1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_loong64_Assembler_loong64_h
#define jit_loong64_Assembler_loong64_h
#include "mozilla/Sprintf.h"
#include <iterator>
#include "jit/CompactBuffer.h"
#include "jit/JitCode.h"
#include "jit/JitSpewer.h"
#include "jit/loong64/Architecture-loong64.h"
#include "jit/shared/Assembler-shared.h"
#include "jit/shared/Disassembler-shared.h"
#include "jit/shared/IonAssemblerBuffer.h"
#include "wasm/WasmTypeDecls.h"
namespace js {
namespace jit {
static constexpr Register zero{Registers::zero};
static constexpr Register ra{Registers::ra};
static constexpr Register tp{Registers::tp};
static constexpr Register sp{Registers::sp};
static constexpr Register a0{Registers::a0};
static constexpr Register a1{Registers::a1};
static constexpr Register a2{Registers::a2};
static constexpr Register a3{Registers::a3};
static constexpr Register a4{Registers::a4};
static constexpr Register a5{Registers::a5};
static constexpr Register a6{Registers::a6};
static constexpr Register a7{Registers::a7};
static constexpr Register t0{Registers::t0};
static constexpr Register t1{Registers::t1};
static constexpr Register t2{Registers::t2};
static constexpr Register t3{Registers::t3};
static constexpr Register t4{Registers::t4};
static constexpr Register t5{Registers::t5};
static constexpr Register t6{Registers::t6};
static constexpr Register t7{Registers::t7};
static constexpr Register t8{Registers::t8};
static constexpr Register rx{Registers::rx};
static constexpr Register fp{Registers::fp};
static constexpr Register s0{Registers::s0};
static constexpr Register s1{Registers::s1};
static constexpr Register s2{Registers::s2};
static constexpr Register s3{Registers::s3};
static constexpr Register s4{Registers::s4};
static constexpr Register s5{Registers::s5};
static constexpr Register s6{Registers::s6};
static constexpr Register s7{Registers::s7};
static constexpr Register s8{Registers::s8};
static constexpr FloatRegister f0{FloatRegisters::f0, FloatRegisters::Double};
static constexpr FloatRegister f1{FloatRegisters::f1, FloatRegisters::Double};
static constexpr FloatRegister f2{FloatRegisters::f2, FloatRegisters::Double};
static constexpr FloatRegister f3{FloatRegisters::f3, FloatRegisters::Double};
static constexpr FloatRegister f4{FloatRegisters::f4, FloatRegisters::Double};
static constexpr FloatRegister f5{FloatRegisters::f5, FloatRegisters::Double};
static constexpr FloatRegister f6{FloatRegisters::f6, FloatRegisters::Double};
static constexpr FloatRegister f7{FloatRegisters::f7, FloatRegisters::Double};
static constexpr FloatRegister f8{FloatRegisters::f8, FloatRegisters::Double};
static constexpr FloatRegister f9{FloatRegisters::f9, FloatRegisters::Double};
static constexpr FloatRegister f10{FloatRegisters::f10, FloatRegisters::Double};
static constexpr FloatRegister f11{FloatRegisters::f11, FloatRegisters::Double};
static constexpr FloatRegister f12{FloatRegisters::f12, FloatRegisters::Double};
static constexpr FloatRegister f13{FloatRegisters::f13, FloatRegisters::Double};
static constexpr FloatRegister f14{FloatRegisters::f14, FloatRegisters::Double};
static constexpr FloatRegister f15{FloatRegisters::f15, FloatRegisters::Double};
static constexpr FloatRegister f16{FloatRegisters::f16, FloatRegisters::Double};
static constexpr FloatRegister f17{FloatRegisters::f17, FloatRegisters::Double};
static constexpr FloatRegister f18{FloatRegisters::f18, FloatRegisters::Double};
static constexpr FloatRegister f19{FloatRegisters::f19, FloatRegisters::Double};
static constexpr FloatRegister f20{FloatRegisters::f20, FloatRegisters::Double};
static constexpr FloatRegister f21{FloatRegisters::f21, FloatRegisters::Double};
static constexpr FloatRegister f22{FloatRegisters::f22, FloatRegisters::Double};
static constexpr FloatRegister f23{FloatRegisters::f23, FloatRegisters::Double};
static constexpr FloatRegister f24{FloatRegisters::f24, FloatRegisters::Double};
static constexpr FloatRegister f25{FloatRegisters::f25, FloatRegisters::Double};
static constexpr FloatRegister f26{FloatRegisters::f26, FloatRegisters::Double};
static constexpr FloatRegister f27{FloatRegisters::f27, FloatRegisters::Double};
static constexpr FloatRegister f28{FloatRegisters::f28, FloatRegisters::Double};
static constexpr FloatRegister f29{FloatRegisters::f29, FloatRegisters::Double};
static constexpr FloatRegister f30{FloatRegisters::f30, FloatRegisters::Double};
static constexpr FloatRegister f31{FloatRegisters::f31, FloatRegisters::Double};
static constexpr Register InvalidReg{Registers::Invalid};
static constexpr FloatRegister InvalidFloatReg;
static constexpr Register StackPointer = sp;
static constexpr Register FramePointer = fp;
static constexpr Register ReturnReg = a0;
static constexpr Register64 ReturnReg64(ReturnReg);
static constexpr FloatRegister ReturnFloat32Reg{FloatRegisters::f0,
FloatRegisters::Single};
static constexpr FloatRegister ReturnDoubleReg = f0;
static constexpr FloatRegister ReturnSimd128Reg = InvalidFloatReg;
static constexpr Register ScratchRegister = t7;
static constexpr Register SecondScratchReg = t8;
// Helper classes for ScratchRegister usage. Asserts that only one piece
// of code thinks it has exclusive ownership of each scratch register.
struct ScratchRegisterScope : public AutoRegisterScope {
explicit ScratchRegisterScope(MacroAssembler& masm)
: AutoRegisterScope(masm, ScratchRegister) {}
};
struct SecondScratchRegisterScope : public AutoRegisterScope {
explicit SecondScratchRegisterScope(MacroAssembler& masm)
: AutoRegisterScope(masm, SecondScratchReg) {}
};
static constexpr FloatRegister ScratchFloat32Reg{FloatRegisters::f23,
FloatRegisters::Single};
static constexpr FloatRegister ScratchDoubleReg = f23;
static constexpr FloatRegister ScratchSimd128Reg = InvalidFloatReg;
struct ScratchFloat32Scope : public AutoFloatRegisterScope {
explicit ScratchFloat32Scope(MacroAssembler& masm)
: AutoFloatRegisterScope(masm, ScratchFloat32Reg) {}
};
struct ScratchDoubleScope : public AutoFloatRegisterScope {
explicit ScratchDoubleScope(MacroAssembler& masm)
: AutoFloatRegisterScope(masm, ScratchDoubleReg) {}
};
// Use arg reg from EnterJIT function as OsrFrameReg.
static constexpr Register OsrFrameReg = a3;
static constexpr Register PreBarrierReg = a1;
static constexpr Register InterpreterPCReg = t0;
static constexpr Register CallTempReg0 = t0;
static constexpr Register CallTempReg1 = t1;
static constexpr Register CallTempReg2 = t2;
static constexpr Register CallTempReg3 = t3;
static constexpr Register CallTempReg4 = t4;
static constexpr Register CallTempReg5 = t5;
static constexpr Register CallTempNonArgRegs[] = {t0, t1, t2, t3};
static const uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs);
static constexpr Register IntArgReg0 = a0;
static constexpr Register IntArgReg1 = a1;
static constexpr Register IntArgReg2 = a2;
static constexpr Register IntArgReg3 = a3;
static constexpr Register IntArgReg4 = a4;
static constexpr Register IntArgReg5 = a5;
static constexpr Register IntArgReg6 = a6;
static constexpr Register IntArgReg7 = a7;
static constexpr Register HeapReg = s7;
// Registers used by RegExpMatcher and RegExpExecMatch stubs (do not use
// JSReturnOperand).
static constexpr Register RegExpMatcherRegExpReg = CallTempReg0;
static constexpr Register RegExpMatcherStringReg = CallTempReg1;
static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2;
// Registers used by RegExpExecTest stub (do not use ReturnReg).
static constexpr Register RegExpExecTestRegExpReg = CallTempReg0;
static constexpr Register RegExpExecTestStringReg = CallTempReg1;
// Registers used by RegExpSearcher stub (do not use ReturnReg).
static constexpr Register RegExpSearcherRegExpReg = CallTempReg0;
static constexpr Register RegExpSearcherStringReg = CallTempReg1;
static constexpr Register RegExpSearcherLastIndexReg = CallTempReg2;
static constexpr Register JSReturnReg_Type = a3;
static constexpr Register JSReturnReg_Data = a2;
static constexpr Register JSReturnReg = a2;
static constexpr ValueOperand JSReturnOperand = ValueOperand(JSReturnReg);
// These registers may be volatile or nonvolatile.
static constexpr Register ABINonArgReg0 = t0;
static constexpr Register ABINonArgReg1 = t1;
static constexpr Register ABINonArgReg2 = t2;
static constexpr Register ABINonArgReg3 = t3;
// These registers may be volatile or nonvolatile.
// Note: these three registers are all guaranteed to be different
static constexpr Register ABINonArgReturnReg0 = t0;
static constexpr Register ABINonArgReturnReg1 = t1;
static constexpr Register ABINonVolatileReg = s0;
// This register is guaranteed to be clobberable during the prologue and
// epilogue of an ABI call which must preserve both ABI argument, return
// and non-volatile registers.
static constexpr Register ABINonArgReturnVolatileReg = ra;
// This register may be volatile or nonvolatile.
