones containing those compartments.
  if (reason == JS::GCReason::COMPARTMENT_REVIVED) {
    for (CompartmentsInZoneIter comp(zone); !comp.done(); comp.next()) {
      if (comp->gcState.scheduledForDestruction) {
        return true;
      }
    }

    return false;
  }

  // Otherwise we only collect scheduled zones.
  return zone->isGCScheduled();
}

bool GCRuntime::prepareZonesForCollection(JS::GCReason reason,
                                          bool* isFullOut) {
#ifdef DEBUG
  /* Assert that zone state is as we expect */
  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    MOZ_ASSERT(!zone->isCollecting());
    MOZ_ASSERT_IF(!zone->isAtomsZone(), !zone->compartments().empty());
    for (auto i : AllAllocKinds()) {
      MOZ_ASSERT(zone->arenas.collectingArenaList(i).isEmpty());
    }
  }
#endif

  *isFullOut = true;
  bool any = false;

  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    /* Set up which zones will be collected. */
    bool shouldCollect = ShouldCollectZone(zone, reason);
    if (shouldCollect) {
      any = true;
      zone->changeGCState(Zone::NoGC, Zone::Prepare);
    } else {
      *isFullOut = false;
    }

    zone->setWasCollected(shouldCollect);
  }

  /* Check that at least one zone is scheduled for collection. */
  return any;
}

void GCRuntime::discardJITCodeForGC() {
  size_t nurserySiteResetCount = 0;
  size_t pretenuredSiteResetCount = 0;

  js::CancelOffThreadIonCompile(rt, JS::Zone::Prepare);
  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::MARK_DISCARD_CODE);

    // We may need to reset allocation sites and discard JIT code to recover if
    // we find object lifetimes have changed.
    PretenuringZone& pz = zone->pretenuring;
    bool resetNurserySites = pz.shouldResetNurseryAllocSites();
    bool resetPretenuredSites = pz.shouldResetPretenuredAllocSites();

    if (!zone->isPreservingCode()) {
      Zone::DiscardOptions options;
      options.discardJitScripts = true;
      options.resetNurseryAllocSites = resetNurserySites;
      options.resetPretenuredAllocSites = resetPretenuredSites;
      zone->discardJitCode(rt->gcContext(), options);
    } else if (resetNurserySites || resetPretenuredSites) {
      zone->resetAllocSitesAndInvalidate(resetNurserySites,
                                         resetPretenuredSites);
    }

    if (resetNurserySites) {
      nurserySiteResetCount++;
    }
    if (resetPretenuredSites) {
      pretenuredSiteResetCount++;
    }
  }

  if (nursery().reportPretenuring()) {
    if (nurserySiteResetCount) {
      fprintf(
          stderr,
          "GC reset nursery alloc sites and invalidated code in %zu zones\n",
          nurserySiteResetCount);
    }
    if (pretenuredSiteResetCount) {
      fprintf(
          stderr,
          "GC reset pretenured alloc sites and invalidated code in %zu zones\n",
          pretenuredSiteResetCount);
    }
  }
}

void GCRuntime::relazifyFunctionsForShrinkingGC() {
  gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::RELAZIFY_FUNCTIONS);
  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    RelazifyFunctions(zone, AllocKind::FUNCTION);
    RelazifyFunctions(zone, AllocKind::FUNCTION_EXTENDED);
  }
}

void GCRuntime::purgePropMapTablesForShrinkingGC() {
  gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::PURGE_PROP_MAP_TABLES);
  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    if (!canRelocateZone(zone) || zone->keepPropMapTables()) {
      continue;
    }

    // Note: CompactPropMaps never have a table.
    for (auto map = zone->cellIterUnsafe<NormalPropMap>(); !map.done();
         map.next()) {
      if (map->asLinked()->hasTable()) {
        map->asLinked()->purgeTable(rt->gcContext());
      }
    }
    for (auto map = zone->cellIterUnsafe<DictionaryPropMap>(); !map.done();
         map.next()) {
      if (map->asLinked()->hasTable()) {
        map->asLinked()->purgeTable(rt->gcContext());
      }
    }
  }
}

// The debugger keeps track of the URLs for the sources of each realm's scripts.
// These URLs are purged on shrinking GCs.
void GCRuntime::purgeSourceURLsForShrinkingGC() {
  gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::PURGE_SOURCE_URLS);
  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    // URLs are not tracked for realms in the system zone.
    if (!canRelocateZone(zone) || zone->isSystemZone()) {
      continue;
    }
    for (CompartmentsInZoneIter comp(zone); !comp.done(); comp.next()) {
      for (RealmsInCompartmentIter realm(comp); !realm.done(); realm.next()) {
        GlobalObject* global = realm.get()->unsafeUnbarrieredMaybeGlobal();
        if (global) {
          global->clearSourceURLSHolder();
        }
      }
    }
  }
}

void GCRuntime::unmarkWeakMaps() {
  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    /* Unmark all weak maps in the zones being collected. */
    WeakMapBase::unmarkZone(zone);
  }
}

bool GCRuntime::beginPreparePhase(JS::GCReason reason, AutoGCSession& session) {
  gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::PREPARE);

  if (!prepareZonesForCollection(reason, &isFull.ref())) {
    return false;
  }

  /*
   * Start a parallel task to clear all mark state for the zones we are
   * collecting. This is linear in the size of the heap we are collecting and so
   * can be slow. This usually happens concurrently with the mutator and GC
   * proper does not start until this is complete.
   */
  unmarkTask.initZones();
  if (useBackgroundThreads) {
    unmarkTask.start();
  } else {
    unmarkTask.runFromMainThread();
  }

  /*
   * Process any queued source compressions during the start of a major
   * GC.
   *
   * Bug 1650075: When we start passing GCOptions::Shutdown for
   * GCReason::XPCONNECT_SHUTDOWN GCs we can remove the extra check.
   */
  if (!isShutdownGC() && reason != JS::GCReason::XPCONNECT_SHUTDOWN) {
    StartHandlingCompressionsOnGC(rt);
  }

  return true;
}

BackgroundUnmarkTask::BackgroundUnmarkTask(GCRuntime* gc)
    : GCParallelTask(gc, gcstats::PhaseKind::UNMARK) {}

void BackgroundUnmarkTask::initZones() {
  MOZ_ASSERT(isIdle());
  MOZ_ASSERT(zones.empty());
  MOZ_ASSERT(!isCancelled());

  // We can't safely iterate the zones vector from another thread so we copy the
  // zones to be collected into another vector.
  AutoEnterOOMUnsafeRegion oomUnsafe;
  for (GCZonesIter zone(gc); !zone.done(); zone.next()) {
    if (!zones.append(zone.get())) {
      oomUnsafe.crash("BackgroundUnmarkTask::initZones");
    }

    zone->arenas.clearFreeLists();
    zone->arenas.moveArenasToCollectingLists();
  }
}

void BackgroundUnmarkTask::run(AutoLockHelperThreadState& helperTheadLock) {
  AutoUnlockHelperThreadState unlock(helperTheadLock);

  for (Zone* zone : zones) {
    for (auto kind : AllAllocKinds()) {
      ArenaList& arenas = zone->arenas.collectingArenaList(kind);
      for (ArenaListIter arena(arenas.head()); !arena.done(); arena.next()) {
        arena->unmarkAll();
        if (isCancelled()) {
          break;
        }
      }
    }
  }

  zones.clear();
}

void GCRuntime::endPreparePhase(JS::GCReason reason) {
  MOZ_ASSERT(unmarkTask.isIdle());

  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    /*
     * In an incremental GC, clear the area free lists to ensure that subsequent
     * allocations refill them and end up marking new cells back. See
     * arenaAllocatedDuringGC().
     */
    zone->arenas.clearFreeLists();

    zone->setPreservingCode(false);

#ifdef JS_GC_ZEAL
    if (hasZealMode(ZealMode::YieldBeforeRootMarking)) {
      for (auto kind : AllAllocKinds()) {
        for (ArenaIterInGC arena(zone, kind); !arena.done(); arena.next()) {
          arena->checkNoMarkedCells();
        }
      }
    }
#endif
  }

  // Discard JIT code more aggressively if the process is approaching its
  // executable code limit.
  bool canAllocateMoreCode = jit::CanLikelyAllocateMoreExecutableMemory();
  auto currentTime = TimeStamp::Now();

  Compartment* activeCompartment = nullptr;
  jit::JitActivationIterator activation(rt->mainContextFromOwnThread());
  if (!activation.done()) {
    activeCompartment = activation->compartment();
  }

  for (CompartmentsIter c(rt); !c.done(); c.next()) {
    c->gcState.scheduledForDestruction = false;
    c->gcState.maybeAlive = false;
    c->gcState.hasEnteredRealm = false;
    if (c->invisibleToDebugger()) {
      c->gcState.maybeAlive = true;  // Presumed to be a system compartment.
    }
    bool isActiveCompartment = c == activeCompartment;
    for (RealmsInCompartmentIter r(c); !r.done(); r.next()) {
      if (r->shouldTraceGlobal() || !r->zone()->isGCScheduled()) {
        c->gcState.maybeAlive = true;
      }
      if (shouldPreserveJITCode(r, currentTime, reason, canAllocateMoreCode,
                                isActiveCompartment)) {
        r->zone()->setPreservingCode(true);
      }
      if (r->hasBeenEnteredIgnoringJit()) {
        c->gcState.hasEnteredRealm = true;
      }
    }
  }

  /*
   * Perform remaining preparation work that must take place in the first true
   * GC slice.
   */

  {
    gcstats::AutoPhase ap1(stats(), gcstats::PhaseKind::PREPARE);

    AutoLockHelperThreadState helperLock;

    /* Clear mark state for WeakMaps in parallel with other work. */
    AutoRunParallelTask unmarkWeakMaps(this, &GCRuntime::unmarkWeakMaps,
                                       gcstats::PhaseKind::UNMARK_WEAKMAPS,
                                       GCUse::Unspecified, helperLock);

    AutoUnlockHelperThreadState unlock(helperLock);

    // Discard JIT code. For incremental collections, the sweep phase may
    // also discard JIT code.
    discardJITCodeForGC();
    haveDiscardedJITCodeThisSlice = true;

    /*
     * Relazify functions after discarding JIT code (we can't relazify
     * functions with JIT code) and before the actual mark phase, so that
     * the current GC can collect the JSScripts we're unlinking here.  We do
     * this only when we're performing a shrinking GC, as too much
     * relazification can cause performance issues when we have to reparse
     * the same functions over and over.
     */
    if (isShrinkingGC()) {
      relazifyFunctionsForShrinkingGC();
      purgePropMapTablesForShrinkingGC();
      purgeSourceURLsForShrinkingGC();
    }

    /*
     * We must purge the runtime at the beginning of an incremental GC. The
     * danger if we purge later is that the snapshot invariant of
     * incremental GC will be broken, as follows. If some object is
     * reachable only through some cache (say the dtoaCache) then it will
     * not be part of the snapshot.  If we purge after root marking, then
     * the mutator could obtain a pointer to the object and start using
     * it. This object might never be marked, so a GC hazard would exist.
     */
    purgeRuntime();

    startBackgroundFreeAfterMinorGC();

    if (isShutdownGC()) {
      /* Clear any engine roots that may hold external data live. */
      for (GCZonesIter zone(this); !zone.done(); zone.next()) {
        zone->clearRootsForShutdownGC();
      }

#ifdef DEBUG
      testMarkQueue.clear();
      queuePos = 0;
#endif
    }
  }

#ifdef DEBUG
  if (fullCompartmentChecks) {
    checkForCompartmentMismatches();
  }
#endif
}

