1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright 2020 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef jit_loong64_Simulator_loong64_h
#define jit_loong64_Simulator_loong64_h
#ifdef JS_SIMULATOR_LOONG64
# include "mozilla/Atomics.h"
# include "jit/IonTypes.h"
# include "js/ProfilingFrameIterator.h"
# include "threading/Thread.h"
# include "vm/MutexIDs.h"
# include "wasm/WasmSignalHandlers.h"
namespace js {
namespace jit {
class JitActivation;
class Simulator;
class Redirection;
class CachePage;
class AutoLockSimulator;
// When the SingleStepCallback is called, the simulator is about to execute
// sim->get_pc() and the current machine state represents the completed
// execution of the previous pc.
typedef void (*SingleStepCallback)(void* arg, Simulator* sim, void* pc);
const intptr_t kPointerAlignment = 8;
const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
const intptr_t kDoubleAlignment = 8;
const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
// Number of general purpose registers.
const int kNumRegisters = 32;
// In the simulator, the PC register is simulated as the 34th register.
const int kPCRegister = 32;
// Number coprocessor registers.
const int kNumFPURegisters = 32;
// FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
// TODO fcsr0 fcsr1 fcsr2 fcsr3
const int kFCSRRegister = 0;
const int kInvalidFPUControlRegister = -1;
const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1 << 31) - 1;
const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1u << 31);
const uint64_t kFPU64InvalidResult =
static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
const int64_t kFPU64InvalidResultNegative =
static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
const uint32_t kFPURoundingModeShift = 8;
const uint32_t kFPURoundingModeMask = 0b11 << kFPURoundingModeShift;
// FPU rounding modes.
enum FPURoundingMode {
RN = 0b00 << kFPURoundingModeShift, // Round to Nearest.
RZ = 0b01 << kFPURoundingModeShift, // Round towards zero.
RP = 0b10 << kFPURoundingModeShift, // Round towards Plus Infinity.
RM = 0b11 << kFPURoundingModeShift, // Round towards Minus Infinity.
// Aliases.
kRoundToNearest = RN,
kRoundToZero = RZ,
kRoundToPlusInf = RP,
kRoundToMinusInf = RM,
mode_round = RN,
mode_ceil = RP,
mode_floor = RM,
mode_trunc = RZ
};
// FCSR constants.
const uint32_t kFCSRInexactFlagBit = 16;
const uint32_t kFCSRUnderflowFlagBit = 17;
const uint32_t kFCSROverflowFlagBit = 18;
const uint32_t kFCSRDivideByZeroFlagBit = 19;
const uint32_t kFCSRInvalidOpFlagBit = 20;
const uint32_t kFCSRInexactCauseBit = 24;
const uint32_t kFCSRUnderflowCauseBit = 25;
const uint32_t kFCSROverflowCauseBit = 26;
const uint32_t kFCSRDivideByZeroCauseBit = 27;
const uint32_t kFCSRInvalidOpCauseBit = 28;
const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
const uint32_t kFCSRFlagMask =
kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask |
kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask;
const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
// On LoongArch64 Simulator breakpoints can have different codes:
// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
// the simulator will run through them and print the registers.
// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
// instructions (see Assembler::stop()).
// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
// debugger.
const uint32_t kMaxWatchpointCode = 31;
const uint32_t kMaxStopCode = 127;
const uint32_t kWasmTrapCode = 6;
// -----------------------------------------------------------------------------
// Utility functions
typedef uint32_t Instr;
class SimInstruction;
// Per thread simulator state.
class Simulator {
friend class loong64Debugger;
public:
// Registers are declared in order.
enum Register {
no_reg = -1,
zero_reg = 0,
ra,
gp,
sp,
a0,
a1,
a2,
a3,
a4,
a5,
a6,
a7,
t0,
t1,
t2,
t3,
t4,
t5,
t6,
t7,
t8,
tp,
fp,
s0,
s1,
s2,
s3,
s4,
s5,
s6,
s7,
s8,
pc, // pc must be the last register.
kNumSimuRegisters,
// aliases
v0 = a0,
v1 = a1,
};
// Condition flag registers.
enum CFRegister {
fcc0,
fcc1,
fcc2,
fcc3,
fcc4,
fcc5,
fcc6,
fcc7,
kNumCFRegisters
};
// Floating point registers.
enum FPURegister {
f0,
f1,
f2,
f3,
f4,
f5,
f6,
f7,
f8,
f9,
f10,
f11,
f12,
f13,
f14,
f15,
f16,
f17,
f18,
f19,
f20,
f21,
f22,
f23,
f24,
f25,
f26,
f27,
f28,
f29,
f30,
f31,
kNumFPURegisters
};
// Returns nullptr on OOM.
static Simulator* Create();
static void Destroy(Simulator* simulator);
// Constructor/destructor are for internal use only; use the static methods
// above.