// Avoid f23 which is the scratch register.
static constexpr FloatRegister ABINonArgDoubleReg{FloatRegisters::f21,
FloatRegisters::Double};
// Instance pointer argument register for WebAssembly functions. This must not
// alias any other register used for passing function arguments or return
// values. Preserved by WebAssembly functions. Must be nonvolatile.
static constexpr Register InstanceReg = s4;
// Registers used for wasm table calls. These registers must be disjoint
// from the ABI argument registers, InstanceReg and each other.
static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0;
static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1;
static constexpr Register WasmTableCallSigReg = ABINonArgReg2;
static constexpr Register WasmTableCallIndexReg = ABINonArgReg3;
// Registers used for ref calls.
static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0;
static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1;
static constexpr Register WasmCallRefReg = ABINonArgReg3;
// Registers used for wasm tail calls operations.
static constexpr Register WasmTailCallInstanceScratchReg = ABINonArgReg1;
static constexpr Register WasmTailCallRAScratchReg = ra;
static constexpr Register WasmTailCallFPScratchReg = ABINonArgReg3;
// Register used as a scratch along the return path in the fast js -> wasm stub
// code. This must not overlap ReturnReg, JSReturnOperand, or InstanceReg.
// It must be a volatile register.
static constexpr Register WasmJitEntryReturnScratch = t1;
static constexpr uint32_t ABIStackAlignment = 16;
static constexpr uint32_t CodeAlignment = 16;
static constexpr uint32_t JitStackAlignment = 16;
static constexpr uint32_t JitStackValueAlignment =
JitStackAlignment / sizeof(Value);
static_assert(JitStackAlignment % sizeof(Value) == 0 &&
JitStackValueAlignment >= 1,
"Stack alignment should be a non-zero multiple of sizeof(Value)");
// TODO(loong64): this is just a filler to prevent a build failure. The
// LoongArch SIMD alignment requirements still need to be explored.
static constexpr uint32_t SimdMemoryAlignment = 16;
static_assert(CodeAlignment % SimdMemoryAlignment == 0,
"Code alignment should be larger than any of the alignments "
"which are used for "
"the constant sections of the code buffer. Thus it should be "
"larger than the "
"alignment for SIMD constants.");
static constexpr uint32_t WasmStackAlignment = SimdMemoryAlignment;
static const uint32_t WasmTrapInstructionLength = 4;
// See comments in wasm::GenerateFunctionPrologue. The difference between these
// is the size of the largest callable prologue on the platform.
static constexpr uint32_t WasmCheckedCallEntryOffset = 0u;
static constexpr Scale ScalePointer = TimesEight;
// TODO(loong64): Add LoongArch instruction types description.
// LoongArch instruction encoding constants.
static const uint32_t RJShift = 5;
static const uint32_t RJBits = 5;
static const uint32_t RKShift = 10;
static const uint32_t RKBits = 5;
static const uint32_t RDShift = 0;
static const uint32_t RDBits = 5;
static const uint32_t FJShift = 5;
static const uint32_t FJBits = 5;
static const uint32_t FKShift = 10;
static const uint32_t FKBits = 5;
static const uint32_t FDShift = 0;
static const uint32_t FDBits = 5;
static const uint32_t FAShift = 15;
static const uint32_t FABits = 5;
static const uint32_t CJShift = 5;
static const uint32_t CJBits = 3;
static const uint32_t CDShift = 0;
static const uint32_t CDBits = 3;
static const uint32_t CAShift = 15;
static const uint32_t CABits = 3;
static const uint32_t CONDShift = 15;
static const uint32_t CONDBits = 5;
static const uint32_t SAShift = 15;
static const uint32_t SA2Bits = 2;
static const uint32_t SA3Bits = 3;
static const uint32_t LSBWShift = 10;
static const uint32_t LSBWBits = 5;
static const uint32_t LSBDShift = 10;
static const uint32_t LSBDBits = 6;
static const uint32_t MSBWShift = 16;
static const uint32_t MSBWBits = 5;
static const uint32_t MSBDShift = 16;
static const uint32_t MSBDBits = 6;
static const uint32_t Imm5Shift = 10;
static const uint32_t Imm5Bits = 5;
static const uint32_t Imm6Shift = 10;
static const uint32_t Imm6Bits = 6;
static const uint32_t Imm12Shift = 10;
static const uint32_t Imm12Bits = 12;
static const uint32_t Imm14Shift = 10;
static const uint32_t Imm14Bits = 14;
static const uint32_t Imm15Shift = 0;
static const uint32_t Imm15Bits = 15;
static const uint32_t Imm16Shift = 10;
static const uint32_t Imm16Bits = 16;
static const uint32_t Imm20Shift = 5;
static const uint32_t Imm20Bits = 20;
static const uint32_t Imm21Shift = 0;
static const uint32_t Imm21Bits = 21;
static const uint32_t Imm26Shift = 0;
static const uint32_t Imm26Bits = 26;
static const uint32_t CODEShift = 0;
static const uint32_t CODEBits = 15;
// LoongArch instruction field bit masks.
static const uint32_t RJMask = (1 << RJBits) - 1;
static const uint32_t RKMask = (1 << RKBits) - 1;
static const uint32_t RDMask = (1 << RDBits) - 1;
static const uint32_t SA2Mask = (1 << SA2Bits) - 1;
static const uint32_t SA3Mask = (1 << SA3Bits) - 1;
static const uint32_t CONDMask = (1 << CONDBits) - 1;
static const uint32_t LSBWMask = (1 << LSBWBits) - 1;
static const uint32_t LSBDMask = (1 << LSBDBits) - 1;
static const uint32_t MSBWMask = (1 << MSBWBits) - 1;
static const uint32_t MSBDMask = (1 << MSBDBits) - 1;
static const uint32_t CODEMask = (1 << CODEBits) - 1;
static const uint32_t Imm5Mask = (1 << Imm5Bits) - 1;
static const uint32_t Imm6Mask = (1 << Imm6Bits) - 1;
static const uint32_t Imm12Mask = (1 << Imm12Bits) - 1;
static const uint32_t Imm14Mask = (1 << Imm14Bits) - 1;
static const uint32_t Imm15Mask = (1 << Imm15Bits) - 1;
static const uint32_t Imm16Mask = (1 << Imm16Bits) - 1;
static const uint32_t Imm20Mask = (1 << Imm20Bits) - 1;
static const uint32_t Imm21Mask = (1 << Imm21Bits) - 1;
static const uint32_t Imm26Mask = (1 << Imm26Bits) - 1;
static const uint32_t BOffImm16Mask = ((1 << Imm16Bits) - 1) << Imm16Shift;
static const uint32_t BOffImm21Mask = ((1 << Imm21Bits) - 1) << Imm21Shift;
static const uint32_t BOffImm26Mask = ((1 << Imm26Bits) - 1) << Imm26Shift;
static const uint32_t RegMask = Registers::Total - 1;
// TODO(loong64) Change to syscall?
static const uint32_t MAX_BREAK_CODE = 1024 - 1;
static const uint32_t WASM_TRAP = 6; // BRK_OVERFLOW
// TODO(loong64) Change to LoongArch instruction type.
