summaryrefslogtreecommitdiffstats
path: root/js/src/jit-test/tests/wasm/multi-value/random-tests.js
blob: 828c13a7f516468c66121634edb329542fc7832d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
// This file tests multi-value returns.  It creates a chain of wasm functions
//
//   fnStart -> fnMid0 -> fnMid1 -> fnMid2 -> fnMid3 -> fnEnd
//
// When run, fnStart creates 12 (or in the non-simd case, 8) random values, of
// various types.  It then passes them to fnMid0.  That reorders them and
// passes them on to fnMid1, etc, until they arrive at fnEnd.
//
// fnEnd makes a small and reversible change to each value.  It then reorders
// them and returns all of them.  The returned values get passed back along
// the chain, being randomly reordered at each step, until they arrive back at
// fnStart.
//
// fnStart backs out the changes made in fnEnd and checks that the resulting
// values are the same as the originals it created.  If they are not, the test
// has failed.
//
// If the test passes, we can be sure each value got passed along the chain
// and back again correctly, despite being in a probably different argument or
// return position each time (due to the reordering).  As a side effect, this
// test also is a pretty good test of argument passing.  The number of values
// (10) is chosen so as to be larger than the number of args that can be
// passed in regs on any target; hence it also tests the logic for passing
// args in regs vs memory too.
//
// The whole process (generate and run a test program) is repeated 120 times.
//
// Doing this requires some supporting functions to be defined in wasm, by
// `funcs_util` and `funcs_rng` (a random number generator).
//
// It is almost impossible to understand what the tests do by reading the JS
// below.  Reading the generated wasm is required.  Search for "if (0)" below.

// Some utility functions for use in the generated code.
function funcs_util(simdEnabled) {
let t =
(simdEnabled ?
`;; Create a v128 value from 2 i64 values
 (func $v128_from_i64HL (export "v128_from_i64HL")
                        (param $i64hi i64) (param $i64lo i64) (result v128)
   (local $vec v128)
   (local.set $vec (i64x2.replace_lane 0 (local.get $vec) (local.get $i64lo)))
   (local.set $vec (i64x2.replace_lane 1 (local.get $vec) (local.get $i64hi)))
   (local.get $vec)
 )
 ;; Split a v128 up into pieces.
 (func $v128hi (export "v128hi") (param $vec v128) (result i64)
   (return (i64x2.extract_lane 1 (local.get $vec)))
 )
 (func $v128lo (export "v128lo") (param $vec v128) (result i64)
   (return (i64x2.extract_lane 0 (local.get $vec)))
 )
 ;; Return an i32 value, which is 0 if the args are identical and 1 otherwise.
 (func $v128ne (export "v128ne")
               (param $vec1 v128) (param $vec2 v128) (result i32)
   (return (v128.any_true (v128.xor (local.get $vec1) (local.get $vec2))))
 )`
 : ``/* simd not enabled*/
) +
`;; Move an i32 value forwards and backwards.
 (func $step_i32 (export "step_i32") (param $n i32) (result i32)
   (return (i32.add (local.get $n) (i32.const 1337)))
 )
 (func $unstep_i32 (export "unstep_i32") (param $n i32) (result i32)
   (return (i32.sub (local.get $n) (i32.const 1337)))
 )
 ;; Move an i64 value forwards and backwards.
 (func $step_i64 (export "step_i64") (param $n i64) (result i64)
   (return (i64.add (local.get $n) (i64.const 4771)))
 )
 (func $unstep_i64 (export "unstep_i64") (param $n i64) (result i64)
   (return (i64.sub (local.get $n) (i64.const 4771)))
 )
 ;; Move a f32 value forwards and backwards.  This is a bit tricky because
 ;; we need to guarantee that the backwards move exactly cancels out the
 ;; forward move.  So we multiply/divide exactly by 2 on the basis that that
 ;; will change the exponent but not the mantissa, at least for normalised
 ;; numbers.
 (func $step_f32 (export "step_f32") (param $n f32) (result f32)
   (return (f32.mul (local.get $n) (f32.const 2.0)))
 )
 (func $unstep_f32 (export "unstep_f32") (param $n f32) (result f32)
   (return (f32.div (local.get $n) (f32.const 2.0)))
 )
 ;; Move a f64 value forwards and backwards.
 (func $step_f64 (export "step_f64") (param $n f64) (result f64)
   (return (f64.mul (local.get $n) (f64.const 4.0)))
 )
 (func $unstep_f64 (export "unstep_f64") (param $n f64) (result f64)
   (return (f64.div (local.get $n) (f64.const 4.0)))
 )`
+ (simdEnabled ?
`;; Move a v128 value forwards and backwards.
 (func $step_v128 (export "step_v128") (param $vec v128) (result v128)
   (return (call $v128_from_i64HL
                 (i64.add (call $v128hi (local.get $vec)) (i64.const 1234))
                 (i64.add (call $v128lo (local.get $vec)) (i64.const 4321))
   ))
 )
 (func $unstep_v128 (export "unstep_v128") (param $vec v128) (result v128)
   (return (call $v128_from_i64HL
                 (i64.sub (call $v128hi (local.get $vec)) (i64.const 1234))
                 (i64.sub (call $v128lo (local.get $vec)) (i64.const 4321))
   ))
 )`
 : ``/* simd not enabled*/
);
return t;
}