Simulator();
~Simulator();
// The currently executing Simulator instance. Potentially there can be one
// for each native thread.
static Simulator* Current();
static inline uintptr_t StackLimit() {
return Simulator::Current()->stackLimit();
}
uintptr_t* addressOfStackLimit();
// Accessors for register state. Reading the pc value adheres to the LOONG64
// architecture specification and is off by a 8 from the currently executing
// instruction.
void setRegister(int reg, int64_t value);
int64_t getRegister(int reg) const;
// Same for FPURegisters.
void setFpuRegister(int fpureg, int64_t value);
void setFpuRegisterWord(int fpureg, int32_t value);
void setFpuRegisterHiWord(int fpureg, int32_t value);
void setFpuRegisterFloat(int fpureg, float value);
void setFpuRegisterDouble(int fpureg, double value);
void setFpuRegisterWordInvalidResult(float original, float rounded,
int fpureg);
void setFpuRegisterWordInvalidResult(double original, double rounded,
int fpureg);
void setFpuRegisterInvalidResult(float original, float rounded, int fpureg);
void setFpuRegisterInvalidResult(double original, double rounded, int fpureg);
void setFpuRegisterInvalidResult64(float original, float rounded, int fpureg);
void setFpuRegisterInvalidResult64(double original, double rounded,
int fpureg);
int64_t getFpuRegister(int fpureg) const;
// int32_t getFpuRegisterLo(int fpureg) const;
// int32_t getFpuRegisterHi(int fpureg) const;
int32_t getFpuRegisterWord(int fpureg) const;
int32_t getFpuRegisterSignedWord(int fpureg) const;
int32_t getFpuRegisterHiWord(int fpureg) const;
float getFpuRegisterFloat(int fpureg) const;
double getFpuRegisterDouble(int fpureg) const;
void setCFRegister(int cfreg, bool value);
bool getCFRegister(int cfreg) const;
void set_fcsr_rounding_mode(FPURoundingMode mode);
void setFCSRBit(uint32_t cc, bool value);
bool testFCSRBit(uint32_t cc);
unsigned int getFCSRRoundingMode();
template <typename T>
bool setFCSRRoundError(double original, double rounded);
bool setFCSRRound64Error(float original, float rounded);
template <typename T>
void roundAccordingToFCSR(T toRound, T* rounded, int32_t* rounded_int);
template <typename T>
void round64AccordingToFCSR(T toRound, T* rounded, int64_t* rounded_int);
// Special case of set_register and get_register to access the raw PC value.
void set_pc(int64_t value);
int64_t get_pc() const;
template <typename T>
T get_pc_as() const {
return reinterpret_cast<T>(get_pc());
}
void enable_single_stepping(SingleStepCallback cb, void* arg);
void disable_single_stepping();
// Accessor to the internal simulator stack area.
uintptr_t stackLimit() const;
bool overRecursed(uintptr_t newsp = 0) const;
bool overRecursedWithExtra(uint32_t extra) const;
// Executes LOONG64 instructions until the PC reaches end_sim_pc.
template <bool enableStopSimAt>
void execute();
// Sets up the simulator state and grabs the result on return.
int64_t call(uint8_t* entry, int argument_count, ...);
// Push an address onto the JS stack.
uintptr_t pushAddress(uintptr_t address);
// Pop an address from the JS stack.
uintptr_t popAddress();
// Debugger input.
void setLastDebuggerInput(char* input);
char* lastDebuggerInput() { return lastDebuggerInput_; }
// Returns true if pc register contains one of the 'SpecialValues' defined
// below (bad_ra, end_sim_pc).
bool has_bad_pc() const;
private:
enum SpecialValues {
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
bad_ra = -1,
// A pc value used to signal the simulator to stop execution. Generally
// the ra is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
end_sim_pc = -2,
// Unpredictable value.