class Instruction;
class InstReg;
class InstImm;
class InstJump;
uint32_t RJ(Register r);
uint32_t RK(Register r);
uint32_t RD(Register r);
uint32_t FJ(FloatRegister r);
uint32_t FK(FloatRegister r);
uint32_t FD(FloatRegister r);
uint32_t FA(FloatRegister r);
uint32_t SA2(uint32_t value);
uint32_t SA2(FloatRegister r);
uint32_t SA3(uint32_t value);
uint32_t SA3(FloatRegister r);
Register toRK(Instruction& i);
Register toRJ(Instruction& i);
Register toRD(Instruction& i);
Register toR(Instruction& i);
// LoongArch enums for instruction fields
enum OpcodeField {
op_beqz = 0x10U << 26,
op_bnez = 0x11U << 26,
op_bcz = 0x12U << 26, // bceqz & bcnez
op_jirl = 0x13U << 26,
op_b = 0x14U << 26,
op_bl = 0x15U << 26,
op_beq = 0x16U << 26,
op_bne = 0x17U << 26,
op_blt = 0x18U << 26,
op_bge = 0x19U << 26,
op_bltu = 0x1aU << 26,
op_bgeu = 0x1bU << 26,
op_addu16i_d = 0x4U << 26,
op_lu12i_w = 0xaU << 25,
op_lu32i_d = 0xbU << 25,
op_pcaddi = 0xcU << 25,
op_pcalau12i = 0xdU << 25,
op_pcaddu12i = 0xeU << 25,
op_pcaddu18i = 0xfU << 25,
op_ll_w = 0x20U << 24,
op_sc_w = 0x21U << 24,
op_ll_d = 0x22U << 24,
op_sc_d = 0x23U << 24,
op_ldptr_w = 0x24U << 24,
op_stptr_w = 0x25U << 24,
op_ldptr_d = 0x26U << 24,
op_stptr_d = 0x27U << 24,
op_bstrins_d = 0x2U << 22,
op_bstrpick_d = 0x3U << 22,
op_slti = 0x8U << 22,
op_sltui = 0x9U << 22,
op_addi_w = 0xaU << 22,
op_addi_d = 0xbU << 22,
op_lu52i_d = 0xcU << 22,
op_andi = 0xdU << 22,
op_ori = 0xeU << 22,
op_xori = 0xfU << 22,
op_ld_b = 0xa0U << 22,
op_ld_h = 0xa1U << 22,
op_ld_w = 0xa2U << 22,
op_ld_d = 0xa3U << 22,
op_st_b = 0xa4U << 22,
op_st_h = 0xa5U << 22,
op_st_w = 0xa6U << 22,
op_st_d = 0xa7U << 22,
op_ld_bu = 0xa8U << 22,
op_ld_hu = 0xa9U << 22,
op_ld_wu = 0xaaU << 22,
op_preld = 0xabU << 22,
op_fld_s = 0xacU << 22,
op_fst_s = 0xadU << 22,
op_fld_d = 0xaeU << 22,
op_fst_d = 0xafU << 22,
op_bstr_w = 0x3U << 21, // BSTRINS_W & BSTRPICK_W
op_fmadd_s = 0x81U << 20,
op_fmadd_d = 0x82U << 20,
op_fmsub_s = 0x85U << 20,
op_fmsub_d = 0x86U << 20,
op_fnmadd_s = 0x89U << 20,
op_fnmadd_d = 0x8aU << 20,
op_fnmsub_s = 0x8dU << 20,
op_fnmsub_d = 0x8eU << 20,
op_fcmp_cond_s = 0xc1U << 20,
op_fcmp_cond_d = 0xc2U << 20,
op_bytepick_d = 0x3U << 18,
op_fsel = 0x340U << 18,
op_bytepick_w = 0x4U << 17,
op_alsl_w = 0x2U << 17,
op_alsl_wu = 0x3U << 17,
op_alsl_d = 0x16U << 17,
op_slli_d = 0x41U << 16,
op_srli_d = 0x45U << 16,
op_srai_d = 0x49U << 16,
op_slli_w = 0x81U << 15,
op_srli_w = 0x89U << 15,
op_srai_w = 0x91U << 15,
op_add_w = 0x20U << 15,
op_add_d = 0x21U << 15,
op_sub_w = 0x22U << 15,
op_sub_d = 0x23U << 15,
op_slt = 0x24U << 15,
op_sltu = 0x25U << 15,
op_maskeqz = 0x26U << 15,
op_masknez = 0x27U << 15,
op_nor = 0x28U << 15,
op_and = 0x29U << 15,
op_or = 0x2aU << 15,
op_xor = 0x2bU << 15,
op_orn = 0x2cU << 15,
op_andn = 0x2dU << 15,
op_sll_w = 0x2eU << 15,
op_srl_w = 0x2fU << 15,
op_sra_w = 0x30U << 15,
op_sll_d = 0x31U << 15,
op_srl_d = 0x32U << 15,
op_sra_d = 0x33U << 15,
op_rotr_w = 0x36U << 15,
op_rotr_d = 0x37U << 15,
op_rotri_w = 0x99U << 15,
op_rotri_d = 0x4DU << 16,
op_mul_w = 0x38U << 15,
op_mulh_w = 0x39U << 15,
op_mulh_wu = 0x3aU << 15,
op_mul_d = 0x3bU << 15,
op_mulh_d = 0x3cU << 15,
op_mulh_du = 0x3dU << 15,
op_mulw_d_w = 0x3eU << 15,
op_mulw_d_wu = 0x3fU << 15,
op_div_w = 0x40U << 15,
op_mod_w = 0x41U << 15,
op_div_wu = 0x42U << 15,
op_mod_wu = 0x43U << 15,
op_div_d = 0x44U << 15,
op_mod_d = 0x45U << 15,
op_div_du = 0x46U << 15,
op_mod_du = 0x47U << 15,
op_break = 0x54U << 15,
op_syscall = 0x56U << 15,
op_fadd_s = 0x201U << 15,
op_fadd_d = 0x202U << 15,
op_fsub_s = 0x205U << 15,
op_fsub_d = 0x206U << 15,
op_fmul_s = 0x209U << 15,
op_fmul_d = 0x20aU << 15,
op_fdiv_s = 0x20dU << 15,
op_fdiv_d = 0x20eU << 15,
op_fmax_s = 0x211U << 15,
op_fmax_d = 0x212U << 15,
op_fmin_s = 0x215U << 15,
op_fmin_d = 0x216U << 15,
op_fmaxa_s = 0x219U << 15,
op_fmaxa_d = 0x21aU << 15,
op_fmina_s = 0x21dU << 15,
op_fmina_d = 0x21eU << 15,
op_fcopysign_s = 0x225U << 15,
op_fcopysign_d = 0x226U << 15,
op_ldx_b = 0x7000U << 15,
op_ldx_h = 0x7008U << 15,
op_ldx_w = 0x7010U << 15,
op_ldx_d = 0x7018U << 15,
op_stx_b = 0x7020U << 15,
op_stx_h = 0x7028U << 15,
op_stx_w = 0x7030U << 15,
op_stx_d = 0x7038U << 15,
op_ldx_bu = 0x7040U << 15,
op_ldx_hu = 0x7048U << 15,
op_ldx_wu = 0x7050U << 15,
op_fldx_s = 0x7060U << 15,
op_fldx_d = 0x7068U << 15,
op_fstx_s = 0x7070U << 15,
op_fstx_d = 0x7078U << 15,
op_amswap_w = 0x70c0U << 15,
op_amswap_d = 0x70c1U << 15,
op_amadd_w = 0x70c2U << 15,
op_amadd_d = 0x70c3U << 15,
op_amand_w = 0x70c4U << 15,
op_amand_d = 0x70c5U << 15,
op_amor_w = 0x70c6U << 15,
op_amor_d = 0x70c7U << 15,
op_amxor_w = 0x70c8U << 15,
op_amxor_d = 0x70c9U << 15,
op_ammax_w = 0x70caU << 15,
op_ammax_d = 0x70cbU << 15,
op_ammin_w = 0x70ccU << 15,
op_ammin_d = 0x70cdU << 15,
op_ammax_wu = 0x70ceU << 15,
op_ammax_du = 0x70cfU << 15,
op_ammin_wu = 0x70d0U << 15,
op_ammin_du = 0x70d1U << 15,
op_amswap_db_w = 0x70d2U << 15,
op_amswap_db_d = 0x70d3U << 15,
op_amadd_db_w = 0x70d4U << 15,
op_amadd_db_d = 0x70d5U << 15,
op_amand_db_w = 0x70d6U << 15,
op_amand_db_d = 0x70d7U << 15,
op_amor_db_w = 0x70d8U << 15,
op_amor_db_d = 0x70d9U << 15,
op_amxor_db_w = 0x70daU << 15,
op_amxor_db_d = 0x70dbU << 15,
op_ammax_db_w = 0x70dcU << 15,
op_ammax_db_d = 0x70ddU << 15,
op_ammin_db_w = 0x70deU << 15,
op_ammin_db_d = 0x70dfU << 15,
op_ammax_db_wu = 0x70e0U << 15,
op_ammax_db_du = 0x70e1U << 15,
op_ammin_db_wu = 0x70e2U << 15,
op_ammin_db_du = 0x70e3U << 15,
op_dbar = 0x70e4U << 15,
op_ibar = 0x70e5U << 15,
op_clo_w = 0x4U << 10,
op_clz_w = 0x5U << 10,
op_cto_w = 0x6U << 10,
op_ctz_w = 0x7U << 10,
op_clo_d = 0x8U << 10,
op_clz_d = 0x9U << 10,
op_cto_d = 0xaU << 10,
op_ctz_d = 0xbU << 10,
op_revb_2h = 0xcU << 10,
op_revb_4h = 0xdU << 10,
op_revb_2w = 0xeU << 10,
op_revb_d = 0xfU << 10,
op_revh_2w = 0x10U << 10,
op_revh_d = 0x11U << 10,
op_bitrev_4b = 0x12U << 10,
op_bitrev_8b = 0x13U << 10,
op_bitrev_w = 0x14U << 10,
op_bitrev_d = 0x15U << 10,
op_ext_w_h = 0x16U << 10,
op_ext_w_b = 0x17U << 10,
op_fabs_s = 0x4501U << 10,
op_fabs_d = 0x4502U << 10,
op_fneg_s = 0x4505U << 10,
op_fneg_d = 0x4506U << 10,
op_fsqrt_s = 0x4511U << 10,
op_fsqrt_d = 0x4512U << 10,
op_fmov_s = 0x4525U << 10,
op_fmov_d = 0x4526U << 10,
op_movgr2fr_w = 0x4529U << 10,
op_movgr2fr_d = 0x452aU << 10,
op_movgr2frh_w = 0x452bU << 10,
op_movfr2gr_s = 0x452dU << 10,
op_movfr2gr_d = 0x452eU << 10,
op_movfrh2gr_s = 0x452fU << 10,
op_movgr2fcsr = 0x4530U << 10,
op_movfcsr2gr = 0x4532U << 10,
op_movfr2cf = 0x4534U << 10,
op_movgr2cf = 0x4536U << 10,
op_fcvt_s_d = 0x4646U << 10,
op_fcvt_d_s = 0x4649U << 10,
op_ftintrm_w_s = 0x4681U << 10,
op_ftintrm_w_d = 0x4682U << 10,
op_ftintrm_l_s = 0x4689U << 10,
op_ftintrm_l_d = 0x468aU << 10,
op_ftintrp_w_s = 0x4691U << 10,
op_ftintrp_w_d = 0x4692U << 10,
op_ftintrp_l_s = 0x4699U << 10,
op_ftintrp_l_d = 0x469aU << 10,
op_ftintrz_w_s = 0x46a1U << 10,
op_ftintrz_w_d = 0x46a2U << 10,
op_ftintrz_l_s = 0x46a9U << 10,
op_ftintrz_l_d = 0x46aaU << 10,
op_ftintrne_w_s = 0x46b1U << 10,
op_ftintrne_w_d = 0x46b2U << 10,
op_ftintrne_l_s = 0x46b9U << 10,
op_ftintrne_l_d = 0x46baU << 10,
op_ftint_w_s = 0x46c1U << 10,
op_ftint_w_d = 0x46c2U << 10,
op_ftint_l_s = 0x46c9U << 10,
op_ftint_l_d = 0x46caU << 10,
op_ffint_s_w = 0x4744U << 10,
op_ffint_s_l = 0x4746U << 10,
op_ffint_d_w = 0x4748U << 10,
op_ffint_d_l = 0x474aU << 10,
op_frint_s = 0x4791U << 10,
op_frint_d = 0x4792U << 10,
op_movcf2fr = 0x114d4U << 8,
op_movcf2gr = 0x114dcU << 8,
};
class Operand;
// A BOffImm16 is a 16 bit immediate that is used for branches.