AutoUpdateLiveCompartments::AutoUpdateLiveCompartments(GCRuntime* gc) : gc(gc) {
  for (GCCompartmentsIter c(gc->rt); !c.done(); c.next()) {
    c->gcState.hasMarkedCells = false;
  }
}

AutoUpdateLiveCompartments::~AutoUpdateLiveCompartments() {
  for (GCCompartmentsIter c(gc->rt); !c.done(); c.next()) {
    if (c->gcState.hasMarkedCells) {
      c->gcState.maybeAlive = true;
    }
  }
}

Zone::GCState Zone::initialMarkingState() const {
  if (isAtomsZone()) {
    // Don't delay gray marking in the atoms zone like we do in other zones.
    return MarkBlackAndGray;
  }

  return MarkBlackOnly;
}

void GCRuntime::beginMarkPhase(AutoGCSession& session) {
  /*
   * Mark phase.
   */
  gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::MARK);

  // This is the slice we actually start collecting. The number can be used to
  // check whether a major GC has started so we must not increment it until we
  // get here.
  incMajorGcNumber();

#ifdef DEBUG
  queuePos = 0;
  queueMarkColor.reset();
#endif

  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    // Incremental marking barriers are enabled at this point.
    zone->changeGCState(Zone::Prepare, zone->initialMarkingState());

    // Merge arenas allocated during the prepare phase, then move all arenas to
    // the collecting arena lists.
    zone->arenas.mergeArenasFromCollectingLists();
    zone->arenas.moveArenasToCollectingLists();

    for (RealmsInZoneIter realm(zone); !realm.done(); realm.next()) {
      realm->clearAllocatedDuringGC();
    }
  }

  updateSchedulingStateOnGCStart();
  stats().measureInitialHeapSize();

  useParallelMarking = SingleThreadedMarking;
  if (canMarkInParallel() && initParallelMarking()) {
    useParallelMarking = AllowParallelMarking;
  }

  MOZ_ASSERT(!hasDelayedMarking());
  for (auto& marker : markers) {
    marker->start();
  }

  if (rt->isBeingDestroyed()) {
    checkNoRuntimeRoots(session);
  } else {
    AutoUpdateLiveCompartments updateLive(this);
    marker().setRootMarkingMode(true);
    traceRuntimeForMajorGC(marker().tracer(), session);
    marker().setRootMarkingMode(false);
  }
}

void GCRuntime::findDeadCompartments() {
  gcstats::AutoPhase ap1(stats(), gcstats::PhaseKind::FIND_DEAD_COMPARTMENTS);

  /*
   * This code ensures that if a compartment is "dead", then it will be
   * collected in this GC. A compartment is considered dead if its maybeAlive
   * flag is false. The maybeAlive flag is set if:
   *
   *   (1) the compartment has been entered (set in beginMarkPhase() above)
   *   (2) the compartment's zone is not being collected (set in
   *       endPreparePhase() above)
   *   (3) an object in the compartment was marked during root marking, either
   *       as a black root or a gray root. This is arranged by
   *       SetCompartmentHasMarkedCells and AutoUpdateLiveCompartments.
   *   (4) the compartment has incoming cross-compartment edges from another
   *       compartment that has maybeAlive set (set by this method).
   *   (5) the compartment has the invisibleToDebugger flag set, as it is
   *       presumed to be a system compartment (set in endPreparePhase() above)
   *
   * If the maybeAlive is false, then we set the scheduledForDestruction flag.
   * At the end of the GC, we look for compartments where
   * scheduledForDestruction is true. These are compartments that were somehow
   * "revived" during the incremental GC. If any are found, we do a special,
   * non-incremental GC of those compartments to try to collect them.
   *
   * Compartments can be revived for a variety of reasons, including:
   *
   *   (1) A dead reflector can be revived by DOM code that still refers to the
   *       underlying DOM node (see bug 811587).
   *   (2) JS_TransplantObject iterates over all compartments, live or dead, and
   *       operates on their objects. This can trigger read barriers and mark
   *       unreachable objects. See bug 803376 for details on this problem. To
   *       avoid the problem, we try to avoid allocation and read barriers
   *       during JS_TransplantObject and the like.
   *   (3) Read barriers. A compartment may only have weak roots and reading one
   *       of these will cause the compartment to stay alive even though the GC
   *       thought it should die. An example of this is Gecko's unprivileged
   *       junk scope, which is handled by ignoring system compartments (see bug
   *       1868437).
   */

  // Propagate the maybeAlive flag via cross-compartment edges.

  Vector<Compartment*, 0, js::SystemAllocPolicy> workList;

  for (CompartmentsIter comp(rt); !comp.done(); comp.next()) {
    if (comp->gcState.maybeAlive) {
      if (!workList.append(comp)) {
        return;
      }
    }
  }

  while (!workList.empty()) {
    Compartment* comp = workList.popCopy();
    for (Compartment::WrappedObjectCompartmentEnum e(comp); !e.empty();
         e.popFront()) {
      Compartment* dest = e.front();
      if (!dest->gcState.maybeAlive) {
        dest->gcState.maybeAlive = true;
        if (!workList.append(dest)) {
          return;
        }
      }
    }
  }

  // Set scheduledForDestruction based on maybeAlive.

  for (GCCompartmentsIter comp(rt); !comp.done(); comp.next()) {
    MOZ_ASSERT(!comp->gcState.scheduledForDestruction);
    if (!comp->gcState.maybeAlive) {
      comp->gcState.scheduledForDestruction = true;
    }
  }
}

void GCRuntime::updateSchedulingStateOnGCStart() {
  heapSize.updateOnGCStart();

  // Update memory counters for the zones we are collecting.
  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    zone->updateSchedulingStateOnGCStart();
  }
}

inline bool GCRuntime::canMarkInParallel() const {
  MOZ_ASSERT(state() >= gc::State::MarkRoots);

#if defined(DEBUG) || defined(JS_OOM_BREAKPOINT)
  // OOM testing limits the engine to using a single helper thread.
  if (oom::simulator.targetThread() == THREAD_TYPE_GCPARALLEL) {
    return false;
  }
#endif

  return markers.length() > 1 && stats().initialCollectedBytes() >=
                                     tunables.parallelMarkingThresholdBytes();
}

bool GCRuntime::initParallelMarking() {
  // This is called at the start of collection.

  MOZ_ASSERT(canMarkInParallel());

  // Reserve/release helper threads for worker runtimes. These are released at
  // the end of sweeping. If there are not enough helper threads because
  // other runtimes are marking in parallel then parallel marking will not be
  // used.
  if (!rt->isMainRuntime() && !reserveMarkingThreads(markers.length())) {
    return false;
  }

  // Allocate stack for parallel markers. The first marker always has stack
  // allocated. Other markers have their stack freed in
  // GCRuntime::finishCollection.
  for (size_t i = 1; i < markers.length(); i++) {
    if (!markers[i]->initStack()) {
      return false;
    }
  }

  return true;
}

IncrementalProgress GCRuntime::markUntilBudgetExhausted(
    SliceBudget& sliceBudget, ParallelMarking allowParallelMarking,
    ShouldReportMarkTime reportTime) {
  // Run a marking slice and return whether the stack is now empty.

  AutoMajorGCProfilerEntry s(this);

  if (initialState != State::Mark) {
    sliceBudget.forceCheck();
    if (sliceBudget.isOverBudget()) {
      return NotFinished;
    }
  }

  if (processTestMarkQueue() == QueueYielded) {
    return NotFinished;
  }

  if (allowParallelMarking) {
    MOZ_ASSERT(canMarkInParallel());
    MOZ_ASSERT(parallelMarkingEnabled);
    MOZ_ASSERT(reportTime);
    MOZ_ASSERT(!isBackgroundMarking());

    ParallelMarker pm(this);
    if (!pm.mark(sliceBudget)) {
      return NotFinished;
    }

    assertNoMarkingWork();
    return Finished;
  }

#ifdef DEBUG
  AutoSetThreadIsMarking threadIsMarking;
#endif  // DEBUG

  return marker().markUntilBudgetExhausted(sliceBudget, reportTime)
             ? Finished
             : NotFinished;
}

void GCRuntime::drainMarkStack() {
  auto unlimited = SliceBudget::unlimited();
  MOZ_RELEASE_ASSERT(marker().markUntilBudgetExhausted(unlimited));
}

#ifdef DEBUG

const GCVector<HeapPtr<JS::Value>, 0, SystemAllocPolicy>&
GCRuntime::getTestMarkQueue() const {
  return testMarkQueue.get();
}

bool GCRuntime::appendTestMarkQueue(const JS::Value& value) {
  return testMarkQueue.append(value);
}

void GCRuntime::clearTestMarkQueue() {
  testMarkQueue.clear();
  queuePos = 0;
}

size_t GCRuntime::testMarkQueuePos() const { return queuePos; }

#endif

GCRuntime::MarkQueueProgress GCRuntime::processTestMarkQueue() {
#ifdef DEBUG
  if (testMarkQueue.empty()) {
    return QueueComplete;
  }

  if (queueMarkColor == mozilla::Some(MarkColor::Gray) &&
      state() != State::Sweep) {
    return QueueSuspended;
  }

  // If the queue wants to be gray marking, but we've pushed a black object
  // since set-color-gray was processed, then we can't switch to gray and must
  // again wait until gray marking is possible.
  //
  // Remove this code if the restriction against marking gray during black is
  // relaxed.
  if (queueMarkColor == mozilla::Some(MarkColor::Gray) &&
      marker().hasBlackEntries()) {
    return QueueSuspended;
  }

  // If the queue wants to be marking a particular color, switch to that color.
  // In any case, restore the mark color to whatever it was when we entered
  // this function.
  bool willRevertToGray = marker().markColor() == MarkColor::Gray;
  AutoSetMarkColor autoRevertColor(
      marker(), queueMarkColor.valueOr(marker().markColor()));

  // Process the mark queue by taking each object in turn, pushing it onto the
  // mark stack, and processing just the top element with processMarkStackTop
  // without recursing into reachable objects.
  while (queuePos < testMarkQueue.length()) {
    Value val = testMarkQueue[queuePos++].get();
    if (val.isObject()) {
      JSObject* obj = &val.toObject();
      JS::Zone* zone = obj->zone();
      if (!zone->isGCMarking() || obj->isMarkedAtLeast(marker().markColor())) {
        continue;
      }

      // If we have started sweeping, obey sweep group ordering. But note that
      // we will first be called during the initial sweep slice, when the sweep
      // group indexes have not yet been computed. In that case, we can mark
      // freely.
      if (state() == State::Sweep && initialState != State::Sweep) {
        if (zone->gcSweepGroupIndex < getCurrentSweepGroupIndex()) {
          // Too late. This must have been added after we started collecting,
          // and we've already processed its sweep group. Skip it.
          continue;
        }
        if (zone->gcSweepGroupIndex > getCurrentSweepGroupIndex()) {
          // Not ready yet. Wait until we reach the object's sweep group.
          queuePos--;
          return QueueSuspended;
        }
      }

      if (marker().markColor() == MarkColor::Gray &&
          zone->isGCMarkingBlackOnly()) {
        // Have not yet reached the point where we can mark this object, so
        // continue with the GC.
        queuePos--;
        return QueueSuspended;
      }

      if (marker().markColor() == MarkColor::Black && willRevertToGray) {
        // If we put any black objects on the stack, we wouldn't be able to
        // return to gray marking. So delay the marking until we're back to
        // black marking.
        queuePos--;
        return QueueSuspended;
      }