// A Pseudo-RNG based on the C standard.  The core function generates only 16
// random bits.  We have to use it twice to generate a 32-bit random number
// and four times for a 64-bit random number.
let decls_rng =
`;; The RNG's state
 (global $rand_state
   (mut i32) (i32.const 1)
 )`;
function funcs_rng(simdEnabled) {
let t =
`;; Set the seed
 (func $rand_setSeed (param $seed i32)
   (global.set $rand_state (local.get $seed))
 )
 ;; Generate a 16-bit random number
 (func $rand_i16 (export "rand_i16") (result i32)
   (local $t i32)
   ;; update $rand_state
   (local.set $t (global.get $rand_state))
   (local.set $t (i32.mul (local.get $t) (i32.const 1103515245)))
   (local.set $t (i32.add (local.get $t) (i32.const 12345)))
   (global.set $rand_state (local.get $t))
   ;; pull 16 random bits out of it
   (local.set $t (i32.shr_u (local.get $t) (i32.const 15)))
   (local.set $t (i32.and (local.get $t) (i32.const 0xFFFF)))
   (local.get $t)
 )
 ;; Generate a 32-bit random number
 (func $rand_i32 (export "rand_i32") (result i32)
   (local $t i32)
   (local.set $t (call $rand_i16))
   (local.set $t (i32.shl (local.get $t) (i32.const 16)))
   (local.set $t (i32.or  (local.get $t) (call $rand_i16)))
   (local.get $t)
 )
 ;; Generate a 64-bit random number
 (func $rand_i64 (export "rand_i64") (result i64)
   (local $t i64)
   (local.set $t (i64.extend_i32_u (call $rand_i16)))
   (local.set $t (i64.shl (local.get $t) (i64.const 16)))
   (local.set $t (i64.or  (local.get $t) (i64.extend_i32_u (call $rand_i16))))
   (local.set $t (i64.shl (local.get $t) (i64.const 16)))
   (local.set $t (i64.or  (local.get $t) (i64.extend_i32_u (call $rand_i16))))
   (local.set $t (i64.shl (local.get $t) (i64.const 16)))
   (local.set $t (i64.or  (local.get $t) (i64.extend_i32_u (call $rand_i16))))
   (local.get $t)
 )
 ;; Generate a 32-bit random float.  This is something of a kludge in as much
 ;; as it does it by converting a random signed-int32 to a float32, which
 ;; means that we don't get any NaNs, infinities, denorms, etc, but OTOH
 ;; there's somewhat less randomness then there would be if we had allowed
 ;; such denorms in.
 (func $rand_f32 (export "rand_f32") (result f32)
   (f32.convert_i32_s (call $rand_i32))
 )
 ;; And similarly for 64-bit random floats
 (func $rand_f64 (export "rand_f64") (result f64)
   (f64.convert_i64_s (call $rand_i64))
 )`
+ (simdEnabled ?
`;; Generate a random 128-bit vector.
 (func $rand_v128 (export "rand_v128") (result v128)
   (call $v128_from_i64HL (call $rand_i64) (call $rand_i64))
 )`
: ``/* simd not enabled*/
);
return t;
}