class BOffImm16 {
uint32_t data;
public:
uint32_t encode() {
MOZ_ASSERT(!isInvalid());
return data;
}
int32_t decode() {
MOZ_ASSERT(!isInvalid());
return (int32_t(data << 18) >> 16);
}
explicit BOffImm16(int offset) : data((offset) >> 2 & Imm16Mask) {
MOZ_ASSERT((offset & 0x3) == 0);
MOZ_ASSERT(IsInRange(offset));
}
static bool IsInRange(int offset) {
if ((offset) < int(unsigned(INT16_MIN) << 2)) {
return false;
}
if ((offset) > (INT16_MAX << 2)) {
return false;
}
return true;
}
static const uint32_t INVALID = 0x00020000;
BOffImm16() : data(INVALID) {}
bool isInvalid() { return data == INVALID; }
Instruction* getDest(Instruction* src) const;
BOffImm16(InstImm inst);
};
// A JOffImm26 is a 26 bit immediate that is used for unconditional jumps.
class JOffImm26 {
uint32_t data;
public:
uint32_t encode() {
MOZ_ASSERT(!isInvalid());
return data;
}
int32_t decode() {
MOZ_ASSERT(!isInvalid());
return (int32_t(data << 8) >> 6);
}
explicit JOffImm26(int offset) : data((offset) >> 2 & Imm26Mask) {
MOZ_ASSERT((offset & 0x3) == 0);
MOZ_ASSERT(IsInRange(offset));
}
static bool IsInRange(int offset) {
if ((offset) < -536870912) {
return false;
}
if ((offset) > 536870908) {
return false;
}
return true;
}
static const uint32_t INVALID = 0x20000000;
JOffImm26() : data(INVALID) {}
bool isInvalid() { return data == INVALID; }
Instruction* getDest(Instruction* src);
};
class Imm16 {
uint16_t value;
public:
Imm16();
Imm16(uint32_t imm) : value(imm) {}
uint32_t encode() { return value; }
int32_t decodeSigned() { return value; }
uint32_t decodeUnsigned() { return value; }
static bool IsInSignedRange(int32_t imm) {
return imm >= INT16_MIN && imm <= INT16_MAX;
}
static bool IsInUnsignedRange(uint32_t imm) { return imm <= UINT16_MAX; }
};
class Imm8 {
uint8_t value;
public:
Imm8();
Imm8(uint32_t imm) : value(imm) {}
uint32_t encode(uint32_t shift) { return value << shift; }
int32_t decodeSigned() { return value; }
uint32_t decodeUnsigned() { return value; }
static bool IsInSignedRange(int32_t imm) {
return imm >= INT8_MIN && imm <= INT8_MAX;
}
static bool IsInUnsignedRange(uint32_t imm) { return imm <= UINT8_MAX; }
static Imm8 Lower(Imm16 imm) { return Imm8(imm.decodeSigned() & 0xff); }
static Imm8 Upper(Imm16 imm) {
return Imm8((imm.decodeSigned() >> 8) & 0xff);
}
};
class Operand {
public:
enum Tag { REG, FREG, MEM };
private:
Tag tag : 3;
uint32_t reg : 5;
int32_t offset;
public:
Operand(Register reg_) : tag(REG), reg(reg_.code()) {}
Operand(FloatRegister freg) : tag(FREG), reg(freg.code()) {}
Operand(Register base, Imm32 off)
: tag(MEM), reg(base.code()), offset(off.value) {}
Operand(Register base, int32_t off)
: tag(MEM), reg(base.code()), offset(off) {}
Operand(const Address& addr)
: tag(MEM), reg(addr.base.code()), offset(addr.offset) {}
Tag getTag() const { return tag; }
Register toReg() const {
MOZ_ASSERT(tag == REG);
return Register::FromCode(reg);
}
FloatRegister toFReg() const {
MOZ_ASSERT(tag == FREG);
return FloatRegister::FromCode(reg);
}
void toAddr(Register* r, Imm32* dest) const {
MOZ_ASSERT(tag == MEM);
*r = Register::FromCode(reg);
*dest = Imm32(offset);
}
Address toAddress() const {
MOZ_ASSERT(tag == MEM);
return Address(Register::FromCode(reg), offset);
}
int32_t disp() const {
MOZ_ASSERT(tag == MEM);
return offset;
}
int32_t base() const {
MOZ_ASSERT(tag == MEM);
return reg;
}
Register baseReg() const {
MOZ_ASSERT(tag == MEM);
return Register::FromCode(reg);
}
};
// int check.
inline bool is_intN(int32_t x, unsigned n) {
MOZ_ASSERT((0 < n) && (n < 64));
int32_t limit = static_cast<int32_t>(1) << (n - 1);
return (-limit <= x) && (x < limit);
}
inline bool is_uintN(int32_t x, unsigned n) {
MOZ_ASSERT((0 < n) && (n < (sizeof(x) * 8)));
return !(x >> n);
}
inline Imm32 Imm64::firstHalf() const { return low(); }
inline Imm32 Imm64::secondHalf() const { return hi(); }
static constexpr int32_t SliceSize = 1024;
typedef js::jit::AssemblerBuffer<SliceSize, Instruction> LOONGBuffer;
class LOONGBufferWithExecutableCopy : public LOONGBuffer {
public:
void executableCopy(uint8_t* buffer) {
if (this->oom()) {
return;
}
for (Slice* cur = head; cur != nullptr; cur = cur->getNext()) {
memcpy(buffer, &cur->instructions, cur->length());
buffer += cur->length();
}
}
bool appendRawCode(const uint8_t* code, size_t numBytes) {
if (this->oom()) {
return false;
}
while (numBytes > SliceSize) {
this->putBytes(SliceSize, code);
numBytes -= SliceSize;
code += SliceSize;
}
this->putBytes(numBytes, code);
return !this->oom();
}
};
class AssemblerLOONG64 : public AssemblerShared {
public:
// TODO(loong64): Should we remove these conditions here?
enum Condition {
Equal,
NotEqual,
Above,
AboveOrEqual,
Below,
BelowOrEqual,
GreaterThan,
GreaterThanOrEqual,
GreaterThanOrEqual_Signed,
GreaterThanOrEqual_NotSigned,
LessThan,
LessThan_Signed,
LessThan_NotSigned,
LessThanOrEqual,
Overflow,
CarrySet,
CarryClear,
Signed,
NotSigned,
Zero,
NonZero,
Always,
};
enum DoubleCondition {
DoubleOrdered,
DoubleEqual,
DoubleNotEqual,
DoubleGreaterThan,
DoubleGreaterThanOrEqual,
DoubleLessThan,
DoubleLessThanOrEqual,
DoubleUnordered,
DoubleEqualOrUnordered,
DoubleNotEqualOrUnordered,
DoubleGreaterThanOrUnordered,
DoubleGreaterThanOrEqualOrUnordered,
DoubleLessThanOrUnordered,
DoubleLessThanOrEqualOrUnordered
};
enum FPUCondition {
kNoFPUCondition = -1,
CAF = 0x00,
SAF = 0x01,
CLT = 0x02,
SLT = 0x03,
CEQ = 0x04,
SEQ = 0x05,
CLE = 0x06,
SLE = 0x07,
CUN = 0x08,
SUN = 0x09,
CULT = 0x0a,
SULT = 0x0b,
CUEQ = 0x0c,
SUEQ = 0x0d,
CULE = 0x0e,
SULE = 0x0f,
CNE = 0x10,
SNE = 0x11,
COR = 0x14,
SOR = 0x15,
CUNE = 0x18,
SUNE = 0x19,
};
enum FPConditionBit { FCC0 = 0, FCC1, FFC2, FCC3, FCC4, FCC5, FCC6, FCC7 };
enum FPControl { FCSR = 0 };
enum FCSRBit { CauseI = 24, CauseU, CauseO, CauseZ, CauseV };
enum FloatFormat { SingleFloat, DoubleFloat };
enum JumpOrCall { BranchIsJump, BranchIsCall };
enum FloatTestKind { TestForTrue, TestForFalse };
// :( this should be protected, but since CodeGenerator
// wants to use it, It needs to go out here :(
BufferOffset nextOffset() { return m_buffer.nextOffset(); }
protected:
Instruction* editSrc(BufferOffset bo) { return m_buffer.getInst(bo); }
// structure for fixing up pc-relative loads/jumps when a the machine code
// gets moved (executable copy, gc, etc.)