      // Mark the object.
      AutoEnterOOMUnsafeRegion oomUnsafe;
      if (!marker().markOneObjectForTest(obj)) {
        // If we overflowed the stack here and delayed marking, then we won't be
        // testing what we think we're testing.
        MOZ_ASSERT(obj->asTenured().arena()->onDelayedMarkingList());
        oomUnsafe.crash("Overflowed stack while marking test queue");
      }
    } else if (val.isString()) {
      JSLinearString* str = &val.toString()->asLinear();
      if (js::StringEqualsLiteral(str, "yield") && isIncrementalGc()) {
        return QueueYielded;
      }

      if (js::StringEqualsLiteral(str, "enter-weak-marking-mode") ||
          js::StringEqualsLiteral(str, "abort-weak-marking-mode")) {
        if (marker().isRegularMarking()) {
          // We can't enter weak marking mode at just any time, so instead
          // we'll stop processing the queue and continue on with the GC. Once
          // we enter weak marking mode, we can continue to the rest of the
          // queue. Note that we will also suspend for aborting, and then abort
          // the earliest following weak marking mode.
          queuePos--;
          return QueueSuspended;
        }
        if (js::StringEqualsLiteral(str, "abort-weak-marking-mode")) {
          marker().abortLinearWeakMarking();
        }
      } else if (js::StringEqualsLiteral(str, "drain")) {
        auto unlimited = SliceBudget::unlimited();
        MOZ_RELEASE_ASSERT(
            marker().markUntilBudgetExhausted(unlimited, DontReportMarkTime));
      } else if (js::StringEqualsLiteral(str, "set-color-gray")) {
        queueMarkColor = mozilla::Some(MarkColor::Gray);
        if (state() != State::Sweep || marker().hasBlackEntries()) {
          // Cannot mark gray yet, so continue with the GC.
          queuePos--;
          return QueueSuspended;
        }
        marker().setMarkColor(MarkColor::Gray);
      } else if (js::StringEqualsLiteral(str, "set-color-black")) {
        queueMarkColor = mozilla::Some(MarkColor::Black);
        marker().setMarkColor(MarkColor::Black);
      } else if (js::StringEqualsLiteral(str, "unset-color")) {
        queueMarkColor.reset();
      }
    }
  }
#endif

  return QueueComplete;
}

static bool IsEmergencyGC(JS::GCReason reason) {
  return reason == JS::GCReason::LAST_DITCH ||
         reason == JS::GCReason::MEM_PRESSURE;
}

void GCRuntime::finishCollection(JS::GCReason reason) {
  assertBackgroundSweepingFinished();

  MOZ_ASSERT(!hasDelayedMarking());
  for (size_t i = 0; i < markers.length(); i++) {
    const auto& marker = markers[i];
    marker->stop();
    if (i == 0) {
      marker->resetStackCapacity();
    } else {
      marker->freeStack();
    }
  }

  maybeStopPretenuring();

  if (IsEmergencyGC(reason)) {
    waitBackgroundFreeEnd();
  }

  TimeStamp currentTime = TimeStamp::Now();

  updateSchedulingStateAfterCollection(currentTime);

  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    zone->changeGCState(Zone::Finished, Zone::NoGC);
    zone->notifyObservingDebuggers();
  }

#ifdef JS_GC_ZEAL
  clearSelectedForMarking();
#endif

  schedulingState.updateHighFrequencyMode(lastGCEndTime_, currentTime,
                                          tunables);
  lastGCEndTime_ = currentTime;

  checkGCStateNotInUse();
}

void GCRuntime::checkGCStateNotInUse() {
#ifdef DEBUG
  for (auto& marker : markers) {
    MOZ_ASSERT(!marker->isActive());
    MOZ_ASSERT(marker->isDrained());
  }
  MOZ_ASSERT(!hasDelayedMarking());

  MOZ_ASSERT(!lastMarkSlice);

  MOZ_ASSERT(foregroundFinalizedArenas.ref().isNothing());

  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    if (zone->wasCollected()) {
      zone->arenas.checkGCStateNotInUse();
    }
    MOZ_ASSERT(!zone->wasGCStarted());
    MOZ_ASSERT(!zone->needsIncrementalBarrier());
    MOZ_ASSERT(!zone->isOnList());
  }

  MOZ_ASSERT(zonesToMaybeCompact.ref().isEmpty());
  MOZ_ASSERT(cellsToAssertNotGray.ref().empty());

  AutoLockHelperThreadState lock;
  MOZ_ASSERT(!requestSliceAfterBackgroundTask);
  MOZ_ASSERT(unmarkTask.isIdle(lock));
  MOZ_ASSERT(markTask.isIdle(lock));
  MOZ_ASSERT(sweepTask.isIdle(lock));
  MOZ_ASSERT(decommitTask.isIdle(lock));
#endif
}

void GCRuntime::maybeStopPretenuring() {
  nursery().maybeStopPretenuring(this);

  size_t zonesWhereStringsEnabled = 0;
  size_t zonesWhereBigIntsEnabled = 0;

  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    if (zone->nurseryStringsDisabled || zone->nurseryBigIntsDisabled) {
      // We may need to reset allocation sites and discard JIT code to recover
      // if we find object lifetimes have changed.
      if (zone->pretenuring.shouldResetPretenuredAllocSites()) {
        zone->unknownAllocSite(JS::TraceKind::String)->maybeResetState();
        zone->unknownAllocSite(JS::TraceKind::BigInt)->maybeResetState();
        if (zone->nurseryStringsDisabled) {
          zone->nurseryStringsDisabled = false;
          zonesWhereStringsEnabled++;
        }
        if (zone->nurseryBigIntsDisabled) {
          zone->nurseryBigIntsDisabled = false;
          zonesWhereBigIntsEnabled++;
        }
        nursery().updateAllocFlagsForZone(zone);
      }
    }
  }

  if (nursery().reportPretenuring()) {
    if (zonesWhereStringsEnabled) {
      fprintf(stderr, "GC re-enabled nursery string allocation in %zu zones\n",
              zonesWhereStringsEnabled);
    }
    if (zonesWhereBigIntsEnabled) {
      fprintf(stderr, "GC re-enabled nursery big int allocation in %zu zones\n",
              zonesWhereBigIntsEnabled);
    }
  }
}

void GCRuntime::updateSchedulingStateAfterCollection(TimeStamp currentTime) {
  TimeDuration totalGCTime = stats().totalGCTime();
  size_t totalInitialBytes = stats().initialCollectedBytes();

  for (GCZonesIter zone(this); !zone.done(); zone.next()) {
    if (tunables.balancedHeapLimitsEnabled() && totalInitialBytes != 0) {
      zone->updateCollectionRate(totalGCTime, totalInitialBytes);
    }
    zone->clearGCSliceThresholds();
    zone->updateGCStartThresholds(*this);
  }
}

void GCRuntime::updateAllGCStartThresholds() {
  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    zone->updateGCStartThresholds(*this);
  }
}

void GCRuntime::updateAllocationRates() {
  // Calculate mutator time since the last update. This ignores the fact that
  // the zone could have been created since the last update.

  TimeStamp currentTime = TimeStamp::Now();
  TimeDuration totalTime = currentTime - lastAllocRateUpdateTime;
  if (collectorTimeSinceAllocRateUpdate >= totalTime) {
    // It shouldn't happen but occasionally we see collector time being larger
    // than total time. Skip the update in that case.
    return;
  }

  TimeDuration mutatorTime = totalTime - collectorTimeSinceAllocRateUpdate;

  for (AllZonesIter zone(this); !zone.done(); zone.next()) {
    zone->updateAllocationRate(mutatorTime);
    zone->updateGCStartThresholds(*this);
  }

  lastAllocRateUpdateTime = currentTime;
  collectorTimeSinceAllocRateUpdate = TimeDuration::Zero();
}

static const char* GCHeapStateToLabel(JS::HeapState heapState) {
  switch (heapState) {
    case JS::HeapState::MinorCollecting:
      return "Minor GC";
    case JS::HeapState::MajorCollecting:
      return "Major GC";
    default:
      MOZ_CRASH("Unexpected heap state when pushing GC profiling stack frame");
  }
  MOZ_ASSERT_UNREACHABLE("Should have exhausted every JS::HeapState variant!");
  return nullptr;
}

static JS::ProfilingCategoryPair GCHeapStateToProfilingCategory(
    JS::HeapState heapState) {
  return heapState == JS::HeapState::MinorCollecting
             ? JS::ProfilingCategoryPair::GCCC_MinorGC
             : JS::ProfilingCategoryPair::GCCC_MajorGC;
}

/* Start a new heap session. */
AutoHeapSession::AutoHeapSession(GCRuntime* gc, JS::HeapState heapState)
    : gc(gc), prevState(gc->heapState_) {
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(gc->rt));
  MOZ_ASSERT(prevState == JS::HeapState::Idle ||
             (prevState == JS::HeapState::MajorCollecting &&
              heapState == JS::HeapState::MinorCollecting));
  MOZ_ASSERT(heapState != JS::HeapState::Idle);

  gc->heapState_ = heapState;

  if (heapState == JS::HeapState::MinorCollecting ||
      heapState == JS::HeapState::MajorCollecting) {
    profilingStackFrame.emplace(
        gc->rt->mainContextFromOwnThread(), GCHeapStateToLabel(heapState),
        GCHeapStateToProfilingCategory(heapState),
        uint32_t(ProfilingStackFrame::Flags::RELEVANT_FOR_JS));
  }
}

AutoHeapSession::~AutoHeapSession() {
  MOZ_ASSERT(JS::RuntimeHeapIsBusy());
  gc->heapState_ = prevState;
}

static const char* MajorGCStateToLabel(State state) {
  switch (state) {
    case State::Mark:
      return "js::GCRuntime::markUntilBudgetExhausted";
    case State::Sweep:
      return "js::GCRuntime::performSweepActions";
    case State::Compact:
      return "js::GCRuntime::compactPhase";
    default:
      MOZ_CRASH("Unexpected heap state when pushing GC profiling stack frame");
  }

  MOZ_ASSERT_UNREACHABLE("Should have exhausted every State variant!");
  return nullptr;
}

static JS::ProfilingCategoryPair MajorGCStateToProfilingCategory(State state) {
  switch (state) {
    case State::Mark:
      return JS::ProfilingCategoryPair::GCCC_MajorGC_Mark;
    case State::Sweep:
      return JS::ProfilingCategoryPair::GCCC_MajorGC_Sweep;
    case State::Compact:
      return JS::ProfilingCategoryPair::GCCC_MajorGC_Compact;
    default:
      MOZ_CRASH("Unexpected heap state when pushing GC profiling stack frame");
  }
}

AutoMajorGCProfilerEntry::AutoMajorGCProfilerEntry(GCRuntime* gc)
    : AutoGeckoProfilerEntry(gc->rt->mainContextFromAnyThread(),
                             MajorGCStateToLabel(gc->state()),
                             MajorGCStateToProfilingCategory(gc->state())) {
  MOZ_ASSERT(gc->heapState() == JS::HeapState::MajorCollecting);
}

GCRuntime::IncrementalResult GCRuntime::resetIncrementalGC(
    GCAbortReason reason) {
  MOZ_ASSERT(reason != GCAbortReason::None);

  // Drop as much work as possible from an ongoing incremental GC so
  // we can start a new GC after it has finished.
  if (incrementalState == State::NotActive) {
    return IncrementalResult::Ok;
  }