// Helpers for function generation
function strcmp(s1,s2) {
    if (s1 < s2) return -1;
    if (s1 > s2) return 1;
    return 0;
}

// This generates the last function in the chain.  It merely returns its
// arguments in a different order, but first applies the relevant `_step`
// function to each value.  This is the only place in the process where
// the passed/return values are modified.  Hence it gives us a way to be
// sure that the values made it all the way from the start function to the
// end of the chain (here) and back to the start function.  Back in the
// start function, we will apply the relevant `_unstep` function to each
// returned value, which should give the value that was sent up the chain
// originally.
//
// Here and below, the following naming scheme is used:
//
// * taIn  -- types of arguments that come in to this function
// * taOut -- types of arguments that this function passes
//            to the next in the chain
// * trOut -- types of results that this function returns
// * trIn  -- types of results that the next function in the chain
//            returns to this function
//
// Hence 'a' vs 'r' distinguishes argument from return types, and 'In' vs
// 'Out' distinguishes values coming "in" to the function from those going
// "out".  The 'a'/'r' naming scheme is also used in the generated wasm (text).
function genEnd(myFuncName, taIn, trOut) {
    assertEq(taIn.length, trOut.length);
    let params = taIn.map(pair => `(param $a${pair.name} ${pair.type})`)
                     .join(` `);
    let retTys = trOut.map(pair => pair.type).join(` `);
    let t =
        `(func $${myFuncName} (export "${myFuncName}") ` +
        `  ${params} (result ${retTys})\n` +
        trOut.map(pair =>
            `  (call $step_${pair.type} (local.get $a${pair.name}))`)
             .join(`\n`) + `\n` +
        `)`;
    return t;
}

// This generates an intermediate function in the chain.  It takes args as
// specified by `taIn`, rearranges them to match `taOut`, passes those to the
// next function in the chain.  From which it receives return values as
// described by `trIn`, which it rearranges to match `trOut`, and returns
// those.  Overall, then, it permutes values both in the calling direction and
// in the returning direction.
function genMiddle(myFuncName, nextFuncName, taIn, trOut, taOut, trIn) {
    assertEq(taIn.length, taOut.length);
    assertEq(taIn.length, trIn.length);
    assertEq(taIn.length, trOut.length);
    let params = taIn.map(pair => `(param $a${pair.name} ${pair.type})`)
                     .join(` `);
    let retTys = trOut.map(pair => pair.type).join(` `);
    let trInSorted = trIn.toSorted((p1,p2) => strcmp(p1.name,p2.name));
    let t =
        `(func $${myFuncName} (export "${myFuncName}") ` +
        `  ${params} (result ${retTys})\n` +
        // Declare locals
        trInSorted
          .map(pair => `  (local $r${pair.name} ${pair.type})`)
          .join(`\n`) + `\n` +
        // Make the call
        `  (call $${nextFuncName} ` +
        taOut.map(pair => `(local.get $a${pair.name})`).join(` `) + `)\n` +
        // Capture the returned values
        trIn.toReversed()
            .map(pair => `  (local.set $r${pair.name})`).join(`\n`) + `\n` +
        // Return
        `  (return ` + trOut.map(pair => `(local.get $r${pair.name})`)
                            .join (` `) + `)\n` +
        `)`;
    return t;
}

// This generates the first function in the chain.  It creates random values
// for the initial arguments, passes them to the next arg in the chain,
// receives results, and checks that the results are as expected.
// NOTE!  The generated function returns zero on success, non-zero on failure.
function genStart(myFuncName, nextFuncName, taOut, trIn) {
    assertEq(taOut.length, trIn.length);
    let taOutSorted = taOut.toSorted((p1,p2) => strcmp(p1.name,p2.name));
    let trInSorted = trIn.toSorted((p1,p2) => strcmp(p1.name,p2.name));
    // `taOutSorted` and `trInSorted` should be identical.
    assertEq(taOutSorted.length, trInSorted.length);
    for (let i = 0; i < taOutSorted.length; i++) {
        assertEq(taOutSorted[i].name, trInSorted[i].name);
        assertEq(taOutSorted[i].type, trInSorted[i].type);
    }
    let t =
        `(func $${myFuncName} (export "${myFuncName}") (result i32)\n` +
        // Declare locals
        taOutSorted
          .map(pair => `  (local $a${pair.name} ${pair.type})`)
          .join(`\n`) + `\n` +
        trInSorted
          .map(pair => `  (local $r${pair.name} ${pair.type})`)
          .join(`\n`) + `\n` +
        `  (local $anyNotEqual i32)\n` +
        // Set up the initial values to be fed up the chain of calls and back
        // down again.  We expect them to be the same when they finally arrive
        // back.  Note we re-initialise the (wasm-side) RNG even though this
        // isn't actually necessary.
        `  (call $rand_setSeed (i32.const 1))\n` +
        taOutSorted
          .map(pair => `  (local.set $a${pair.name} (call $rand_${pair.type}))`)
          .join(`\n`) + `\n` +
        // Actually make the call
        `  (call $${nextFuncName} ` +
          taOut.map(pair => `(local.get $a${pair.name})`).join(` `) + `)\n` +
        // Capture the returned values
        trIn.toReversed()
            .map(pair => `  (local.set $r${pair.name})`).join(`\n`) + `\n` +