struct RelativePatch {
// the offset within the code buffer where the value is loaded that
// we want to fix-up
BufferOffset offset;
void* target;
RelocationKind kind;
RelativePatch(BufferOffset offset, void* target, RelocationKind kind)
: offset(offset), target(target), kind(kind) {}
};
js::Vector<RelativePatch, 8, SystemAllocPolicy> jumps_;
CompactBufferWriter jumpRelocations_;
CompactBufferWriter dataRelocations_;
LOONGBufferWithExecutableCopy m_buffer;
#ifdef JS_JITSPEW
Sprinter* printer;
#endif
public:
AssemblerLOONG64()
: m_buffer(),
#ifdef JS_JITSPEW
printer(nullptr),
#endif
isFinished(false) {
}
static Condition InvertCondition(Condition cond);
static DoubleCondition InvertCondition(DoubleCondition cond);
// This is changing the condition codes for cmp a, b to the same codes for cmp
// b, a.
static Condition InvertCmpCondition(Condition cond);
// As opposed to x86/x64 version, the data relocation has to be executed
// before to recover the pointer, and not after.
void writeDataRelocation(ImmGCPtr ptr) {
// Raw GC pointer relocations and Value relocations both end up in
// TraceOneDataRelocation.
if (ptr.value) {
if (gc::IsInsideNursery(ptr.value)) {
embedsNurseryPointers_ = true;
}
dataRelocations_.writeUnsigned(nextOffset().getOffset());
}
}
void assertNoGCThings() const {
#ifdef DEBUG
MOZ_ASSERT(dataRelocations_.length() == 0);
for (auto& j : jumps_) {
MOZ_ASSERT(j.kind == RelocationKind::HARDCODED);
}
#endif
}
public:
void setUnlimitedBuffer() { m_buffer.setUnlimited(); }
bool oom() const;
void setPrinter(Sprinter* sp) {
#ifdef JS_JITSPEW
printer = sp;
#endif
}
#ifdef JS_JITSPEW
inline void spew(const char* fmt, ...) MOZ_FORMAT_PRINTF(2, 3) {
if (MOZ_UNLIKELY(printer || JitSpewEnabled(JitSpew_Codegen))) {
va_list va;
va_start(va, fmt);
spew(fmt, va);
va_end(va);
}
}
void decodeBranchInstAndSpew(InstImm branch);
#else
MOZ_ALWAYS_INLINE void spew(const char* fmt, ...) MOZ_FORMAT_PRINTF(2, 3) {}
#endif
#ifdef JS_JITSPEW
MOZ_COLD void spew(const char* fmt, va_list va) MOZ_FORMAT_PRINTF(2, 0) {
// Buffer to hold the formatted string. Note that this may contain
// '%' characters, so do not pass it directly to printf functions.
char buf[200];
int i = VsprintfLiteral(buf, fmt, va);
if (i > -1) {
if (printer) {
printer->printf("%s\n", buf);
}
js::jit::JitSpew(js::jit::JitSpew_Codegen, "%s", buf);
}
}
#endif
Register getStackPointer() const { return StackPointer; }
protected:
bool isFinished;
public:
void finish();
bool appendRawCode(const uint8_t* code, size_t numBytes);
bool reserve(size_t size);
bool swapBuffer(wasm::Bytes& bytes);
void executableCopy(void* buffer);
void copyJumpRelocationTable(uint8_t* dest);
void copyDataRelocationTable(uint8_t* dest);
// Size of the instruction stream, in bytes.
size_t size() const;
// Size of the jump relocation table, in bytes.
size_t jumpRelocationTableBytes() const;
size_t dataRelocationTableBytes() const;
// Size of the data table, in bytes.
size_t bytesNeeded() const;
// Write a blob of binary into the instruction stream *OR*
// into a destination address. If dest is nullptr (the default), then the
// instruction gets written into the instruction stream. If dest is not null
// it is interpreted as a pointer to the location that we want the
// instruction to be written.
BufferOffset writeInst(uint32_t x, uint32_t* dest = nullptr);
// A static variant for the cases where we don't want to have an assembler
// object at all. Normally, you would use the dummy (nullptr) object.
static void WriteInstStatic(uint32_t x, uint32_t* dest);
public:
BufferOffset haltingAlign(int alignment);
BufferOffset nopAlign(int alignment);
BufferOffset as_nop() { return as_andi(zero, zero, 0); }
// Branch and jump instructions
BufferOffset as_b(JOffImm26 off);
BufferOffset as_bl(JOffImm26 off);
BufferOffset as_jirl(Register rd, Register rj, BOffImm16 off);
InstImm getBranchCode(JumpOrCall jumpOrCall); // b, bl
InstImm getBranchCode(Register rd, Register rj,
Condition c); // beq, bne, bge, bgeu, blt, bltu
InstImm getBranchCode(Register rj, Condition c); // beqz, bnez
InstImm getBranchCode(FPConditionBit cj); // bceqz, bcnez
// Arithmetic instructions
BufferOffset as_add_w(Register rd, Register rj, Register rk);
BufferOffset as_add_d(Register rd, Register rj, Register rk);
BufferOffset as_sub_w(Register rd, Register rj, Register rk);
BufferOffset as_sub_d(Register rd, Register rj, Register rk);
BufferOffset as_addi_w(Register rd, Register rj, int32_t si12);
BufferOffset as_addi_d(Register rd, Register rj, int32_t si12);
BufferOffset as_addu16i_d(Register rd, Register rj, int32_t si16);
BufferOffset as_alsl_w(Register rd, Register rj, Register rk, uint32_t sa2);
BufferOffset as_alsl_wu(Register rd, Register rj, Register rk, uint32_t sa2);
BufferOffset as_alsl_d(Register rd, Register rj, Register rk, uint32_t sa2);
BufferOffset as_lu12i_w(Register rd, int32_t si20);
BufferOffset as_lu32i_d(Register rd, int32_t si20);
BufferOffset as_lu52i_d(Register rd, Register rj, int32_t si12);
BufferOffset as_slt(Register rd, Register rj, Register rk);
BufferOffset as_sltu(Register rd, Register rj, Register rk);
BufferOffset as_slti(Register rd, Register rj, int32_t si12);
BufferOffset as_sltui(Register rd, Register rj, int32_t si12);
BufferOffset as_pcaddi(Register rd, int32_t si20);
BufferOffset as_pcaddu12i(Register rd, int32_t si20);
BufferOffset as_pcaddu18i(Register rd, int32_t si20);
BufferOffset as_pcalau12i(Register rd, int32_t si20);
BufferOffset as_mul_w(Register rd, Register rj, Register rk);
BufferOffset as_mulh_w(Register rd, Register rj, Register rk);
BufferOffset as_mulh_wu(Register rd, Register rj, Register rk);
BufferOffset as_mul_d(Register rd, Register rj, Register rk);
BufferOffset as_mulh_d(Register rd, Register rj, Register rk);
BufferOffset as_mulh_du(Register rd, Register rj, Register rk);
BufferOffset as_mulw_d_w(Register rd, Register rj, Register rk);
BufferOffset as_mulw_d_wu(Register rd, Register rj, Register rk);
BufferOffset as_div_w(Register rd, Register rj, Register rk);
BufferOffset as_mod_w(Register rd, Register rj, Register rk);
BufferOffset as_div_wu(Register rd, Register rj, Register rk);
BufferOffset as_mod_wu(Register rd, Register rj, Register rk);
BufferOffset as_div_d(Register rd, Register rj, Register rk);
BufferOffset as_mod_d(Register rd, Register rj, Register rk);
BufferOffset as_div_du(Register rd, Register rj, Register rk);
BufferOffset as_mod_du(Register rd, Register rj, Register rk);
// Logical instructions
BufferOffset as_and(Register rd, Register rj, Register rk);
BufferOffset as_or(Register rd, Register rj, Register rk);
BufferOffset as_xor(Register rd, Register rj, Register rk);
BufferOffset as_nor(Register rd, Register rj, Register rk);
BufferOffset as_andn(Register rd, Register rj, Register rk);
BufferOffset as_orn(Register rd, Register rj, Register rk);
BufferOffset as_andi(Register rd, Register rj, int32_t ui12);
BufferOffset as_ori(Register rd, Register rj, int32_t ui12);
BufferOffset as_xori(Register rd, Register rj, int32_t ui12);
// Shift instructions
BufferOffset as_sll_w(Register rd, Register rj, Register rk);
BufferOffset as_srl_w(Register rd, Register rj, Register rk);
BufferOffset as_sra_w(Register rd, Register rj, Register rk);
BufferOffset as_rotr_w(Register rd, Register rj, Register rk);
BufferOffset as_slli_w(Register rd, Register rj, int32_t ui5);
BufferOffset as_srli_w(Register rd, Register rj, int32_t ui5);
BufferOffset as_srai_w(Register rd, Register rj, int32_t ui5);
BufferOffset as_rotri_w(Register rd, Register rj, int32_t ui5);
BufferOffset as_sll_d(Register rd, Register rj, Register rk);
BufferOffset as_srl_d(Register rd, Register rj, Register rk);
BufferOffset as_sra_d(Register rd, Register rj, Register rk);
BufferOffset as_rotr_d(Register rd, Register rj, Register rk);
BufferOffset as_slli_d(Register rd, Register rj, int32_t ui6);
BufferOffset as_srli_d(Register rd, Register rj, int32_t ui6);
BufferOffset as_srai_d(Register rd, Register rj, int32_t ui6);
BufferOffset as_rotri_d(Register rd, Register rj, int32_t ui6);
// Bit operation instrucitons
BufferOffset as_ext_w_b(Register rd, Register rj);
BufferOffset as_ext_w_h(Register rd, Register rj);
BufferOffset as_clo_w(Register rd, Register rj);
BufferOffset as_clz_w(Register rd, Register rj);
BufferOffset as_cto_w(Register rd, Register rj);
BufferOffset as_ctz_w(Register rd, Register rj);
BufferOffset as_clo_d(Register rd, Register rj);
BufferOffset as_clz_d(Register rd, Register rj);
BufferOffset as_cto_d(Register rd, Register rj);
BufferOffset as_ctz_d(Register rd, Register rj);
BufferOffset as_bytepick_w(Register rd, Register rj, Register rk,
int32_t sa2);
BufferOffset as_bytepick_d(Register rd, Register rj, Register rk,
int32_t sa3);
BufferOffset as_revb_2h(Register rd, Register rj);
BufferOffset as_revb_4h(Register rd, Register rj);
BufferOffset as_revb_2w(Register rd, Register rj);