  AutoGCSession session(this, JS::HeapState::MajorCollecting);

  switch (incrementalState) {
    case State::NotActive:
    case State::MarkRoots:
    case State::Finish:
      MOZ_CRASH("Unexpected GC state in resetIncrementalGC");
      break;

    case State::Prepare:
      unmarkTask.cancelAndWait();

      for (GCZonesIter zone(this); !zone.done(); zone.next()) {
        zone->changeGCState(Zone::Prepare, Zone::NoGC);
        zone->clearGCSliceThresholds();
        zone->arenas.clearFreeLists();
        zone->arenas.mergeArenasFromCollectingLists();
      }

      incrementalState = State::NotActive;
      checkGCStateNotInUse();
      break;

    case State::Mark: {
      // Cancel any ongoing marking.
      for (auto& marker : markers) {
        marker->reset();
      }
      resetDelayedMarking();

      for (GCCompartmentsIter c(rt); !c.done(); c.next()) {
        resetGrayList(c);
      }

      for (GCZonesIter zone(this); !zone.done(); zone.next()) {
        zone->changeGCState(zone->initialMarkingState(), Zone::NoGC);
        zone->clearGCSliceThresholds();
        zone->arenas.unmarkPreMarkedFreeCells();
        zone->arenas.mergeArenasFromCollectingLists();
      }

      {
        AutoLockHelperThreadState lock;
        lifoBlocksToFree.ref().freeAll();
      }

      lastMarkSlice = false;
      incrementalState = State::Finish;

#ifdef DEBUG
      for (auto& marker : markers) {
        MOZ_ASSERT(!marker->shouldCheckCompartments());
      }
#endif

      break;
    }

    case State::Sweep: {
      // Finish sweeping the current sweep group, then abort.
      for (CompartmentsIter c(rt); !c.done(); c.next()) {
        c->gcState.scheduledForDestruction = false;
      }

      abortSweepAfterCurrentGroup = true;
      isCompacting = false;

      break;
    }

    case State::Finalize: {
      isCompacting = false;
      break;
    }

    case State::Compact: {
      // Skip any remaining zones that would have been compacted.
      MOZ_ASSERT(isCompacting);
      startedCompacting = true;
      zonesToMaybeCompact.ref().clear();
      break;
    }

    case State::Decommit: {
      break;
    }
  }

  stats().reset(reason);

  return IncrementalResult::ResetIncremental;
}

AutoDisableBarriers::AutoDisableBarriers(GCRuntime* gc) : gc(gc) {
  /*
   * Clear needsIncrementalBarrier early so we don't do any write barriers
   * during sweeping.
   */
  for (GCZonesIter zone(gc); !zone.done(); zone.next()) {
    if (zone->isGCMarking()) {
      MOZ_ASSERT(zone->needsIncrementalBarrier());
      zone->setNeedsIncrementalBarrier(false);
    }
    MOZ_ASSERT(!zone->needsIncrementalBarrier());
  }
}

AutoDisableBarriers::~AutoDisableBarriers() {
  for (GCZonesIter zone(gc); !zone.done(); zone.next()) {
    MOZ_ASSERT(!zone->needsIncrementalBarrier());
    if (zone->isGCMarking()) {
      zone->setNeedsIncrementalBarrier(true);
    }
  }
}

static bool NeedToCollectNursery(GCRuntime* gc) {
  return !gc->nursery().isEmpty() || !gc->storeBuffer().isEmpty();
}

#ifdef DEBUG
static const char* DescribeBudget(const SliceBudget& budget) {
  constexpr size_t length = 32;
  static char buffer[length];
  budget.describe(buffer, length);
  return buffer;
}
#endif

static bool ShouldPauseMutatorWhileWaiting(const SliceBudget& budget,
                                           JS::GCReason reason,
                                           bool budgetWasIncreased) {
  // When we're nearing the incremental limit at which we will finish the
  // collection synchronously, pause the main thread if there is only background
  // GC work happening. This allows the GC to catch up and avoid hitting the
  // limit.
  return budget.isTimeBudget() &&
         (reason == JS::GCReason::ALLOC_TRIGGER ||
          reason == JS::GCReason::TOO_MUCH_MALLOC) &&
         budgetWasIncreased;
}

void GCRuntime::incrementalSlice(SliceBudget& budget, JS::GCReason reason,
                                 bool budgetWasIncreased) {
  MOZ_ASSERT_IF(isIncrementalGCInProgress(), isIncremental);

  AutoSetThreadIsPerformingGC performingGC(rt->gcContext());

  AutoGCSession session(this, JS::HeapState::MajorCollecting);

  bool destroyingRuntime = (reason == JS::GCReason::DESTROY_RUNTIME);

  initialState = incrementalState;
  isIncremental = !budget.isUnlimited();
  useBackgroundThreads = ShouldUseBackgroundThreads(isIncremental, reason);
  haveDiscardedJITCodeThisSlice = false;

#ifdef JS_GC_ZEAL
  // Do the incremental collection type specified by zeal mode if the collection
  // was triggered by runDebugGC() and incremental GC has not been cancelled by
  // resetIncrementalGC().
  useZeal = isIncremental && reason == JS::GCReason::DEBUG_GC;
#endif

#ifdef DEBUG
  stats().log(
      "Incremental: %d, lastMarkSlice: %d, useZeal: %d, budget: %s, "
      "budgetWasIncreased: %d",
      bool(isIncremental), bool(lastMarkSlice), bool(useZeal),
      DescribeBudget(budget), budgetWasIncreased);
#endif

  if (useZeal && hasIncrementalTwoSliceZealMode()) {
    // Yields between slices occurs at predetermined points in these modes; the
    // budget is not used. |isIncremental| is still true.
    stats().log("Using unlimited budget for two-slice zeal mode");
    budget = SliceBudget::unlimited();
  }

  bool shouldPauseMutator =
      ShouldPauseMutatorWhileWaiting(budget, reason, budgetWasIncreased);

  switch (incrementalState) {
    case State::NotActive:
      startCollection(reason);

      incrementalState = State::Prepare;
      if (!beginPreparePhase(reason, session)) {
        incrementalState = State::NotActive;
        break;
      }

      if (useZeal && hasZealMode(ZealMode::YieldBeforeRootMarking)) {
        break;
      }

      [[fallthrough]];

    case State::Prepare:
      if (waitForBackgroundTask(unmarkTask, budget, shouldPauseMutator,
                                DontTriggerSliceWhenFinished) == NotFinished) {
        break;
      }

      incrementalState = State::MarkRoots;
      [[fallthrough]];

    case State::MarkRoots:
      if (NeedToCollectNursery(this)) {
        collectNurseryFromMajorGC(reason);
      }

      endPreparePhase(reason);
      beginMarkPhase(session);
      incrementalState = State::Mark;

      if (useZeal && hasZealMode(ZealMode::YieldBeforeMarking) &&
          isIncremental) {
        break;
      }

      [[fallthrough]];

    case State::Mark:
      if (mightSweepInThisSlice(budget.isUnlimited())) {
        // Trace wrapper rooters before marking if we might start sweeping in
        // this slice.
        rt->mainContextFromOwnThread()->traceWrapperGCRooters(
            marker().tracer());
      }

      {
        gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::MARK);
        if (markUntilBudgetExhausted(budget, useParallelMarking) ==
            NotFinished) {
          break;
        }
      }

      assertNoMarkingWork();

      /*
       * There are a number of reasons why we break out of collection here,
       * either ending the slice or to run a new interation of the loop in
       * GCRuntime::collect()
       */

      /*
       * In incremental GCs where we have already performed more than one
       * slice we yield after marking with the aim of starting the sweep in
       * the next slice, since the first slice of sweeping can be expensive.
       *
       * This is modified by the various zeal modes.  We don't yield in
       * YieldBeforeMarking mode and we always yield in YieldBeforeSweeping
       * mode.
       *
       * We will need to mark anything new on the stack when we resume, so
       * we stay in Mark state.
       */
      if (isIncremental && !lastMarkSlice) {
        if ((initialState == State::Mark &&
             !(useZeal && hasZealMode(ZealMode::YieldBeforeMarking))) ||
            (useZeal && hasZealMode(ZealMode::YieldBeforeSweeping))) {
          lastMarkSlice = true;
          stats().log("Yielding before starting sweeping");
          break;
        }
      }

      incrementalState = State::Sweep;
      lastMarkSlice = false;

      beginSweepPhase(reason, session);

      [[fallthrough]];

    case State::Sweep:
      if (storeBuffer().mayHavePointersToDeadCells()) {
        collectNurseryFromMajorGC(reason);
      }

      if (initialState == State::Sweep) {
        rt->mainContextFromOwnThread()->traceWrapperGCRooters(
            marker().tracer());
      }

      if (performSweepActions(budget) == NotFinished) {
        break;
      }

      endSweepPhase(destroyingRuntime);

      incrementalState = State::Finalize;

      [[fallthrough]];

    case State::Finalize:
      if (waitForBackgroundTask(sweepTask, budget, shouldPauseMutator,
                                TriggerSliceWhenFinished) == NotFinished) {
        break;
      }

      assertBackgroundSweepingFinished();

      {
        // Sweep the zones list now that background finalization is finished to
        // remove and free dead zones, compartments and realms.
        gcstats::AutoPhase ap1(stats(), gcstats::PhaseKind::SWEEP);
        gcstats::AutoPhase ap2(stats(), gcstats::PhaseKind::DESTROY);
        sweepZones(rt->gcContext(), destroyingRuntime);
      }

      MOZ_ASSERT(!startedCompacting);
      incrementalState = State::Compact;

      // Always yield before compacting since it is not incremental.
      if (isCompacting && !budget.isUnlimited()) {
        break;
      }

      [[fallthrough]];

    case State::Compact:
      if (isCompacting) {
        if (NeedToCollectNursery(this)) {
          collectNurseryFromMajorGC(reason);
        }

        storeBuffer().checkEmpty();
        if (!startedCompacting) {
          beginCompactPhase();
        }

        if (compactPhase(reason, budget, session) == NotFinished) {
          break;
        }

        endCompactPhase();
      }

      startDecommit();
      incrementalState = State::Decommit;

      [[fallthrough]];

    case State::Decommit:
      if (waitForBackgroundTask(decommitTask, budget, shouldPauseMutator,
                                TriggerSliceWhenFinished) == NotFinished) {
        break;
      }

      incrementalState = State::Finish;

      [[fallthrough]];

    case State::Finish:
      finishCollection(reason);
      incrementalState = State::NotActive;
      break;
  }

#ifdef DEBUG
  MOZ_ASSERT(safeToYield);
  for (auto& marker : markers) {
    MOZ_ASSERT(marker->markColor() == MarkColor::Black);
  }
  MOZ_ASSERT(!rt->gcContext()->hasJitCodeToPoison());
#endif
}

void GCRuntime::collectNurseryFromMajorGC(JS::GCReason reason) {
  collectNursery(gcOptions(), reason,
                 gcstats::PhaseKind::EVICT_NURSERY_FOR_MAJOR_GC);
}

bool GCRuntime::hasForegroundWork() const {
  switch (incrementalState) {
    case State::NotActive:
      // Incremental GC is not running and no work is pending.
      return false;
    case State::Prepare:
      // We yield in the Prepare state after starting unmarking.
      return !unmarkTask.wasStarted();
    case State::Finalize:
      // We yield in the Finalize state to wait for background sweeping.
      return !isBackgroundSweeping();
    case State::Decommit:
      // We yield in the Decommit state to wait for background decommit.
      return !decommitTask.wasStarted();
    default:
      // In all other states there is still work to do.
      return true;
  }
}