        // For each returned value, apply the relevant `_unstep` function,
        // then compare it against the original.  It should be the same, so
        // accumulate any signs of difference in $anyNotEqual.  Since
        // `taOutSorted` and `trInSorted` are identical we can iterate over
        // either.
        taOutSorted
          .map(pair =>
               `  (local.set $anyNotEqual \n` +
               `    (i32.or (local.get $anyNotEqual)\n` +
               `     (` +
               // v128 doesn't have a suitable .ne operator, so call a helper fn
               (pair.type === `v128` ? `call $v128ne` : `${pair.type}.ne`) +
               ` (local.get $a${pair.name})` +
               ` (call $unstep_${pair.type} (local.get $r${pair.name})))))`
              )
          .join(`\n`) + `\n` +
        `  (return (local.get $anyNotEqual))\n` +
        `)`;
    return t;
}

// A pseudo-random number generator that is independent of the one baked into
// each wasm program generated.  This is for use in JS only.  It isn't great,
// but at least it starts from a fixed place, which Math.random doesn't.  This
// produces a function `rand4js`, which takes an argument `n` and produces an
// integer value in the range `0 .. n-1` inclusive.  `n` needs to be less than
// or equal to 2^21 for this to work at all, and it needs to be much less than
// 2^21 (say, no more than 2^14) in order to get a reasonably even
// distribution of the values generated.
let rand4js_txt =
`(module
   (global $rand4js_state (mut i32) (i32.const 1))
   (func $rand4js (export "rand4js") (param $maxPlus1 i32) (result i32)
     (local $t i32)
     ;; update $rand4js_state
     (local.set $t (global.get $rand4js_state))
     (local.set $t (i32.mul (local.get $t) (i32.const 1103515245)))
     (local.set $t (i32.add (local.get $t) (i32.const 12345)))
     (global.set $rand4js_state (local.get $t))
     ;; Note, the low order bits are not very random.  Hence we dump the
     ;; low-order 11 bits.  This leaves us with at best 21 usable bits.
     (local.set $t (i32.shr_u (local.get $t) (i32.const 11)))
     (i32.rem_u (local.get $t) (local.get $maxPlus1))
   )
)`;
let rand4js = new WebAssembly.Instance(
                  new WebAssembly.Module(wasmTextToBinary(rand4js_txt)))
              .exports.rand4js;

// Fisher-Yates scheme for generating random permutations of a sequence.
// Result is a new array containing the original items in a different order.
// Original is unchanged.
function toRandomPermutation(input) {
    let n = input.length;
    let result = input.slice();
    assertEq(result.length, n);
    if (n < 2) return result;
    for (let i = 0; i < n - 1; i++) {
        let j = i + rand4js(n - i);
        let t = result[i];
        result[i] = result[j];
        result[j] = t;
    }
    return result;
}

// Top level test runner
function testMain(numIters) {
    // Check whether we can use SIMD.
    let simdEnabled = wasmSimdEnabled();