BufferOffset as_revb_d(Register rd, Register rj);
BufferOffset as_revh_2w(Register rd, Register rj);
BufferOffset as_revh_d(Register rd, Register rj);
BufferOffset as_bitrev_4b(Register rd, Register rj);
BufferOffset as_bitrev_8b(Register rd, Register rj);
BufferOffset as_bitrev_w(Register rd, Register rj);
BufferOffset as_bitrev_d(Register rd, Register rj);
BufferOffset as_bstrins_w(Register rd, Register rj, int32_t msbw,
int32_t lsbw);
BufferOffset as_bstrins_d(Register rd, Register rj, int32_t msbd,
int32_t lsbd);
BufferOffset as_bstrpick_w(Register rd, Register rj, int32_t msbw,
int32_t lsbw);
BufferOffset as_bstrpick_d(Register rd, Register rj, int32_t msbd,
int32_t lsbd);
BufferOffset as_maskeqz(Register rd, Register rj, Register rk);
BufferOffset as_masknez(Register rd, Register rj, Register rk);
// Load and store instructions
BufferOffset as_ld_b(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_h(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_w(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_d(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_bu(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_hu(Register rd, Register rj, int32_t si12);
BufferOffset as_ld_wu(Register rd, Register rj, int32_t si12);
BufferOffset as_st_b(Register rd, Register rj, int32_t si12);
BufferOffset as_st_h(Register rd, Register rj, int32_t si12);
BufferOffset as_st_w(Register rd, Register rj, int32_t si12);
BufferOffset as_st_d(Register rd, Register rj, int32_t si12);
BufferOffset as_ldx_b(Register rd, Register rj, Register rk);
BufferOffset as_ldx_h(Register rd, Register rj, Register rk);
BufferOffset as_ldx_w(Register rd, Register rj, Register rk);
BufferOffset as_ldx_d(Register rd, Register rj, Register rk);
BufferOffset as_ldx_bu(Register rd, Register rj, Register rk);
BufferOffset as_ldx_hu(Register rd, Register rj, Register rk);
BufferOffset as_ldx_wu(Register rd, Register rj, Register rk);
BufferOffset as_stx_b(Register rd, Register rj, Register rk);
BufferOffset as_stx_h(Register rd, Register rj, Register rk);
BufferOffset as_stx_w(Register rd, Register rj, Register rk);
BufferOffset as_stx_d(Register rd, Register rj, Register rk);
BufferOffset as_ldptr_w(Register rd, Register rj, int32_t si14);
BufferOffset as_ldptr_d(Register rd, Register rj, int32_t si14);
BufferOffset as_stptr_w(Register rd, Register rj, int32_t si14);
BufferOffset as_stptr_d(Register rd, Register rj, int32_t si14);
BufferOffset as_preld(int32_t hint, Register rj, int32_t si12);
// Atomic instructions
BufferOffset as_amswap_w(Register rd, Register rj, Register rk);
BufferOffset as_amswap_d(Register rd, Register rj, Register rk);
BufferOffset as_amadd_w(Register rd, Register rj, Register rk);
BufferOffset as_amadd_d(Register rd, Register rj, Register rk);
BufferOffset as_amand_w(Register rd, Register rj, Register rk);
BufferOffset as_amand_d(Register rd, Register rj, Register rk);
BufferOffset as_amor_w(Register rd, Register rj, Register rk);
BufferOffset as_amor_d(Register rd, Register rj, Register rk);
BufferOffset as_amxor_w(Register rd, Register rj, Register rk);
BufferOffset as_amxor_d(Register rd, Register rj, Register rk);
BufferOffset as_ammax_w(Register rd, Register rj, Register rk);
BufferOffset as_ammax_d(Register rd, Register rj, Register rk);
BufferOffset as_ammin_w(Register rd, Register rj, Register rk);
BufferOffset as_ammin_d(Register rd, Register rj, Register rk);
BufferOffset as_ammax_wu(Register rd, Register rj, Register rk);
BufferOffset as_ammax_du(Register rd, Register rj, Register rk);
BufferOffset as_ammin_wu(Register rd, Register rj, Register rk);
BufferOffset as_ammin_du(Register rd, Register rj, Register rk);
BufferOffset as_amswap_db_w(Register rd, Register rj, Register rk);
BufferOffset as_amswap_db_d(Register rd, Register rj, Register rk);
BufferOffset as_amadd_db_w(Register rd, Register rj, Register rk);
BufferOffset as_amadd_db_d(Register rd, Register rj, Register rk);
BufferOffset as_amand_db_w(Register rd, Register rj, Register rk);
BufferOffset as_amand_db_d(Register rd, Register rj, Register rk);
BufferOffset as_amor_db_w(Register rd, Register rj, Register rk);
BufferOffset as_amor_db_d(Register rd, Register rj, Register rk);
BufferOffset as_amxor_db_w(Register rd, Register rj, Register rk);
BufferOffset as_amxor_db_d(Register rd, Register rj, Register rk);
BufferOffset as_ammax_db_w(Register rd, Register rj, Register rk);
BufferOffset as_ammax_db_d(Register rd, Register rj, Register rk);
BufferOffset as_ammin_db_w(Register rd, Register rj, Register rk);
BufferOffset as_ammin_db_d(Register rd, Register rj, Register rk);
BufferOffset as_ammax_db_wu(Register rd, Register rj, Register rk);
BufferOffset as_ammax_db_du(Register rd, Register rj, Register rk);
BufferOffset as_ammin_db_wu(Register rd, Register rj, Register rk);
BufferOffset as_ammin_db_du(Register rd, Register rj, Register rk);
BufferOffset as_ll_w(Register rd, Register rj, int32_t si14);
BufferOffset as_ll_d(Register rd, Register rj, int32_t si14);
BufferOffset as_sc_w(Register rd, Register rj, int32_t si14);
BufferOffset as_sc_d(Register rd, Register rj, int32_t si14);
// Barrier instructions
BufferOffset as_dbar(int32_t hint);
BufferOffset as_ibar(int32_t hint);
// FP Arithmetic instructions
BufferOffset as_fadd_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fadd_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fsub_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fsub_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmul_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmul_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fdiv_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fdiv_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmadd_s(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fmadd_d(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fmsub_s(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fmsub_d(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fnmadd_s(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fnmadd_d(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fnmsub_s(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fnmsub_d(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FloatRegister fa);
BufferOffset as_fmax_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmax_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmin_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmin_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmaxa_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmaxa_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmina_s(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fmina_d(FloatRegister fd, FloatRegister fj, FloatRegister fk);
BufferOffset as_fabs_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_fabs_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_fneg_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_fneg_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_fsqrt_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_fsqrt_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_fcopysign_s(FloatRegister fd, FloatRegister fj,
FloatRegister fk);
BufferOffset as_fcopysign_d(FloatRegister fd, FloatRegister fj,
FloatRegister fk);
// FP compare instructions (fcmp.cond.s fcmp.cond.d)
BufferOffset as_fcmp_cor(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_ceq(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cne(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cle(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_clt(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cun(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cueq(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cune(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cule(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
BufferOffset as_fcmp_cult(FloatFormat fmt, FloatRegister fj, FloatRegister fk,
FPConditionBit cd);
// FP conversion instructions
BufferOffset as_fcvt_s_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_fcvt_d_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ffint_s_w(FloatRegister fd, FloatRegister fj);
BufferOffset as_ffint_s_l(FloatRegister fd, FloatRegister fj);
BufferOffset as_ffint_d_w(FloatRegister fd, FloatRegister fj);