IncrementalProgress GCRuntime::waitForBackgroundTask(
    GCParallelTask& task, const SliceBudget& budget, bool shouldPauseMutator,
    ShouldTriggerSliceWhenFinished triggerSlice) {
  // Wait here in non-incremental collections, or if we want to pause the
  // mutator to let the GC catch up.
  if (budget.isUnlimited() || shouldPauseMutator) {
    gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::WAIT_BACKGROUND_THREAD);
    Maybe<TimeStamp> deadline;
    if (budget.isTimeBudget()) {
      deadline.emplace(budget.deadline());
    }
    task.join(deadline);
  }

  // In incremental collections, yield if the task has not finished and
  // optionally request a slice to notify us when this happens.
  if (!budget.isUnlimited()) {
    AutoLockHelperThreadState lock;
    if (task.wasStarted(lock)) {
      if (triggerSlice) {
        requestSliceAfterBackgroundTask = true;
      }
      return NotFinished;
    }

    task.joinWithLockHeld(lock);
  }

  MOZ_ASSERT(task.isIdle());

  if (triggerSlice) {
    cancelRequestedGCAfterBackgroundTask();
  }

  return Finished;
}

GCAbortReason gc::IsIncrementalGCUnsafe(JSRuntime* rt) {
  MOZ_ASSERT(!rt->mainContextFromOwnThread()->suppressGC);

  if (!rt->gc.isIncrementalGCAllowed()) {
    return GCAbortReason::IncrementalDisabled;
  }

  return GCAbortReason::None;
}

inline void GCRuntime::checkZoneIsScheduled(Zone* zone, JS::GCReason reason,
                                            const char* trigger) {
#ifdef DEBUG
  if (zone->isGCScheduled()) {
    return;
  }

  fprintf(stderr,
          "checkZoneIsScheduled: Zone %p not scheduled as expected in %s GC "
          "for %s trigger\n",
          zone, JS::ExplainGCReason(reason), trigger);
  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    fprintf(stderr, "  Zone %p:%s%s\n", zone.get(),
            zone->isAtomsZone() ? " atoms" : "",
            zone->isGCScheduled() ? " scheduled" : "");
  }
  fflush(stderr);
  MOZ_CRASH("Zone not scheduled");
#endif
}

GCRuntime::IncrementalResult GCRuntime::budgetIncrementalGC(
    bool nonincrementalByAPI, JS::GCReason reason, SliceBudget& budget) {
  if (nonincrementalByAPI) {
    stats().nonincremental(GCAbortReason::NonIncrementalRequested);
    budget = SliceBudget::unlimited();

    // Reset any in progress incremental GC if this was triggered via the
    // API. This isn't required for correctness, but sometimes during tests
    // the caller expects this GC to collect certain objects, and we need
    // to make sure to collect everything possible.
    if (reason != JS::GCReason::ALLOC_TRIGGER) {
      return resetIncrementalGC(GCAbortReason::NonIncrementalRequested);
    }

    return IncrementalResult::Ok;
  }

  if (reason == JS::GCReason::ABORT_GC) {
    budget = SliceBudget::unlimited();
    stats().nonincremental(GCAbortReason::AbortRequested);
    return resetIncrementalGC(GCAbortReason::AbortRequested);
  }

  if (!budget.isUnlimited()) {
    GCAbortReason unsafeReason = IsIncrementalGCUnsafe(rt);
    if (unsafeReason == GCAbortReason::None) {
      if (reason == JS::GCReason::COMPARTMENT_REVIVED) {
        unsafeReason = GCAbortReason::CompartmentRevived;
      } else if (!incrementalGCEnabled) {
        unsafeReason = GCAbortReason::ModeChange;
      }
    }

    if (unsafeReason != GCAbortReason::None) {
      budget = SliceBudget::unlimited();
      stats().nonincremental(unsafeReason);
      return resetIncrementalGC(unsafeReason);
    }
  }

  GCAbortReason resetReason = GCAbortReason::None;
  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    if (zone->gcHeapSize.bytes() >=
        zone->gcHeapThreshold.incrementalLimitBytes()) {
      checkZoneIsScheduled(zone, reason, "GC bytes");
      budget = SliceBudget::unlimited();
      stats().nonincremental(GCAbortReason::GCBytesTrigger);
      if (zone->wasGCStarted() && zone->gcState() > Zone::Sweep) {
        resetReason = GCAbortReason::GCBytesTrigger;
      }
    }

    if (zone->mallocHeapSize.bytes() >=
        zone->mallocHeapThreshold.incrementalLimitBytes()) {
      checkZoneIsScheduled(zone, reason, "malloc bytes");
      budget = SliceBudget::unlimited();
      stats().nonincremental(GCAbortReason::MallocBytesTrigger);
      if (zone->wasGCStarted() && zone->gcState() > Zone::Sweep) {
        resetReason = GCAbortReason::MallocBytesTrigger;
      }
    }

    if (zone->jitHeapSize.bytes() >=
        zone->jitHeapThreshold.incrementalLimitBytes()) {
      checkZoneIsScheduled(zone, reason, "JIT code bytes");
      budget = SliceBudget::unlimited();
      stats().nonincremental(GCAbortReason::JitCodeBytesTrigger);
      if (zone->wasGCStarted() && zone->gcState() > Zone::Sweep) {
        resetReason = GCAbortReason::JitCodeBytesTrigger;
      }
    }

    if (isIncrementalGCInProgress() &&
        zone->isGCScheduled() != zone->wasGCStarted()) {
      budget = SliceBudget::unlimited();
      resetReason = GCAbortReason::ZoneChange;
    }
  }

  if (resetReason != GCAbortReason::None) {
    return resetIncrementalGC(resetReason);
  }

  return IncrementalResult::Ok;
}

bool GCRuntime::maybeIncreaseSliceBudget(SliceBudget& budget) {
  if (js::SupportDifferentialTesting()) {
    return false;
  }

  if (!budget.isTimeBudget() || !isIncrementalGCInProgress()) {
    return false;
  }

  bool wasIncreasedForLongCollections =
      maybeIncreaseSliceBudgetForLongCollections(budget);
  bool wasIncreasedForUgentCollections =
      maybeIncreaseSliceBudgetForUrgentCollections(budget);

  return wasIncreasedForLongCollections || wasIncreasedForUgentCollections;
}

// Return true if the budget is actually extended after rounding.
static bool ExtendBudget(SliceBudget& budget, double newDuration) {
  long millis = lround(newDuration);
  if (millis <= budget.timeBudget()) {
    return false;
  }

  bool idleTriggered = budget.idle;
  budget = SliceBudget(TimeBudget(millis), nullptr);  // Uninterruptible.
  budget.idle = idleTriggered;
  budget.extended = true;
  return true;
}

bool GCRuntime::maybeIncreaseSliceBudgetForLongCollections(
    SliceBudget& budget) {
  // For long-running collections, enforce a minimum time budget that increases
  // linearly with time up to a maximum.

  // All times are in milliseconds.
  struct BudgetAtTime {
    double time;
    double budget;
  };
  const BudgetAtTime MinBudgetStart{1500, 0.0};
  const BudgetAtTime MinBudgetEnd{2500, 100.0};

  double totalTime = (TimeStamp::Now() - lastGCStartTime()).ToMilliseconds();

  double minBudget =
      LinearInterpolate(totalTime, MinBudgetStart.time, MinBudgetStart.budget,
                        MinBudgetEnd.time, MinBudgetEnd.budget);

  return ExtendBudget(budget, minBudget);
}

bool GCRuntime::maybeIncreaseSliceBudgetForUrgentCollections(
    SliceBudget& budget) {
  // Enforce a minimum time budget based on how close we are to the incremental
  // limit.

  size_t minBytesRemaining = SIZE_MAX;
  for (AllZonesIter zone(this); !zone.done(); zone.next()) {
    if (!zone->wasGCStarted()) {
      continue;
    }
    size_t gcBytesRemaining =
        zone->gcHeapThreshold.incrementalBytesRemaining(zone->gcHeapSize);
    minBytesRemaining = std::min(minBytesRemaining, gcBytesRemaining);
    size_t mallocBytesRemaining =
        zone->mallocHeapThreshold.incrementalBytesRemaining(
            zone->mallocHeapSize);
    minBytesRemaining = std::min(minBytesRemaining, mallocBytesRemaining);
  }

  if (minBytesRemaining < tunables.urgentThresholdBytes() &&
      minBytesRemaining != 0) {
    // Increase budget based on the reciprocal of the fraction remaining.
    double fractionRemaining =
        double(minBytesRemaining) / double(tunables.urgentThresholdBytes());
    double minBudget = double(defaultSliceBudgetMS()) / fractionRemaining;
    return ExtendBudget(budget, minBudget);
  }

  return false;
}

static void ScheduleZones(GCRuntime* gc, JS::GCReason reason) {
  for (ZonesIter zone(gc, WithAtoms); !zone.done(); zone.next()) {
    // Re-check heap threshold for alloc-triggered zones that were not
    // previously collected. Now we have allocation rate data, the heap limit
    // may have been increased beyond the current size.
    if (gc->tunables.balancedHeapLimitsEnabled() && zone->isGCScheduled() &&
        zone->smoothedCollectionRate.ref().isNothing() &&
        reason == JS::GCReason::ALLOC_TRIGGER &&
        zone->gcHeapSize.bytes() < zone->gcHeapThreshold.startBytes()) {
      zone->unscheduleGC();  // May still be re-scheduled below.
    }

    if (gc->isShutdownGC()) {
      zone->scheduleGC();
    }

    if (!gc->isPerZoneGCEnabled()) {
      zone->scheduleGC();
    }

    // To avoid resets, continue to collect any zones that were being
    // collected in a previous slice.
    if (gc->isIncrementalGCInProgress() && zone->wasGCStarted()) {
      zone->scheduleGC();
    }

    // This is a heuristic to reduce the total number of collections.
    bool inHighFrequencyMode = gc->schedulingState.inHighFrequencyGCMode();
    if (zone->gcHeapSize.bytes() >=
            zone->gcHeapThreshold.eagerAllocTrigger(inHighFrequencyMode) ||
        zone->mallocHeapSize.bytes() >=
            zone->mallocHeapThreshold.eagerAllocTrigger(inHighFrequencyMode) ||
        zone->jitHeapSize.bytes() >= zone->jitHeapThreshold.startBytes()) {
      zone->scheduleGC();
    }
  }
}

static void UnscheduleZones(GCRuntime* gc) {
  for (ZonesIter zone(gc->rt, WithAtoms); !zone.done(); zone.next()) {
    zone->unscheduleGC();
  }
}

class js::gc::AutoCallGCCallbacks {
  GCRuntime& gc_;
  JS::GCReason reason_;

 public:
  explicit AutoCallGCCallbacks(GCRuntime& gc, JS::GCReason reason)
      : gc_(gc), reason_(reason) {
    gc_.maybeCallGCCallback(JSGC_BEGIN, reason);
  }
  ~AutoCallGCCallbacks() { gc_.maybeCallGCCallback(JSGC_END, reason_); }
};

void GCRuntime::maybeCallGCCallback(JSGCStatus status, JS::GCReason reason) {
  if (!gcCallback.ref().op) {
    return;
  }

  if (isIncrementalGCInProgress()) {
    return;
  }

  if (gcCallbackDepth == 0) {
    // Save scheduled zone information in case the callback clears it.
    for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
      zone->gcScheduledSaved_ = zone->gcScheduled_;
    }
  }

  // Save and clear GC options and state in case the callback reenters GC.
  JS::GCOptions options = gcOptions();
  maybeGcOptions = Nothing();
  bool savedFullGCRequested = fullGCRequested;
  fullGCRequested = false;

  gcCallbackDepth++;

  callGCCallback(status, reason);

  MOZ_ASSERT(gcCallbackDepth != 0);
  gcCallbackDepth--;

  // Restore the original GC options.
  maybeGcOptions = Some(options);