    // Names tagged with types.  This is set up to provide 10 values that
    // potentially can be passed in integer registers (5 x i32, 5 x i64) and
    // 10 values that potentially can be passed in FP/SIMD registers (3 x f32,
    // 3 x f64, 4 x v128).  This should cover both sides of the
    // arg-passed-in-reg/arg-passed-in-mem boundary for all of the primary
    // targets.
    let val0 = {name: "0", type: "i32"};
    let val1 = {name: "1", type: "i32"};
    let val2 = {name: "2", type: "i32"};
    let val3 = {name: "3", type: "i32"};
    let val4 = {name: "4", type: "i32"};

    let val5 = {name: "5", type: "i64"};
    let val6 = {name: "6", type: "i64"};
    let val7 = {name: "7", type: "i64"};
    let val8 = {name: "8", type: "i64"};
    let val9 = {name: "9", type: "i64"};

    let vala = {name: "a", type: "f32"};
    let valb = {name: "b", type: "f32"};
    let valc = {name: "c", type: "f32"};

    let vald = {name: "d", type: "f64"};
    let vale = {name: "e", type: "f64"};
    let valf = {name: "f", type: "f64"};

    let valg = {name: "g", type: "v128"};
    let valh = {name: "h", type: "v128"};
    let vali = {name: "i", type: "v128"};
    let valj = {name: "j", type: "v128"};

    // This is the base name/type vector,
    // of which we will create random permutations.
    let baseValVec;
    if (simdEnabled) {
        baseValVec
            = [val0, val1, val2, val3, val4, val5, val6, val7, val8, val9,
               vala, valb, valc, vald, vale, valf, valg, valh, vali, valj];
    } else {
        baseValVec
            = [val0, val1, val2, val3, val4, val5, val6, val7, val8, val9,
               vala, valb, valc, vald, vale, valf];
    }

    function summariseVec(valVec) {
        return valVec.map(pair => pair.name).join("");
    }

    print("\nsimdEnabled = " + simdEnabled + "\n");

    for (let testRun = 0; testRun < numIters; testRun++) {
        let tx0a = toRandomPermutation(baseValVec);
        let tx0r = toRandomPermutation(baseValVec);
        let tx1a = toRandomPermutation(baseValVec);
        let tx1r = toRandomPermutation(baseValVec);
        let tx2a = toRandomPermutation(baseValVec);
        let tx2r = toRandomPermutation(baseValVec);
        let tx3a = toRandomPermutation(baseValVec);
        let tx3r = toRandomPermutation(baseValVec);
        let tx4a = toRandomPermutation(baseValVec);
        let tx4r = toRandomPermutation(baseValVec);

        // Generate a 5-step chain of functions, each one passing and
        // returning different permutation of `baseValVec`.  The chain is:
        //   fnStart -> fnMid0 -> fnMid1 -> fnMid2 -> fnMid3 -> fnEnd
        let t_end   = genEnd("fnEnd", tx4a, tx4r);
        let t_mid3  = genMiddle("fnMid3", "fnEnd",  tx3a, tx3r, tx4a, tx4r);
        let t_mid2  = genMiddle("fnMid2", "fnMid3", tx2a, tx2r, tx3a, tx3r);
        let t_mid1  = genMiddle("fnMid1", "fnMid2", tx1a, tx1r, tx2a, tx2r);
        let t_mid0  = genMiddle("fnMid0", "fnMid1", tx0a, tx0r, tx1a, tx1r);
        let t_start = genStart("fnStart", "fnMid0", tx0a, tx0r);

        let txt = "(module (memory 1) " + "\n" +
            decls_rng + "\n" +
            funcs_util(simdEnabled) + "\n" + funcs_rng(simdEnabled) + "\n" +
            t_end + "\n" +
            t_mid3 + "\n" + t_mid2 + "\n" + t_mid1 + "\n" + t_mid0 + "\n" +
            t_start + "\n" +
            ")";

        if (0) print(txt);

        let mod = new WebAssembly.Module(wasmTextToBinary(txt));
        let ins = new WebAssembly.Instance(mod);
        let fns = ins.exports;

        // result == 0 means success, any other value means failure
        let result = fns.fnStart();
        if (/*failure*/result != 0 || (testRun % 120) == 0)
            print(" " + testRun + " " +
                  [tx0a,tx0r,tx1a,tx1r,tx2a,tx2r,tx3a,tx3r,tx4a,tx4r]
                  .map(e => summariseVec(e)).join("/") + "  "
                  + (result == 0 ? "pass" : "FAIL"));

        assertEq(result, 0);
    }
}

testMain(/*numIters=*/120);