Unpredictable = 0xbadbeaf
};
bool init();
// Unsupported instructions use Format to print an error and stop execution.
void format(SimInstruction* instr, const char* format);
// Read and write memory.
inline uint8_t readBU(uint64_t addr);
inline int8_t readB(uint64_t addr);
inline void writeB(uint64_t addr, uint8_t value);
inline void writeB(uint64_t addr, int8_t value);
inline uint16_t readHU(uint64_t addr, SimInstruction* instr);
inline int16_t readH(uint64_t addr, SimInstruction* instr);
inline void writeH(uint64_t addr, uint16_t value, SimInstruction* instr);
inline void writeH(uint64_t addr, int16_t value, SimInstruction* instr);
inline uint32_t readWU(uint64_t addr, SimInstruction* instr);
inline int32_t readW(uint64_t addr, SimInstruction* instr);
inline void writeW(uint64_t addr, uint32_t value, SimInstruction* instr);
inline void writeW(uint64_t addr, int32_t value, SimInstruction* instr);
inline int64_t readDW(uint64_t addr, SimInstruction* instr);
inline void writeDW(uint64_t addr, int64_t value, SimInstruction* instr);
inline double readD(uint64_t addr, SimInstruction* instr);
inline void writeD(uint64_t addr, double value, SimInstruction* instr);
inline int32_t loadLinkedW(uint64_t addr, SimInstruction* instr);
inline int storeConditionalW(uint64_t addr, int32_t value,
SimInstruction* instr);
inline int64_t loadLinkedD(uint64_t addr, SimInstruction* instr);
inline int storeConditionalD(uint64_t addr, int64_t value,
SimInstruction* instr);
// Executing is handled based on the instruction type.
void decodeTypeOp6(SimInstruction* instr);
void decodeTypeOp7(SimInstruction* instr);
void decodeTypeOp8(SimInstruction* instr);
void decodeTypeOp10(SimInstruction* instr);
void decodeTypeOp11(SimInstruction* instr);
void decodeTypeOp12(SimInstruction* instr);
void decodeTypeOp14(SimInstruction* instr);
void decodeTypeOp15(SimInstruction* instr);
void decodeTypeOp16(SimInstruction* instr);
void decodeTypeOp17(SimInstruction* instr);
void decodeTypeOp22(SimInstruction* instr);
void decodeTypeOp24(SimInstruction* instr);
inline int32_t rj_reg(SimInstruction* instr) const;
inline int64_t rj(SimInstruction* instr) const;
inline uint64_t rj_u(SimInstruction* instr) const;
inline int32_t rk_reg(SimInstruction* instr) const;
inline int64_t rk(SimInstruction* instr) const;
inline uint64_t rk_u(SimInstruction* instr) const;
inline int32_t rd_reg(SimInstruction* instr) const;
inline int64_t rd(SimInstruction* instr) const;
inline uint64_t rd_u(SimInstruction* instr) const;
inline int32_t fa_reg(SimInstruction* instr) const;
inline float fa_float(SimInstruction* instr) const;
inline double fa_double(SimInstruction* instr) const;
inline int32_t fj_reg(SimInstruction* instr) const;
inline float fj_float(SimInstruction* instr) const;
inline double fj_double(SimInstruction* instr) const;
inline int32_t fk_reg(SimInstruction* instr) const;
inline float fk_float(SimInstruction* instr) const;
inline double fk_double(SimInstruction* instr) const;
inline int32_t fd_reg(SimInstruction* instr) const;
inline float fd_float(SimInstruction* instr) const;
inline double fd_double(SimInstruction* instr) const;
inline int32_t cj_reg(SimInstruction* instr) const;
inline bool cj(SimInstruction* instr) const;
inline int32_t cd_reg(SimInstruction* instr) const;
inline bool cd(SimInstruction* instr) const;
inline int32_t ca_reg(SimInstruction* instr) const;
inline bool ca(SimInstruction* instr) const;
inline uint32_t sa2(SimInstruction* instr) const;
inline uint32_t sa3(SimInstruction* instr) const;
inline uint32_t ui5(SimInstruction* instr) const;
inline uint32_t ui6(SimInstruction* instr) const;
inline uint32_t lsbw(SimInstruction* instr) const;
inline uint32_t msbw(SimInstruction* instr) const;
inline uint32_t lsbd(SimInstruction* instr) const;
inline uint32_t msbd(SimInstruction* instr) const;
inline uint32_t cond(SimInstruction* instr) const;
inline int32_t si12(SimInstruction* instr) const;
inline uint32_t ui12(SimInstruction* instr) const;
inline int32_t si14(SimInstruction* instr) const;
inline int32_t si16(SimInstruction* instr) const;
inline int32_t si20(SimInstruction* instr) const;
// Used for breakpoints.
void softwareInterrupt(SimInstruction* instr);
// Stop helper functions.
bool isWatchpoint(uint32_t code);
void printWatchpoint(uint32_t code);
void handleStop(uint32_t code, SimInstruction* instr);
bool isStopInstruction(SimInstruction* instr);
bool isEnabledStop(uint32_t code);
void enableStop(uint32_t code);
void disableStop(uint32_t code);
void increaseStopCounter(uint32_t code);
void printStopInfo(uint32_t code);
JS::ProfilingFrameIterator::RegisterState registerState();
// Handle any wasm faults, returning true if the fault was handled.