  // At the end of a GC, clear out the fullGCRequested state. At the start,
  // restore the previous setting.
  fullGCRequested = (status == JSGC_END) ? false : savedFullGCRequested;

  if (gcCallbackDepth == 0) {
    // Ensure any zone that was originally scheduled stays scheduled.
    for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
      zone->gcScheduled_ = zone->gcScheduled_ || zone->gcScheduledSaved_;
    }
  }
}

/*
 * We disable inlining to ensure that the bottom of the stack with possible GC
 * roots recorded in MarkRuntime excludes any pointers we use during the marking
 * implementation.
 */
MOZ_NEVER_INLINE GCRuntime::IncrementalResult GCRuntime::gcCycle(
    bool nonincrementalByAPI, const SliceBudget& budgetArg,
    JS::GCReason reason) {
  // Assert if this is a GC unsafe region.
  rt->mainContextFromOwnThread()->verifyIsSafeToGC();

  // It's ok if threads other than the main thread have suppressGC set, as
  // they are operating on zones which will not be collected from here.
  MOZ_ASSERT(!rt->mainContextFromOwnThread()->suppressGC);

  // This reason is used internally. See below.
  MOZ_ASSERT(reason != JS::GCReason::RESET);

  // Background finalization and decommit are finished by definition before we
  // can start a new major GC.  Background allocation may still be running, but
  // that's OK because chunk pools are protected by the GC lock.
  if (!isIncrementalGCInProgress()) {
    assertBackgroundSweepingFinished();
    MOZ_ASSERT(decommitTask.isIdle());
  }

  // Note that GC callbacks are allowed to re-enter GC.
  AutoCallGCCallbacks callCallbacks(*this, reason);

  // Increase slice budget for long running collections before it is recorded by
  // AutoGCSlice.
  SliceBudget budget(budgetArg);
  bool budgetWasIncreased = maybeIncreaseSliceBudget(budget);

  ScheduleZones(this, reason);

  auto updateCollectorTime = MakeScopeExit([&] {
    if (const gcstats::Statistics::SliceData* slice = stats().lastSlice()) {
      collectorTimeSinceAllocRateUpdate += slice->duration();
    }
  });

  gcstats::AutoGCSlice agc(stats(), scanZonesBeforeGC(), gcOptions(), budget,
                           reason, budgetWasIncreased);

  IncrementalResult result =
      budgetIncrementalGC(nonincrementalByAPI, reason, budget);
  if (result == IncrementalResult::ResetIncremental) {
    if (incrementalState == State::NotActive) {
      // The collection was reset and has finished.
      return result;
    }

    // The collection was reset but we must finish up some remaining work.
    reason = JS::GCReason::RESET;
  }

  majorGCTriggerReason = JS::GCReason::NO_REASON;
  MOZ_ASSERT(!stats().hasTrigger());

  incGcNumber();
  incGcSliceNumber();

  gcprobes::MajorGCStart();
  incrementalSlice(budget, reason, budgetWasIncreased);
  gcprobes::MajorGCEnd();

  MOZ_ASSERT_IF(result == IncrementalResult::ResetIncremental,
                !isIncrementalGCInProgress());
  return result;
}

inline bool GCRuntime::mightSweepInThisSlice(bool nonIncremental) {
  MOZ_ASSERT(incrementalState < State::Sweep);
  return nonIncremental || lastMarkSlice || hasIncrementalTwoSliceZealMode();
}

#ifdef JS_GC_ZEAL
static bool IsDeterministicGCReason(JS::GCReason reason) {
  switch (reason) {
    case JS::GCReason::API:
    case JS::GCReason::DESTROY_RUNTIME:
    case JS::GCReason::LAST_DITCH:
    case JS::GCReason::TOO_MUCH_MALLOC:
    case JS::GCReason::TOO_MUCH_WASM_MEMORY:
    case JS::GCReason::TOO_MUCH_JIT_CODE:
    case JS::GCReason::ALLOC_TRIGGER:
    case JS::GCReason::DEBUG_GC:
    case JS::GCReason::CC_FORCED:
    case JS::GCReason::SHUTDOWN_CC:
    case JS::GCReason::ABORT_GC:
    case JS::GCReason::DISABLE_GENERATIONAL_GC:
    case JS::GCReason::FINISH_GC:
    case JS::GCReason::PREPARE_FOR_TRACING:
      return true;

    default:
      return false;
  }
}
#endif

gcstats::ZoneGCStats GCRuntime::scanZonesBeforeGC() {
  gcstats::ZoneGCStats zoneStats;
  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    zoneStats.zoneCount++;
    zoneStats.compartmentCount += zone->compartments().length();
    for (CompartmentsInZoneIter comp(zone); !comp.done(); comp.next()) {
      zoneStats.realmCount += comp->realms().length();
    }
    if (zone->isGCScheduled()) {
      zoneStats.collectedZoneCount++;
      zoneStats.collectedCompartmentCount += zone->compartments().length();
    }
  }

  return zoneStats;
}

// The GC can only clean up scheduledForDestruction realms that were marked live
// by a barrier (e.g. by RemapWrappers from a navigation event). It is also
// common to have realms held live because they are part of a cycle in gecko,
// e.g. involving the HTMLDocument wrapper. In this case, we need to run the
// CycleCollector in order to remove these edges before the realm can be freed.
void GCRuntime::maybeDoCycleCollection() {
  const static float ExcessiveGrayRealms = 0.8f;
  const static size_t LimitGrayRealms = 200;

  size_t realmsTotal = 0;
  size_t realmsGray = 0;
  for (RealmsIter realm(rt); !realm.done(); realm.next()) {
    ++realmsTotal;
    GlobalObject* global = realm->unsafeUnbarrieredMaybeGlobal();
    if (global && global->isMarkedGray()) {
      ++realmsGray;
    }
  }
  float grayFraction = float(realmsGray) / float(realmsTotal);
  if (grayFraction > ExcessiveGrayRealms || realmsGray > LimitGrayRealms) {
    callDoCycleCollectionCallback(rt->mainContextFromOwnThread());
  }
}

void GCRuntime::checkCanCallAPI() {
  MOZ_RELEASE_ASSERT(CurrentThreadCanAccessRuntime(rt));

  /* If we attempt to invoke the GC while we are running in the GC, assert. */
  MOZ_RELEASE_ASSERT(!JS::RuntimeHeapIsBusy());
}

bool GCRuntime::checkIfGCAllowedInCurrentState(JS::GCReason reason) {
  if (rt->mainContextFromOwnThread()->suppressGC) {
    return false;
  }

  // Only allow shutdown GCs when we're destroying the runtime. This keeps
  // the GC callback from triggering a nested GC and resetting global state.
  if (rt->isBeingDestroyed() && !isShutdownGC()) {
    return false;
  }

#ifdef JS_GC_ZEAL
  if (deterministicOnly && !IsDeterministicGCReason(reason)) {
    return false;
  }
#endif

  return true;
}

bool GCRuntime::shouldRepeatForDeadZone(JS::GCReason reason) {
  MOZ_ASSERT_IF(reason == JS::GCReason::COMPARTMENT_REVIVED, !isIncremental);
  MOZ_ASSERT(!isIncrementalGCInProgress());

  if (!isIncremental) {
    return false;
  }

  for (CompartmentsIter c(rt); !c.done(); c.next()) {
    if (c->gcState.scheduledForDestruction) {
      return true;
    }
  }

  return false;
}

struct MOZ_RAII AutoSetZoneSliceThresholds {
  explicit AutoSetZoneSliceThresholds(GCRuntime* gc) : gc(gc) {
    // On entry, zones that are already collecting should have a slice threshold
    // set.
    for (ZonesIter zone(gc, WithAtoms); !zone.done(); zone.next()) {
      MOZ_ASSERT(zone->wasGCStarted() ==
                 zone->gcHeapThreshold.hasSliceThreshold());
      MOZ_ASSERT(zone->wasGCStarted() ==
                 zone->mallocHeapThreshold.hasSliceThreshold());
    }
  }

  ~AutoSetZoneSliceThresholds() {
    // On exit, update the thresholds for all collecting zones.
    bool waitingOnBGTask = gc->isWaitingOnBackgroundTask();
    for (ZonesIter zone(gc, WithAtoms); !zone.done(); zone.next()) {
      if (zone->wasGCStarted()) {
        zone->setGCSliceThresholds(*gc, waitingOnBGTask);
      } else {
        MOZ_ASSERT(!zone->gcHeapThreshold.hasSliceThreshold());
        MOZ_ASSERT(!zone->mallocHeapThreshold.hasSliceThreshold());
      }
    }
  }

  GCRuntime* gc;
};

void GCRuntime::collect(bool nonincrementalByAPI, const SliceBudget& budget,
                        JS::GCReason reason) {
  TimeStamp startTime = TimeStamp::Now();
  auto timer = MakeScopeExit([&] {
    if (Realm* realm = rt->mainContextFromOwnThread()->realm()) {
      realm->timers.gcTime += TimeStamp::Now() - startTime;
    }
  });

  auto clearGCOptions = MakeScopeExit([&] {
    if (!isIncrementalGCInProgress()) {
      maybeGcOptions = Nothing();
    }
  });

  MOZ_ASSERT(reason != JS::GCReason::NO_REASON);

  // Checks run for each request, even if we do not actually GC.
  checkCanCallAPI();

  // Check if we are allowed to GC at this time before proceeding.
  if (!checkIfGCAllowedInCurrentState(reason)) {
    return;
  }

  stats().log("GC slice starting in state %s", StateName(incrementalState));

  AutoStopVerifyingBarriers av(rt, isShutdownGC());
  AutoMaybeLeaveAtomsZone leaveAtomsZone(rt->mainContextFromOwnThread());
  AutoSetZoneSliceThresholds sliceThresholds(this);

  schedulingState.updateHighFrequencyModeForReason(reason);

  if (!isIncrementalGCInProgress() && tunables.balancedHeapLimitsEnabled()) {
    updateAllocationRates();
  }

  bool repeat;
  do {
    IncrementalResult cycleResult =
        gcCycle(nonincrementalByAPI, budget, reason);

    if (reason == JS::GCReason::ABORT_GC) {
      MOZ_ASSERT(!isIncrementalGCInProgress());
      stats().log("GC aborted by request");
      break;
    }

    /*
     * Sometimes when we finish a GC we need to immediately start a new one.
     * This happens in the following cases:
     *  - when we reset the current GC
     *  - when finalizers drop roots during shutdown
     *  - when zones that we thought were dead at the start of GC are
     *    not collected (see the large comment in beginMarkPhase)
     */
    repeat = false;
    if (!isIncrementalGCInProgress()) {
      if (cycleResult == ResetIncremental) {
        repeat = true;
      } else if (rootsRemoved && isShutdownGC()) {
        /* Need to re-schedule all zones for GC. */
        JS::PrepareForFullGC(rt->mainContextFromOwnThread());
        repeat = true;
        reason = JS::GCReason::ROOTS_REMOVED;
      } else if (shouldRepeatForDeadZone(reason)) {
        repeat = true;
        reason = JS::GCReason::COMPARTMENT_REVIVED;
      }
    }
  } while (repeat);

  if (reason == JS::GCReason::COMPARTMENT_REVIVED) {
    maybeDoCycleCollection();
  }

#ifdef JS_GC_ZEAL
  if (hasZealMode(ZealMode::CheckHeapAfterGC)) {
    gcstats::AutoPhase ap(stats(), gcstats::PhaseKind::TRACE_HEAP);
    CheckHeapAfterGC(rt);
  }
  if (hasZealMode(ZealMode::CheckGrayMarking) && !isIncrementalGCInProgress()) {
    MOZ_RELEASE_ASSERT(CheckGrayMarkingState(rt));
  }
#endif
  stats().log("GC slice ending in state %s", StateName(incrementalState));