BufferOffset as_ffint_d_l(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftint_w_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftint_w_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftint_l_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftint_l_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrm_w_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrm_w_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrm_l_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrm_l_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrp_w_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrp_w_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrp_l_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrp_l_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrz_w_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrz_w_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrz_l_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrz_l_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrne_w_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrne_w_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrne_l_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_ftintrne_l_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_frint_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_frint_d(FloatRegister fd, FloatRegister fj);
// FP mov instructions
BufferOffset as_fmov_s(FloatRegister fd, FloatRegister fj);
BufferOffset as_fmov_d(FloatRegister fd, FloatRegister fj);
BufferOffset as_fsel(FloatRegister fd, FloatRegister fj, FloatRegister fk,
FPConditionBit ca);
BufferOffset as_movgr2fr_w(FloatRegister fd, Register rj);
BufferOffset as_movgr2fr_d(FloatRegister fd, Register rj);
BufferOffset as_movgr2frh_w(FloatRegister fd, Register rj);
BufferOffset as_movfr2gr_s(Register rd, FloatRegister fj);
BufferOffset as_movfr2gr_d(Register rd, FloatRegister fj);
BufferOffset as_movfrh2gr_s(Register rd, FloatRegister fj);
BufferOffset as_movgr2fcsr(Register rj);
BufferOffset as_movfcsr2gr(Register rd);
BufferOffset as_movfr2cf(FPConditionBit cd, FloatRegister fj);
BufferOffset as_movcf2fr(FloatRegister fd, FPConditionBit cj);
BufferOffset as_movgr2cf(FPConditionBit cd, Register rj);
BufferOffset as_movcf2gr(Register rd, FPConditionBit cj);
// FP load/store instructions
BufferOffset as_fld_s(FloatRegister fd, Register rj, int32_t si12);
BufferOffset as_fld_d(FloatRegister fd, Register rj, int32_t si12);
BufferOffset as_fst_s(FloatRegister fd, Register rj, int32_t si12);
BufferOffset as_fst_d(FloatRegister fd, Register rj, int32_t si12);
BufferOffset as_fldx_s(FloatRegister fd, Register rj, Register rk);
BufferOffset as_fldx_d(FloatRegister fd, Register rj, Register rk);
BufferOffset as_fstx_s(FloatRegister fd, Register rj, Register rk);
BufferOffset as_fstx_d(FloatRegister fd, Register rj, Register rk);
// label operations
void bind(Label* label, BufferOffset boff = BufferOffset());
virtual void bind(InstImm* inst, uintptr_t branch, uintptr_t target) = 0;
void bind(CodeLabel* label) { label->target()->bind(currentOffset()); }
uint32_t currentOffset() { return nextOffset().getOffset(); }
void retarget(Label* label, Label* target);
void call(Label* label);
void call(void* target);
void as_break(uint32_t code);
public:
static bool SupportsFloatingPoint() {
#if defined(__loongarch_hard_float) || defined(JS_SIMULATOR_LOONG64)
return true;
#else
return false;
#endif
}
static bool SupportsUnalignedAccesses() { return true; }
static bool SupportsFastUnalignedFPAccesses() { return true; }
static bool HasRoundInstruction(RoundingMode mode) { return false; }
protected:
InstImm invertBranch(InstImm branch, BOffImm16 skipOffset);
void addPendingJump(BufferOffset src, ImmPtr target, RelocationKind kind) {
enoughMemory_ &= jumps_.append(RelativePatch(src, target.value, kind));
if (kind == RelocationKind::JITCODE) {
jumpRelocations_.writeUnsigned(src.getOffset());
}
}
void addLongJump(BufferOffset src, BufferOffset dst) {
CodeLabel cl;
cl.patchAt()->bind(src.getOffset());
cl.target()->bind(dst.getOffset());
cl.setLinkMode(CodeLabel::JumpImmediate);
addCodeLabel(std::move(cl));
}
public:
void flushBuffer() {}
void comment(const char* msg) { spew("; %s", msg); }
static uint32_t NopSize() { return 4; }
static void PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm);
static uint8_t* NextInstruction(uint8_t* instruction,
uint32_t* count = nullptr);
static void ToggleToJmp(CodeLocationLabel inst_);
static void ToggleToCmp(CodeLocationLabel inst_);
void verifyHeapAccessDisassembly(uint32_t begin, uint32_t end,
const Disassembler::HeapAccess& heapAccess) {
// Implement this if we implement a disassembler.
}
}; // AssemblerLOONG64
// andi r0, r0, 0
const uint32_t NopInst = 0x03400000;
// An Instruction is a structure for both encoding and decoding any and all
// LoongArch instructions.
class Instruction {
public:
uint32_t data;
protected:
// Standard constructor
Instruction(uint32_t data_) : data(data_) {}
// You should never create an instruction directly. You should create a
// more specific instruction which will eventually call one of these
// constructors for you.
public:
uint32_t encode() const { return data; }
void makeNop() { data = NopInst; }
void setData(uint32_t data) { this->data = data; }
const Instruction& operator=(const Instruction& src) {
data = src.data;
return *this;
}
// Extract the one particular bit.
uint32_t extractBit(uint32_t bit) { return (encode() >> bit) & 1; }
// Extract a bit field out of the instruction
uint32_t extractBitField(uint32_t hi, uint32_t lo) {
return (encode() >> lo) & ((2 << (hi - lo)) - 1);
}
// Get the next instruction in the instruction stream.
// This does neat things like ignoreconstant pools and their guards.
Instruction* next();
// Sometimes, an api wants a uint32_t (or a pointer to it) rather than
// an instruction. raw() just coerces this into a pointer to a uint32_t
const uint32_t* raw() const { return &data; }
uint32_t size() const { return 4; }
}; // Instruction
// make sure that it is the right size
static_assert(sizeof(Instruction) == 4,
"Size of Instruction class has to be 4 bytes.");
class InstNOP : public Instruction {
public:
InstNOP() : Instruction(NopInst) {}
};
// Class for register type instructions.
class InstReg : public Instruction {
public:
InstReg(OpcodeField op, Register rj, Register rd)
: Instruction(op | RJ(rj) | RD(rd)) {}
InstReg(OpcodeField op, Register rk, Register rj, Register rd)
: Instruction(op | RK(rk) | RJ(rj) | RD(rd)) {}
InstReg(OpcodeField op, uint32_t sa, Register rk, Register rj, Register rd,
uint32_t sa_bit)
: Instruction(sa_bit == 2 ? op | SA2(sa) | RK(rk) | RJ(rj) | RD(rd)
: op | SA3(sa) | RK(rk) | RJ(rj) | RD(rd)) {
MOZ_ASSERT(sa_bit == 2 || sa_bit == 3);
}
InstReg(OpcodeField op, Register rj, Register rd, bool HasRd)
: Instruction(HasRd ? op | RJ(rj) | RD(rd) : op | RK(rj) | RJ(rd)) {}
// For floating-point
InstReg(OpcodeField op, Register rj, FloatRegister fd)
: Instruction(op | RJ(rj) | FD(fd)) {}
InstReg(OpcodeField op, FloatRegister fj, FloatRegister fd)
: Instruction(op | FJ(fj) | FD(fd)) {}
InstReg(OpcodeField op, FloatRegister fk, FloatRegister fj, FloatRegister fd)
: Instruction(op | FK(fk) | FJ(fj) | FD(fd)) {}
InstReg(OpcodeField op, Register rk, Register rj, FloatRegister fd)
: Instruction(op | RK(rk) | RJ(rj) | FD(fd)) {}
InstReg(OpcodeField op, FloatRegister fa, FloatRegister fk, FloatRegister fj,
FloatRegister fd)
: Instruction(op | FA(fa) | FK(fk) | FJ(fj) | FD(fd)) {}
InstReg(OpcodeField op, AssemblerLOONG64::FPConditionBit ca, FloatRegister fk,
FloatRegister fj, FloatRegister fd)
: Instruction(op | ca << CAShift | FK(fk) | FJ(fj) | FD(fd)) {
MOZ_ASSERT(op == op_fsel);
}
InstReg(OpcodeField op, FloatRegister fj, Register rd)
: Instruction(op | FJ(fj) | RD(rd)) {
MOZ_ASSERT((op == op_movfr2gr_s) || (op == op_movfr2gr_d) ||
(op == op_movfrh2gr_s));
}
InstReg(OpcodeField op, Register rj, uint32_t fd)
: Instruction(op | RJ(rj) | fd) {
MOZ_ASSERT(op == op_movgr2fcsr);
}
InstReg(OpcodeField op, uint32_t fj, Register rd)
: Instruction(op | (fj << FJShift) | RD(rd)) {
MOZ_ASSERT(op == op_movfcsr2gr);
}
InstReg(OpcodeField op, FloatRegister fj, AssemblerLOONG64::FPConditionBit cd)
: Instruction(op | FJ(fj) | cd) {
MOZ_ASSERT(op == op_movfr2cf);
}
InstReg(OpcodeField op, AssemblerLOONG64::FPConditionBit cj, FloatRegister fd)
: Instruction(op | (cj << CJShift) | FD(fd)) {
MOZ_ASSERT(op == op_movcf2fr);
}
InstReg(OpcodeField op, Register rj, AssemblerLOONG64::FPConditionBit cd)
: Instruction(op | RJ(rj) | cd) {
MOZ_ASSERT(op == op_movgr2cf);
}
InstReg(OpcodeField op, AssemblerLOONG64::FPConditionBit cj, Register rd)
: Instruction(op | (cj << CJShift) | RD(rd)) {
MOZ_ASSERT(op == op_movcf2gr);
}
InstReg(OpcodeField op, int32_t cond, FloatRegister fk, FloatRegister fj,
AssemblerLOONG64::FPConditionBit cd)
: Instruction(op | (cond & CONDMask) << CONDShift | FK(fk) | FJ(fj) |
(cd & RDMask)) {
MOZ_ASSERT(is_uintN(cond, 5));
}
uint32_t extractRK() {
return extractBitField(RKShift + RKBits - 1, RKShift);
}
uint32_t extractRJ() {
return extractBitField(RJShift + RJBits - 1, RJShift);
}
uint32_t extractRD() {
return extractBitField(RDShift + RDBits - 1, RDShift);
}
uint32_t extractSA2() {
return extractBitField(SAShift + SA2Bits - 1, SAShift);
}
uint32_t extractSA3() {
return extractBitField(SAShift + SA3Bits - 1, SAShift);
}
};
// Class for branch, load and store instructions with immediate offset.