// This method is rather hot so inline the normal (no-wasm) case.
bool MOZ_ALWAYS_INLINE handleWasmSegFault(uint64_t addr, unsigned numBytes) {
if (MOZ_LIKELY(!js::wasm::CodeExists)) {
return false;
}
uint8_t* newPC;
if (!js::wasm::MemoryAccessTraps(registerState(), (uint8_t*)addr, numBytes,
&newPC)) {
return false;
}
LLBit_ = false;
set_pc(int64_t(newPC));
return true;
}
// Executes one instruction.
void instructionDecode(SimInstruction* instr);
public:
static int64_t StopSimAt;
// Runtime call support.
static void* RedirectNativeFunction(void* nativeFunction,
ABIFunctionType type);
private:
enum Exception {
kNone,
kIntegerOverflow,
kIntegerUnderflow,
kDivideByZero,
kNumExceptions
};
int16_t exceptions[kNumExceptions];
// Exceptions.
void signalExceptions();
// Handle return value for runtime FP functions.
void setCallResultDouble(double result);
void setCallResultFloat(float result);
void setCallResult(int64_t res);
void setCallResult(__int128 res);
void callInternal(uint8_t* entry);
// Architecture state.
// Registers.
int64_t registers_[kNumSimuRegisters];
// Floating point Registers.
int64_t FPUregisters_[kNumFPURegisters];
// Condition flags Registers.
bool CFregisters_[kNumCFRegisters];
// FPU control register.
uint32_t FCSR_;
bool LLBit_;
uintptr_t LLAddr_;
int64_t lastLLValue_;
// Simulator support.
char* stack_;
uintptr_t stackLimit_;
bool pc_modified_;
int64_t icount_;
int64_t break_count_;
// Debugger input.
char* lastDebuggerInput_;
// Registered breakpoints.
SimInstruction* break_pc_;
Instr break_instr_;
// Single-stepping support
bool single_stepping_;
SingleStepCallback single_step_callback_;
void* single_step_callback_arg_;
// A stop is watched if its code is less than kNumOfWatchedStops.
// Only watched stops support enabling/disabling and the counter feature.
static const uint32_t kNumOfWatchedStops = 256;
// Stop is disabled if bit 31 is set.
static const uint32_t kStopDisabledBit = 1U << 31;
// A stop is enabled, meaning the simulator will stop when meeting the
// instruction, if bit 31 of watchedStops_[code].count is unset.
// The value watchedStops_[code].count & ~(1 << 31) indicates how many times
// the breakpoint was hit or gone through.
struct StopCountAndDesc {
uint32_t count_;
char* desc_;
};
StopCountAndDesc watchedStops_[kNumOfWatchedStops];
};
// Process wide simulator state.
class SimulatorProcess {
friend class Redirection;
friend class AutoLockSimulatorCache;
private:
// ICache checking.
struct ICacheHasher {
typedef void* Key;
typedef void* Lookup;
static HashNumber hash(const Lookup& l);
static bool match(const Key& k, const Lookup& l);
};
public:
typedef HashMap<void*, CachePage*, ICacheHasher, SystemAllocPolicy> ICacheMap;
static mozilla::Atomic<size_t, mozilla::ReleaseAcquire>
ICacheCheckingDisableCount;
static void FlushICache(void* start, size_t size);
static void checkICacheLocked(SimInstruction* instr);
static bool initialize() {
singleton_ = js_new<SimulatorProcess>();
return singleton_;
}
static void destroy() {
js_delete(singleton_);
singleton_ = nullptr;
}
SimulatorProcess();
~SimulatorProcess();
private:
static SimulatorProcess* singleton_;
// This lock creates a critical section around 'redirection_' and
// 'icache_', which are referenced both by the execution engine
// and by the off-thread compiler (see Redirection::Get in the cpp file).
Mutex cacheLock_;
Redirection* redirection_;
ICacheMap icache_;
public:
static ICacheMap& icache() {
// Technically we need the lock to access the innards of the
// icache, not to take its address, but the latter condition
// serves as a useful complement to the former.
singleton_->cacheLock_.assertOwnedByCurrentThread();
return singleton_->icache_;
}
static Redirection* redirection() {
singleton_->cacheLock_.assertOwnedByCurrentThread();
return singleton_->redirection_;
}
static void setRedirection(js::jit::Redirection* redirection) {
singleton_->cacheLock_.assertOwnedByCurrentThread();
singleton_->redirection_ = redirection;
}
};
} // namespace jit
} // namespace js
#endif /* JS_SIMULATOR_LOONG64 */
#endif /* jit_loong64_Simulator_loong64_h */
|