  UnscheduleZones(this);
}

SliceBudget GCRuntime::defaultBudget(JS::GCReason reason, int64_t millis) {
  // millis == 0 means use internal GC scheduling logic to come up with
  // a duration for the slice budget. This may end up still being zero
  // based on preferences.
  if (millis == 0) {
    millis = defaultSliceBudgetMS();
  }

  // If the embedding has registered a callback for creating SliceBudgets,
  // then use it.
  if (createBudgetCallback) {
    return createBudgetCallback(reason, millis);
  }

  // Otherwise, the preference can request an unlimited duration slice.
  if (millis == 0) {
    return SliceBudget::unlimited();
  }

  return SliceBudget(TimeBudget(millis));
}

void GCRuntime::gc(JS::GCOptions options, JS::GCReason reason) {
  if (!isIncrementalGCInProgress()) {
    setGCOptions(options);
  }

  collect(true, SliceBudget::unlimited(), reason);
}

void GCRuntime::startGC(JS::GCOptions options, JS::GCReason reason,
                        const js::SliceBudget& budget) {
  MOZ_ASSERT(!isIncrementalGCInProgress());
  setGCOptions(options);

  if (!JS::IsIncrementalGCEnabled(rt->mainContextFromOwnThread())) {
    collect(true, SliceBudget::unlimited(), reason);
    return;
  }

  collect(false, budget, reason);
}

void GCRuntime::setGCOptions(JS::GCOptions options) {
  MOZ_ASSERT(maybeGcOptions == Nothing());
  maybeGcOptions = Some(options);
}

void GCRuntime::gcSlice(JS::GCReason reason, const js::SliceBudget& budget) {
  MOZ_ASSERT(isIncrementalGCInProgress());
  collect(false, budget, reason);
}

void GCRuntime::finishGC(JS::GCReason reason) {
  MOZ_ASSERT(isIncrementalGCInProgress());

  // If we're not collecting because we're out of memory then skip the
  // compacting phase if we need to finish an ongoing incremental GC
  // non-incrementally to avoid janking the browser.
  if (!IsOOMReason(initialReason)) {
    if (incrementalState == State::Compact) {
      abortGC();
      return;
    }

    isCompacting = false;
  }

  collect(false, SliceBudget::unlimited(), reason);
}

void GCRuntime::abortGC() {
  MOZ_ASSERT(isIncrementalGCInProgress());
  checkCanCallAPI();
  MOZ_ASSERT(!rt->mainContextFromOwnThread()->suppressGC);

  collect(false, SliceBudget::unlimited(), JS::GCReason::ABORT_GC);
}

static bool ZonesSelected(GCRuntime* gc) {
  for (ZonesIter zone(gc, WithAtoms); !zone.done(); zone.next()) {
    if (zone->isGCScheduled()) {
      return true;
    }
  }
  return false;
}

void GCRuntime::startDebugGC(JS::GCOptions options, const SliceBudget& budget) {
  MOZ_ASSERT(!isIncrementalGCInProgress());
  setGCOptions(options);

  if (!ZonesSelected(this)) {
    JS::PrepareForFullGC(rt->mainContextFromOwnThread());
  }

  collect(false, budget, JS::GCReason::DEBUG_GC);
}

void GCRuntime::debugGCSlice(const SliceBudget& budget) {
  MOZ_ASSERT(isIncrementalGCInProgress());

  if (!ZonesSelected(this)) {
    JS::PrepareForIncrementalGC(rt->mainContextFromOwnThread());
  }

  collect(false, budget, JS::GCReason::DEBUG_GC);
}

/* Schedule a full GC unless a zone will already be collected. */
void js::PrepareForDebugGC(JSRuntime* rt) {
  if (!ZonesSelected(&rt->gc)) {
    JS::PrepareForFullGC(rt->mainContextFromOwnThread());
  }
}

void GCRuntime::onOutOfMallocMemory() {
  // Stop allocating new chunks.
  allocTask.cancelAndWait();

  // Make sure we release anything queued for release.
  decommitTask.join();
  nursery().joinDecommitTask();

  // Wait for background free of nursery huge slots to finish.
  sweepTask.join();

  AutoLockGC lock(this);
  onOutOfMallocMemory(lock);
}

void GCRuntime::onOutOfMallocMemory(const AutoLockGC& lock) {
#ifdef DEBUG
  // Release any relocated arenas we may be holding on to, without releasing
  // the GC lock.
  releaseHeldRelocatedArenasWithoutUnlocking(lock);
#endif

  // Throw away any excess chunks we have lying around.
  freeEmptyChunks(lock);

  // Immediately decommit as many arenas as possible in the hopes that this
  // might let the OS scrape together enough pages to satisfy the failing
  // malloc request.
  if (DecommitEnabled()) {
    decommitFreeArenasWithoutUnlocking(lock);
  }
}

void GCRuntime::minorGC(JS::GCReason reason, gcstats::PhaseKind phase) {
  MOZ_ASSERT(!JS::RuntimeHeapIsBusy());

  MOZ_ASSERT_IF(reason == JS::GCReason::EVICT_NURSERY,
                !rt->mainContextFromOwnThread()->suppressGC);
  if (rt->mainContextFromOwnThread()->suppressGC) {
    return;
  }

  incGcNumber();

  collectNursery(JS::GCOptions::Normal, reason, phase);

#ifdef JS_GC_ZEAL
  if (hasZealMode(ZealMode::CheckHeapAfterGC)) {
    gcstats::AutoPhase ap(stats(), phase);
    CheckHeapAfterGC(rt);
  }
#endif

  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    maybeTriggerGCAfterAlloc(zone);
    maybeTriggerGCAfterMalloc(zone);
  }
}

void GCRuntime::collectNursery(JS::GCOptions options, JS::GCReason reason,
                               gcstats::PhaseKind phase) {
  AutoMaybeLeaveAtomsZone leaveAtomsZone(rt->mainContextFromOwnThread());

  uint32_t numAllocs = 0;
  for (ZonesIter zone(this, WithAtoms); !zone.done(); zone.next()) {
    numAllocs += zone->getAndResetTenuredAllocsSinceMinorGC();
  }
  stats().setAllocsSinceMinorGCTenured(numAllocs);

  gcstats::AutoPhase ap(stats(), phase);

  nursery().collect(options, reason);
  MOZ_ASSERT(nursery().isEmpty());

  startBackgroundFreeAfterMinorGC();
}

void GCRuntime::startBackgroundFreeAfterMinorGC() {
  MOZ_ASSERT(nursery().isEmpty());

  {
    AutoLockHelperThreadState lock;

    lifoBlocksToFree.ref().transferFrom(&lifoBlocksToFreeAfterMinorGC.ref());

    if (lifoBlocksToFree.ref().isEmpty() &&
        buffersToFreeAfterMinorGC.ref().empty()) {
      return;
    }
  }

  startBackgroundFree();
}

bool GCRuntime::gcIfRequestedImpl(bool eagerOk) {
  // This method returns whether a major GC was performed.

  if (nursery().minorGCRequested()) {
    minorGC(nursery().minorGCTriggerReason());
  }

  JS::GCReason reason = wantMajorGC(eagerOk);
  if (reason == JS::GCReason::NO_REASON) {
    return false;
  }

  SliceBudget budget = defaultBudget(reason, 0);
  if (!isIncrementalGCInProgress()) {
    startGC(JS::GCOptions::Normal, reason, budget);
  } else {
    gcSlice(reason, budget);
  }
  return true;
}

void js::gc::FinishGC(JSContext* cx, JS::GCReason reason) {
  // Calling this when GC is suppressed won't have any effect.
  MOZ_ASSERT(!cx->suppressGC);

  // GC callbacks may run arbitrary code, including JS. Check this regardless of
  // whether we GC for this invocation.
  MOZ_ASSERT(cx->isNurseryAllocAllowed());

  if (JS::IsIncrementalGCInProgress(cx)) {
    JS::PrepareForIncrementalGC(cx);
    JS::FinishIncrementalGC(cx, reason);
  }
}

void js::gc::WaitForBackgroundTasks(JSContext* cx) {
  cx->runtime()->gc.waitForBackgroundTasks();
}

void GCRuntime::waitForBackgroundTasks() {
  MOZ_ASSERT(!isIncrementalGCInProgress());
  MOZ_ASSERT(sweepTask.isIdle());
  MOZ_ASSERT(decommitTask.isIdle());
  MOZ_ASSERT(markTask.isIdle());

  allocTask.join();
  freeTask.join();
  nursery().joinDecommitTask();
}

Realm* js::NewRealm(JSContext* cx, JSPrincipals* principals,
                    const JS::RealmOptions& options) {
  JSRuntime* rt = cx->runtime();
  JS_AbortIfWrongThread(cx);

  UniquePtr<Zone> zoneHolder;
  UniquePtr<Compartment> compHolder;

  Compartment* comp = nullptr;
  Zone* zone = nullptr;
  JS::CompartmentSpecifier compSpec =
      options.creationOptions().compartmentSpecifier();
  switch (compSpec) {
    case JS::CompartmentSpecifier::NewCompartmentInSystemZone:
      // systemZone might be null here, in which case we'll make a zone and
      // set this field below.
      zone = rt->gc.systemZone;
      break;
    case JS::CompartmentSpecifier::NewCompartmentInExistingZone:
      zone = options.creationOptions().zone();
      MOZ_ASSERT(zone);
      break;
    case JS::CompartmentSpecifier::ExistingCompartment:
      comp = options.creationOptions().compartment();
      zone = comp->zone();
      break;
    case JS::CompartmentSpecifier::NewCompartmentAndZone:
      break;
  }

  if (!zone) {
    Zone::Kind kind = Zone::NormalZone;
    const JSPrincipals* trusted = rt->trustedPrincipals();
    if (compSpec == JS::CompartmentSpecifier::NewCompartmentInSystemZone ||
        (principals && principals == trusted)) {
      kind = Zone::SystemZone;
    }

    zoneHolder = MakeUnique<Zone>(cx->runtime(), kind);
    if (!zoneHolder || !zoneHolder->init()) {
      ReportOutOfMemory(cx);
      return nullptr;
    }

    zone = zoneHolder.get();
  }

  bool invisibleToDebugger = options.creationOptions().invisibleToDebugger();
  if (comp) {
    // Debugger visibility is per-compartment, not per-realm, so make sure the
    // new realm's visibility matches its compartment's.
    MOZ_ASSERT(comp->invisibleToDebugger() == invisibleToDebugger);
  } else {
    compHolder = cx->make_unique<JS::Compartment>(zone, invisibleToDebugger);
    if (!compHolder) {
      return nullptr;
    }

    comp = compHolder.get();
  }

  UniquePtr<Realm> realm(cx->new_<Realm>(comp, options));
  if (!realm) {
    return nullptr;
  }
  realm->init(cx, principals);

  // Make sure we don't put system and non-system realms in the same
  // compartment.
  if (!compHolder) {
    MOZ_RELEASE_ASSERT(realm->isSystem() == IsSystemCompartment(comp));
  }

  AutoLockGC lock(rt);

  // Reserve space in the Vectors before we start mutating them.
  if (!comp->realms().reserve(comp->realms().length() + 1) ||
      (compHolder &&
       !zone->compartments().reserve(zone->compartments().length() + 1)) ||
      (zoneHolder && !rt->gc.zones().reserve(rt->gc.zones().length() + 1))) {
    ReportOutOfMemory(cx);
    return nullptr;
  }