class InstImm : public Instruction {
public:
void extractImm16(BOffImm16* dest);
uint32_t genImm(int32_t value, uint32_t value_bits) {
uint32_t imm = value & Imm5Mask;
if (value_bits == 6) {
imm = value & Imm6Mask;
} else if (value_bits == 12) {
imm = value & Imm12Mask;
} else if (value_bits == 14) {
imm = value & Imm14Mask;
}
return imm;
}
InstImm(OpcodeField op, int32_t value, Register rj, Register rd,
uint32_t value_bits)
: Instruction(op | genImm(value, value_bits) << RKShift | RJ(rj) |
RD(rd)) {
MOZ_ASSERT(value_bits == 5 || value_bits == 6 || value_bits == 12 ||
value_bits == 14);
}
InstImm(OpcodeField op, BOffImm16 off, Register rj, Register rd)
: Instruction(op | (off.encode() & Imm16Mask) << Imm16Shift | RJ(rj) |
RD(rd)) {}
InstImm(OpcodeField op, int32_t si21, Register rj, bool NotHasRd)
: Instruction(NotHasRd ? op | (si21 & Imm16Mask) << RKShift | RJ(rj) |
(si21 & Imm21Mask) >> 16
: op | (si21 & Imm20Mask) << Imm20Shift | RD(rj)) {
if (NotHasRd) {
MOZ_ASSERT(op == op_beqz || op == op_bnez);
MOZ_ASSERT(is_intN(si21, 21));
} else {
MOZ_ASSERT(op == op_lu12i_w || op == op_lu32i_d || op == op_pcaddi ||
op == op_pcaddu12i || op == op_pcaddu18i ||
op == op_pcalau12i);
// si20
MOZ_ASSERT(is_intN(si21, 20) || is_uintN(si21, 20));
}
}
InstImm(OpcodeField op, int32_t si21, AssemblerLOONG64::FPConditionBit cj,
bool isNotEqual)
: Instruction(isNotEqual
? op | (si21 & Imm16Mask) << RKShift |
(cj + 8) << CJShift | (si21 & Imm21Mask) >> 16
: op | (si21 & Imm16Mask) << RKShift | cj << CJShift |
(si21 & Imm21Mask) >> 16) {
MOZ_ASSERT(is_intN(si21, 21));
MOZ_ASSERT(op == op_bcz);
MOZ_ASSERT(cj >= 0 && cj <= 7);
}
InstImm(OpcodeField op, Imm16 off, Register rj, Register rd)
: Instruction(op | (off.encode() & Imm16Mask) << Imm16Shift | RJ(rj) |
RD(rd)) {}
InstImm(OpcodeField op, int32_t bit15)
: Instruction(op | (bit15 & Imm15Mask)) {
MOZ_ASSERT(is_uintN(bit15, 15));
}
InstImm(OpcodeField op, int32_t bit26, bool jump)
: Instruction(op | (bit26 & Imm16Mask) << Imm16Shift |
(bit26 & Imm26Mask) >> 16) {
MOZ_ASSERT(is_intN(bit26, 26));
}
InstImm(OpcodeField op, int32_t si12, Register rj, int32_t hint)
: Instruction(op | (si12 & Imm12Mask) << Imm12Shift | RJ(rj) |
(hint & RDMask)) {
MOZ_ASSERT(op == op_preld);
}
InstImm(OpcodeField op, int32_t msb, int32_t lsb, Register rj, Register rd,
uint32_t sb_bits)
: Instruction((sb_bits == 5)
? op | (msb & MSBWMask) << MSBWShift |
(lsb & LSBWMask) << LSBWShift | RJ(rj) | RD(rd)
: op | (msb & MSBDMask) << MSBDShift |
(lsb & LSBDMask) << LSBDShift | RJ(rj) | RD(rd)) {
MOZ_ASSERT(sb_bits == 5 || sb_bits == 6);
MOZ_ASSERT(op == op_bstr_w || op == op_bstrins_d || op == op_bstrpick_d);
}
InstImm(OpcodeField op, int32_t msb, int32_t lsb, Register rj, Register rd)
: Instruction(op | (msb & MSBWMask) << MSBWShift |
((lsb + 0x20) & LSBDMask) << LSBWShift | RJ(rj) | RD(rd)) {
MOZ_ASSERT(op == op_bstr_w);
}
// For floating-point loads and stores.
InstImm(OpcodeField op, int32_t si12, Register rj, FloatRegister fd)
: Instruction(op | (si12 & Imm12Mask) << Imm12Shift | RJ(rj) | FD(fd)) {
MOZ_ASSERT(is_intN(si12, 12));
}
void setOpcode(OpcodeField op, uint32_t opBits) {
// opBits not greater than 24.
MOZ_ASSERT(opBits < 25);
uint32_t OpcodeShift = 32 - opBits;
uint32_t OpcodeMask = ((1 << opBits) - 1) << OpcodeShift;
data = (data & ~OpcodeMask) | op;
}
uint32_t extractRK() {
return extractBitField(RKShift + RKBits - 1, RKShift);
}
uint32_t extractRJ() {
return extractBitField(RJShift + RJBits - 1, RJShift);
}
void setRJ(uint32_t rj) { data = (data & ~RJMask) | (rj << RJShift); }
uint32_t extractRD() {
return extractBitField(RDShift + RDBits - 1, RDShift);
}
uint32_t extractImm16Value() {
return extractBitField(Imm16Shift + Imm16Bits - 1, Imm16Shift);
}
void setBOffImm16(BOffImm16 off) {
// Reset immediate field and replace it
data = (data & ~BOffImm16Mask) | (off.encode() << Imm16Shift);
}
void setImm21(int32_t off) {
// Reset immediate field and replace it
uint32_t low16 = (off >> 2) & Imm16Mask;
int32_t high5 = (off >> 18) & Imm5Mask;
uint32_t fcc_info = (data >> 5) & 0x1F;
data = (data & ~BOffImm26Mask) | (low16 << Imm16Shift) | high5 |
(fcc_info << 5);
}
};
// Class for Jump type instructions.
class InstJump : public Instruction {
public:
InstJump(OpcodeField op, JOffImm26 off)
: Instruction(op | (off.encode() & Imm16Mask) << Imm16Shift |
(off.encode() & Imm26Mask) >> 16) {
MOZ_ASSERT(op == op_b || op == op_bl);
}
void setJOffImm26(JOffImm26 off) {
// Reset immediate field and replace it
data = (data & ~BOffImm26Mask) |
((off.encode() & Imm16Mask) << Imm16Shift) |
((off.encode() >> 16) & 0x3ff);
}
uint32_t extractImm26Value() {
return extractBitField(Imm26Shift + Imm26Bits - 1, Imm26Shift);
}
};
class ABIArgGenerator {
public:
ABIArgGenerator()
: intRegIndex_(0), floatRegIndex_(0), stackOffset_(0), current_() {}
ABIArg next(MIRType argType);
ABIArg& current() { return current_; }
uint32_t stackBytesConsumedSoFar() const { return stackOffset_; }
void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; }
protected:
unsigned intRegIndex_;
unsigned floatRegIndex_;
uint32_t stackOffset_;
ABIArg current_;
};
class Assembler : public AssemblerLOONG64 {
public:
Assembler() : AssemblerLOONG64() {}
static uintptr_t GetPointer(uint8_t*);
using AssemblerLOONG64::bind;
static void Bind(uint8_t* rawCode, const CodeLabel& label);
void processCodeLabels(uint8_t* rawCode);
static void TraceJumpRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader);
static void TraceDataRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader);
void bind(InstImm* inst, uintptr_t branch, uintptr_t target);
// Copy the assembly code to the given buffer, and perform any pending
// relocations relying on the target address.
void executableCopy(uint8_t* buffer);
static uint32_t PatchWrite_NearCallSize();
static uint64_t ExtractLoad64Value(Instruction* inst0);
static void UpdateLoad64Value(Instruction* inst0, uint64_t value);
static void WriteLoad64Instructions(Instruction* inst0, Register reg,
uint64_t value);
static void PatchWrite_NearCall(CodeLocationLabel start,
CodeLocationLabel toCall);
static void PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue,
ImmPtr expectedValue);
static void PatchDataWithValueCheck(CodeLocationLabel label,
PatchedImmPtr newValue,
PatchedImmPtr expectedValue);
static uint64_t ExtractInstructionImmediate(uint8_t* code);
static void ToggleCall(CodeLocationLabel inst_, bool enabled);
}; // Assembler
static const uint32_t NumIntArgRegs = 8;
static const uint32_t NumFloatArgRegs = 8;
static inline bool GetIntArgReg(uint32_t usedIntArgs, Register* out) {
if (usedIntArgs < NumIntArgRegs) {
*out = Register::FromCode(a0.code() + usedIntArgs);
return true;
}
return false;
}
static inline bool GetFloatArgReg(uint32_t usedFloatArgs, FloatRegister* out) {
if (usedFloatArgs < NumFloatArgRegs) {
*out = FloatRegister::FromCode(f0.code() + usedFloatArgs);
return true;
}
return false;
}
// Get a register in which we plan to put a quantity that will be used as an
// integer argument. This differs from GetIntArgReg in that if we have no more
// actual argument registers to use we will fall back on using whatever
// CallTempReg* don't overlap the argument registers, and only fail once those
// run out too.
static inline bool GetTempRegForIntArg(uint32_t usedIntArgs,
uint32_t usedFloatArgs, Register* out) {
// NOTE: We can't properly determine which regs are used if there are
// float arguments. If this is needed, we will have to guess.
MOZ_ASSERT(usedFloatArgs == 0);
if (GetIntArgReg(usedIntArgs, out)) {
return true;
}
// Unfortunately, we have to assume things about the point at which
// GetIntArgReg returns false, because we need to know how many registers it
// can allocate.
usedIntArgs -= NumIntArgRegs;
if (usedIntArgs >= NumCallTempNonArgRegs) {
return false;
}
*out = CallTempNonArgRegs[usedIntArgs];
return true;
}
} // namespace jit
} // namespace js
#endif /* jit_loong64_Assembler_loong64_h */
|