  // After this everything must be infallible.

  comp->realms().infallibleAppend(realm.get());

  if (compHolder) {
    zone->compartments().infallibleAppend(compHolder.release());
  }

  if (zoneHolder) {
    rt->gc.zones().infallibleAppend(zoneHolder.release());

    // Lazily set the runtime's system zone.
    if (compSpec == JS::CompartmentSpecifier::NewCompartmentInSystemZone) {
      MOZ_RELEASE_ASSERT(!rt->gc.systemZone);
      MOZ_ASSERT(zone->isSystemZone());
      rt->gc.systemZone = zone;
    }
  }

  return realm.release();
}

void GCRuntime::runDebugGC() {
#ifdef JS_GC_ZEAL
  if (rt->mainContextFromOwnThread()->suppressGC) {
    return;
  }

  if (hasZealMode(ZealMode::GenerationalGC)) {
    return minorGC(JS::GCReason::DEBUG_GC);
  }

  PrepareForDebugGC(rt);

  auto budget = SliceBudget::unlimited();
  if (hasZealMode(ZealMode::IncrementalMultipleSlices)) {
    /*
     * Start with a small slice limit and double it every slice. This
     * ensure that we get multiple slices, and collection runs to
     * completion.
     */
    if (!isIncrementalGCInProgress()) {
      zealSliceBudget = zealFrequency / 2;
    } else {
      zealSliceBudget *= 2;
    }
    budget = SliceBudget(WorkBudget(zealSliceBudget));

    js::gc::State initialState = incrementalState;
    if (!isIncrementalGCInProgress()) {
      setGCOptions(JS::GCOptions::Shrink);
    }
    collect(false, budget, JS::GCReason::DEBUG_GC);

    /* Reset the slice size when we get to the sweep or compact phases. */
    if ((initialState == State::Mark && incrementalState == State::Sweep) ||
        (initialState == State::Sweep && incrementalState == State::Compact)) {
      zealSliceBudget = zealFrequency / 2;
    }
  } else if (hasIncrementalTwoSliceZealMode()) {
    // These modes trigger incremental GC that happens in two slices and the
    // supplied budget is ignored by incrementalSlice.
    budget = SliceBudget(WorkBudget(1));

    if (!isIncrementalGCInProgress()) {
      setGCOptions(JS::GCOptions::Normal);
    }
    collect(false, budget, JS::GCReason::DEBUG_GC);
  } else if (hasZealMode(ZealMode::Compact)) {
    gc(JS::GCOptions::Shrink, JS::GCReason::DEBUG_GC);
  } else {
    gc(JS::GCOptions::Normal, JS::GCReason::DEBUG_GC);
  }

#endif
}

void GCRuntime::setFullCompartmentChecks(bool enabled) {
  MOZ_ASSERT(!JS::RuntimeHeapIsMajorCollecting());
  fullCompartmentChecks = enabled;
}

void GCRuntime::notifyRootsRemoved() {
  rootsRemoved = true;

#ifdef JS_GC_ZEAL
  /* Schedule a GC to happen "soon". */
  if (hasZealMode(ZealMode::RootsChange)) {
    nextScheduled = 1;
  }
#endif
}

#ifdef JS_GC_ZEAL
bool GCRuntime::selectForMarking(JSObject* object) {
  MOZ_ASSERT(!JS::RuntimeHeapIsMajorCollecting());
  return selectedForMarking.ref().get().append(object);
}

void GCRuntime::clearSelectedForMarking() {
  selectedForMarking.ref().get().clearAndFree();
}

void GCRuntime::setDeterministic(bool enabled) {
  MOZ_ASSERT(!JS::RuntimeHeapIsMajorCollecting());
  deterministicOnly = enabled;
}
#endif

#ifdef DEBUG

AutoAssertNoNurseryAlloc::AutoAssertNoNurseryAlloc() {
  TlsContext.get()->disallowNurseryAlloc();
}

AutoAssertNoNurseryAlloc::~AutoAssertNoNurseryAlloc() {
  TlsContext.get()->allowNurseryAlloc();
}

#endif  // DEBUG

#ifdef JSGC_HASH_TABLE_CHECKS
void GCRuntime::checkHashTablesAfterMovingGC() {
  /*
   * Check that internal hash tables no longer have any pointers to things
   * that have been moved.
   */
  rt->geckoProfiler().checkStringsMapAfterMovingGC();
  if (rt->hasJitRuntime() && rt->jitRuntime()->hasInterpreterEntryMap()) {
    rt->jitRuntime()->getInterpreterEntryMap()->checkScriptsAfterMovingGC();
  }
  for (ZonesIter zone(this, SkipAtoms); !zone.done(); zone.next()) {
    zone->checkUniqueIdTableAfterMovingGC();
    zone->shapeZone().checkTablesAfterMovingGC();
    zone->checkAllCrossCompartmentWrappersAfterMovingGC();
    zone->checkScriptMapsAfterMovingGC();

    // Note: CompactPropMaps never have a table.
    JS::AutoCheckCannotGC nogc;
    for (auto map = zone->cellIterUnsafe<NormalPropMap>(); !map.done();
         map.next()) {
      if (PropMapTable* table = map->asLinked()->maybeTable(nogc)) {
        table->checkAfterMovingGC();
      }
    }
    for (auto map = zone->cellIterUnsafe<DictionaryPropMap>(); !map.done();
         map.next()) {
      if (PropMapTable* table = map->asLinked()->maybeTable(nogc)) {
        table->checkAfterMovingGC();
      }
    }
  }

  for (CompartmentsIter c(this); !c.done(); c.next()) {
    for (RealmsInCompartmentIter r(c); !r.done(); r.next()) {
      r->dtoaCache.checkCacheAfterMovingGC();
      if (r->debugEnvs()) {
        r->debugEnvs()->checkHashTablesAfterMovingGC();
      }
    }
  }
}
#endif

#ifdef DEBUG
bool GCRuntime::hasZone(Zone* target) {
  for (AllZonesIter zone(this); !zone.done(); zone.next()) {
    if (zone == target) {
      return true;
    }
  }
  return false;
}
#endif

void AutoAssertEmptyNursery::checkCondition(JSContext* cx) {
  if (!noAlloc) {
    noAlloc.emplace();
  }
  this->cx = cx;
  MOZ_ASSERT(cx->nursery().isEmpty());
}

AutoEmptyNursery::AutoEmptyNursery(JSContext* cx) {
  MOZ_ASSERT(!cx->suppressGC);
  cx->runtime()->gc.stats().suspendPhases();
  cx->runtime()->gc.evictNursery(JS::GCReason::EVICT_NURSERY);
  cx->runtime()->gc.stats().resumePhases();
  checkCondition(cx);
}

#ifdef DEBUG

namespace js {

// We don't want jsfriendapi.h to depend on GenericPrinter,
// so these functions are declared directly in the cpp.

extern JS_PUBLIC_API void DumpString(JSString* str, js::GenericPrinter& out);

}  // namespace js

void js::gc::Cell::dump(js::GenericPrinter& out) const {
  switch (getTraceKind()) {
    case JS::TraceKind::Object:
      reinterpret_cast<const JSObject*>(this)->dump(out);
      break;

    case JS::TraceKind::String:
      js::DumpString(reinterpret_cast<JSString*>(const_cast<Cell*>(this)), out);
      break;

    case JS::TraceKind::Shape:
      reinterpret_cast<const Shape*>(this)->dump(out);
      break;

    default:
      out.printf("%s(%p)\n", JS::GCTraceKindToAscii(getTraceKind()),
                 (void*)this);
  }
}

// For use in a debugger.
void js::gc::Cell::dump() const {
  js::Fprinter out(stderr);
  dump(out);
}
#endif

JS_PUBLIC_API bool js::gc::detail::CanCheckGrayBits(const TenuredCell* cell) {
  // We do not check the gray marking state of cells in the following cases:
  //
  // 1) When OOM has caused us to clear the gcGrayBitsValid_ flag.
  //
  // 2) When we are in an incremental GC and examine a cell that is in a zone
  // that is not being collected. Gray targets of CCWs that are marked black
  // by a barrier will eventually be marked black in a later GC slice.
  //
  // 3) When mark bits are being cleared concurrently by a helper thread.

  MOZ_ASSERT(cell);

  auto* runtime = cell->runtimeFromAnyThread();
  MOZ_ASSERT(CurrentThreadCanAccessRuntime(runtime));

  if (!runtime->gc.areGrayBitsValid()) {
    return false;
  }

  JS::Zone* zone = cell->zone();

  if (runtime->gc.isIncrementalGCInProgress() && !zone->wasGCStarted()) {
    return false;
  }

  return !zone->isGCPreparing();
}

JS_PUBLIC_API bool js::gc::detail::CellIsMarkedGrayIfKnown(
    const TenuredCell* cell) {
  MOZ_ASSERT_IF(cell->isPermanentAndMayBeShared(), cell->isMarkedBlack());
  if (!cell->isMarkedGray()) {
    return false;
  }

  return CanCheckGrayBits(cell);
}

#ifdef DEBUG

JS_PUBLIC_API void js::gc::detail::AssertCellIsNotGray(const Cell* cell) {
  if (!cell->isTenured()) {
    return;
  }

  // Check that a cell is not marked gray.
  //
  // Since this is a debug-only check, take account of the eventual mark state
  // of cells that will be marked black by the next GC slice in an incremental
  // GC. For performance reasons we don't do this in CellIsMarkedGrayIfKnown.

  const auto* tc = &cell->asTenured();
  if (!tc->isMarkedGray() || !CanCheckGrayBits(tc)) {
    return;
  }

  // TODO: I'd like to AssertHeapIsIdle() here, but this ends up getting
  // called during GC and while iterating the heap for memory reporting.
  MOZ_ASSERT(!JS::RuntimeHeapIsCycleCollecting());

  if (tc->zone()->isGCMarkingBlackAndGray()) {
    // We are doing gray marking in the cell's zone. Even if the cell is
    // currently marked gray it may eventually be marked black. Delay checking
    // non-black cells until we finish gray marking.

    if (!tc->isMarkedBlack()) {
      JSRuntime* rt = tc->zone()->runtimeFromMainThread();
      AutoEnterOOMUnsafeRegion oomUnsafe;
      if (!rt->gc.cellsToAssertNotGray.ref().append(cell)) {
        oomUnsafe.crash("Can't append to delayed gray checks list");
      }
    }
    return;
  }

  MOZ_ASSERT(!tc->isMarkedGray());
}

extern JS_PUBLIC_API bool js::gc::detail::ObjectIsMarkedBlack(
    const JSObject* obj) {
  return obj->isMarkedBlack();
}

#endif

js::gc::ClearEdgesTracer::ClearEdgesTracer(JSRuntime* rt)
    : GenericTracerImpl(rt, JS::TracerKind::ClearEdges,
                        JS::WeakMapTraceAction::TraceKeysAndValues) {}

template <typename T>
void js::gc::ClearEdgesTracer::onEdge(T** thingp, const char* name) {
  // We don't handle removing pointers to nursery edges from the store buffer
  // with this tracer. Check that this doesn't happen.
  T* thing = *thingp;
  MOZ_ASSERT(!IsInsideNursery(thing));

  // Fire the pre-barrier since we're removing an edge from the graph.
  InternalBarrierMethods<T*>::preBarrier(thing);

  *thingp = nullptr;
}

void GCRuntime::setPerformanceHint(PerformanceHint hint) {
  if (hint == PerformanceHint::InPageLoad) {
    inPageLoadCount++;
  } else {
    MOZ_ASSERT(inPageLoadCount);
    inPageLoadCount--;
  }
}